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Abstract
Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the 
benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert 
multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more 
complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerg-
ing data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine 
model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties 
of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
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Abbreviations
Aqp	� Aquaporin
APC	� Antigen-presenting cell
BBB	� Blood–brain barrier
CSF	� Cerebrospinal fluid
EDSS	� Expanded disability status scale
ELISpot	� Enzyme-linked immunospot
FACS	� Fluorescence-activated cell sorting
FoxP3	� Forkhead box P3
IFN	� Interferon
mAb	� Monoclonal antibodies

MBP	� Myelin basic protein
MS	� Multiple sclerosis
NMO	� Neuromyelitis optica
PB	� Peripheral blood
PBMC	� Peripheral blood mononuclear cells
PPD	� Purified protein derivative of tuberculin
RORC	� Retinoid-related orphan receptor g
RRMS	� Relapsing–remitting MS
SPMS	� Secondary progressive MS
Tbet	� T-box expressed in T cells
TGF	� Transforming growth factor
Th	� T-helper
TNF	� Tumor necrosis factor
Treg	� T-regulatory cells
VLA	� Very late antigen

Introduction

Multiple sclerosis

Overview

Multiple sclerosis (MS) is an inflammatory disorder of the 
brain and spinal cord characterized by focal lymphocytic 
infiltration and microglial activation leading to neurodegen-
eration and progressive disability [1].
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MS is the most common chronic neurological disease in 
young and middle-aged adults, affecting 2.5 million peo-
ple worldwide. It is more prevalent in Northern Europe, 
Canada and Oceania and shows a female preponderance, 
with a female-to-male 2:1 ratio. MS is classified into 
three subtypes, namely relapsing–remitting MS (RRMS), 
primary progressive MS (PPMS) and secondary progres-
sive MS (SPMS). RRMS, which accounts for 80% of the 
patients, presents at first with an acute episode affecting one 
or more sites, known as the clinically isolated syndrome 
(CIS). A second attack of demyelination occurring after-
ward is required to meet the diagnostic criteria for RRMS. 
Ultimately, around 65% of RRMS patients enter the SPMS 
phase, while in 20% the illness is progressive from onset, 
hence the characterization as PPMS [1].

The first therapeutic regimens that became available for 
MS were interferon-β and glatiramer acetate [2–4]. The FDA 
has currently licensed several immune disease-modifying 
therapies (DMTs), most of which have been validated in 
other autoimmune diseases as well. These include mono-
clonal antibodies, such as rituximab (anti-CD20) [5] and 
alemtuzumab (anti-CD52) [6, 7], and oral agents with 
immunomodulatory properties, such as fingolimod, dimethyl 
fumarate and teriflunomide [8–10]. Clinical trials testing 
anti-CD20-mediated depletion of peripheral B cells showed 
promising effects against the development of new central 
nervous system (CNS) lesions and relapses [11, 12]. Despite 
some efficacy of therapies, there are still unmet therapeutic 
needs in MS. Besides, current therapeutic agents are costly 
summing up to a total annual cost of approximately 15 bil-
lion euros for MS in Europe in 2010.

Pathogenesis

Environmental, genetic, epigenetic and immunological fac-
tors are implicated in the development of MS [13, 14]. Mye-
lin-targeting autoreactive CD4(+) T cells that pass through 
a disrupted blood–brain barrier (BBB) and enter the CNS 
were initially considered the critical orchestrators in the 
pathogenesis of MS [15]. Activated by microglia, astrocytes 
or other immune cells through HLA class II presentation of 
myelin antigens, CD4(+) T cells express different cytokines 
depending on their subset. Th1 and Th17 cells express pro-
inflammatory cytokines, such as IFN-γ and IL-17, respec-
tively, whereas Th2 and regulatory T cells (Tregs) produce 
anti-inflammatory cytokines, such as IL-10 [16–18]. Thus, 
the skewing toward Th1 and Th17 responses is responsible 
for the immune-mediated damage of myelin and axons [19].

The activation of CD4(+) T cells within the CNS leads to 
the recruitment of other inflammatory cells, such as B cells, 
which cross the BBB, undergo activation, antigen-driven 
affinity maturation and clonal expansion [20]. In recent 
years, accumulated evidence emphasizes the role of B cells 

in the progression of MS [21, 22]. B cells are especially 
efficient in presenting antigens to CD4(+) T cells through 
HLA class II molecules [23]. Apart from antigen presenta-
tion, B cells are also able to produce autoantibodies after 
differentiation to plasma cells. Autoantibodies are able to 
cause demyelination through antibody-dependent cellular 
cytotoxicity (ADCC) and complement activation. Lastly, B 
cells are able to express pro-inflammatory cytokines, such 
as IL-6, IFN-γ and TNFα, known to be implicated in MS 
[24–26]. In particular, RRMS patients were found to have 
elevated peripheral expression of IFN-γ, interleukin (IL) 
1-beta (IL1B), IL-7, IL-10, IL12A, IL-15, IL-23, IL-27, 
lymphotoxin-alpha (LTA) and lymphotoxin-beta (LTB) [27]. 
Τhe main sources of pro-inflammatory cytokines within 
PBMCs were T- and B cells, whereas monocytes were the 
most noticeable source of immunoregulatory cytokines [27]. 
Hence, the inflammatory reaction of T, B and other immune 
cells leads to demyelinated lesions throughout the CNS [28]. 
Interestingly, healthy individuals also possess autoreactive T 
cells at lower frequencies, a finding which signifies that their 
presence is not enough per se for disease induction [29]. 
Thus, healthy individuals are likely to maintain regulatory 
mechanisms that keep these autoreactive T cells under con-
trol. Emerging evidence suggests that both Tregs and Bregs 
play a major role in this ‘safeguard’ process.

Tregs

Tregs were originally identified by Sakaguchi et al. in 1995 
as a CD4(+)CD25(+) T cell subset with suppressive activity 
[30]. They are essential to the maintenance of self-tolerance 
and their impairment has been linked with autoimmunity 
and includes numerical decreases, functional defects and 
conversion into inflammatory effector cells [31]. High 
expression of CD25 and low expression of CD127 are the 
main phenotypic markers characterizing bona fide human 
Tregs [32]. CD25 (IL-2 receptor) is central to Treg ontog-
eny, optimal regulatory function and proliferation mediated 
by the gamma chain cytokines IL-2, IL-4, IL-7 and IL-15 
[33]. Subsequently, it was shown that cells with regulatory 
capacity can also express CD8 [34], cytotoxic T-Lympho-
cyte antigen-4 (CTLA-4) [35, 36], the TCR-inducible co-
stimulatory receptor (ICOS) [37] and high levels of CD5 
[38, 39], a surface marker that instructs extrathymic Treg 
cell development in response to self and tolerizing antigens 
also co-expressed by certain B regulatory cell subsets [40, 
41] (as discussed below). The seminal discovery of forkhead 
box P3 (FoxP3), as a fundamental transcription factor for 
the development of regulatory CD4(+)CD25(+) T cells in 
the thymus, helped researchers to precisely phenotype most 
Tregs [42]. FoxP3 (also known as Scurfin, IPEX, and JM2) 
is a transcriptional repression factor of the winged helix fam-
ily and is expressed in all CD4(+) Treg cells with regulatory 
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activity. Currently, Tregs may be accurately identified as 
CD4(+)CD25(+)FoxP3(+) T cells or (as FoxP3 inversely 
correlate with cell surface CD127 expression) as CD4(+)
CD25(+)CD127(lo)/(−) T cells [43]. Specific regulatory T 
cell populations may also express other surface markers such 
as CD39, LAG-3 and GITR [44–47].

Natural and  induced Tregs  Tregs can be subdivided into 
thymus-developed, “natural” Tregs that mediate tolerance 
to self-antigens and “induced” Tregs derived from conven-
tional CD4(+) T cells following non-self antigenic exposure 
[48]. Natural Treg production requires stable expression of 
FoxP3 and high-affinity binding of HLA/self-peptide com-
plex on thymic antigen-presenting cells (APCs) to T cell 
receptor (TCR). Natural Tregs can be also sub-classified 
into CD45RA(+)“naïve” Tregs and CD45RO(+)“memory” 
Tregs [49]. ‘Induced’ or ‘adaptive’ Tregs (iTregs) are gen-
erated from naïve T cells in the presence of transforming 
growth factor-β (TGF-β) or retinoic acid and produce the 
anti-inflammatory cytokine IL-10 [50–52]. Despite the phe-
notypic and functional overlaps with natural Tregs, iTregs 
demonstrate apparent differences in stability and gene 
expression [53]. Type 1 regulatory T cells (Tr1), are a sub-
population of Tregs-expressing CD4(+)CD49(+)LAG-3(+)
IL-10(+) that exert significant immunosuppressive effects 
[54–56]. In addition, CD8(+) Tregs (Tr2) and IL-17-pro-
ducing Tregs that share some common features with Tr1 
also exist [57]. iTregs-expressing RORγt, which is the mas-
ter regulator of antimicrobial type 3 immunity are termed 
type 3 Tregs (Tr3) [58, 59]. These cells constitute the major 
population of colonic Tregs, require bacterial antigens for 
differentiation and are distinct from thymus-derived Tregs.

Tregs function  Tregs have a pivotal function in regulating 
the immune system by controlling the number and func-
tion of effector cells. Thus, they play a major role in sup-
pressing unwanted autoreactive immune responses, such 
as in the case of autoimmunity [60]. Interestingly, it has 
been indicated that Tregs can modulate both adaptive and 
innate immune systems, and once activated they specifi-
cally regulate immune responses at multiple levels and by 
various mechanisms. These suppressive mechanisms can 
be organized into major groups, including cell–cell contact-
dependent suppression, inhibitory cytokine release (such as 
IL-10 and TGF-β), modulation of APC function, cytolysis, 
metabolic disruption and induction of suppressor cells or 
“infectious tolerance” [53].

In addition to IL-10, the inhibitory cytokine IL-35 also 
contributes to regulatory T cell function [61, 62]. IL-35 
belongs to IL-12 family of cytokines that includes IL-12, 
IL-23, IL-27 and IL-35. Of these, IL-12 and IL-23 have pro-
inflammatory roles, whereas IL-35 appears to exert a more 
regulatory function by inducing the expansion of Tregs and 

Bregs subsets and inhibiting Th17 cell differentiation [63]. 
IL-35-producing Tregs represent a distinct effector popula-
tion from the IL-10-producing iTregs which also have differ-
ent transcription factor dependency, as differentiation regu-
lator Blimp1 is essential for IL-10 production, but not for 
IL-35, whereas Foxp3 is important for IL-35 but dispensable 
for IL-10 production [64]. Recently, it was demonstrated 
that the IL-12p35 alpha subunit of IL-35 efficiently sup-
pressed encephalitogenic T cell responses and ameliorated 
experimental autoimmune encephalomyelitis (EAE), a well-
characterized murine model of MS [65]. IL-12p35 inhibited 
the expansion of pathogenic Th17 and Th1 cells and medi-
ated the expansion of Tregs and Bregs [65].

Tregs and multiple sclerosis

Major studies investigating the role of Tregs in MS are sum-
marized in Table 1.

EAE mouse model  The role of Tregs in MS has been thor-
oughly investigated in EAE [66]. EAE shares many fea-
tures with the human disease and has thus revealed much 
information that led to the development of many approved 
therapies for MS [67, 68]. A correlation was found between 
antigen-specific Tregs and disease resistance [69]; similarly, 
transfer of Tregs to EAE-induced mice reduced the sever-
ity of the disease [70]. In addition, depletion of CD25(+) T 
cells reduced the antigen burden required to induce EAE and 
prevented disease recovery [71]. Furthermore, Tregs were 
also involved in the regulation of cell transmigration across 
the BBB [72]. The EAE model system was also exploited 
for in vivo silencing of certain microRNAs such as miR26a, 
which increases the expression of Th17-related cytokines 
and establishes more severe EAE [73]. In contrast, overex-
pression of miR26a is associated with decreased expression 
of Th17-related cytokines, positive correlation with Treg 
FoxP3 and less severe disease [73].

Many treatment regimens increase Tregs and have also 
been proven quite successful at the experimental level (in 
EAE) [74]. For instance, IDO was shown to upregulate Tregs 
via tryptophan catabolite and to suppresses encephalitogenic 
T cell responses [75]. Further evidence suggested that vita-
min A and its active metabolites (all-trans-retinoic acid and 
9-cis-retinoic acid) could restore the imbalance of Th17 and 
Treg cells and can be considered as a promising target in the 
prevention of EAE [76]. Expansion of Tregs also appears 
promising. Lately, it was shown that engineered clonal 
MBP-specific Tregs ameliorated EAE in myelin oligoden-
drocyte glycoprotein (MOG)-immunized DR15 transgenic 
mice [77]. Administration of antigen encapsulated within 
tolerogenic nanoparticles (tNPs) comprising biodegradable 
polymer is also capable of inducing Ag-specific Tregs [78]. 
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tNP-treated mice did not develop EAE following adoptive 
transfer of encephalitogenic T cells [78].

Human MS  It has become apparent that Tregs are also 
implicated in the pathophysiology of MS in humans [53, 
74]. Although increased frequencies of Tregs are found 
in the cerebrospinal fluid but not peripheral blood of MS 
patients [79], alterations in Treg homeostasis [80, 81] 
and their functional impairment are documented [82–84]. 
Interestingly, their functional defects are more profound in 
RRMS than in SPMS [85, 86]. Analysis of the thymic export 
activity in MS patients revealed impaired release of newly 
formed T cells into the periphery resulting in an imbalance 
of circulating Tregs [87]. This thymic functional impair-
ment is compensated by peripheral post-thymic expansion, 
creating a shift from naïve Tregs to memory Tregs in MS 
patients. Researchers argue that this shift may account for 
the impaired suppressive function of Tregs in MS.

Another possible mechanism for the functional failure 
of Tregs appears to be pro-inflammatory cytokines, such 
as IL-12, which are up-regulated in MS [88]. IL-12 has 
the ability to change the phenotype and function of Tregs 
by inducing IFN-γ production. IFN-γ-producing Tregs 

display a decline in their suppressive activity in vitro, as 
IFN-γ blockade significantly boosted their suppressive 
ability but did not affect control Tregs [89]. The increased 
percentages of Th1-like Tregs may partly account for the 
lack of suppressive function Tregs of MS patients. These 
data illustrate the phenomenon of enhanced Tregs plastic-
ity toward a pro-inflammatory, cytokine-producing effector 
phenotype [90]. Skewed IFN-γ-producing Th1-like Tregs 
play significant role in MS and also other autoimmune 
diseases [53, 91] and malignancies [92]. Importantly, 
IL-12 dependent IFN-γ production of Tregs could also be 
mimicked in vitro in Tregs from healthy subjects creating 
Th1-like Tregs that resembled a classical Th1 phenotype 
[89]. Moreover, Th17-like Tregs which expanded in the 
presence of IL-6 and IL-1β have also been documented 
[93, 94].

Apart from FoxP3(+) Tregs, the role of Tr1 cells’ role in 
MS seems to be equally important. In MS, Tr1 cells were 
reduced in CD46-activated T cells [83], which are known 
to acquire a Tr1 phenotype [95]. Furthermore, IL-10 pro-
duction from CD46- activated T cells was almost absent, 
while IFN-γ production was not affected in these cells. It 
can, therefore, be concluded from these findings that MS is 

Table 1   Main studies investigating the effect of MS-treated patients on regulatory B and T cells

Authors, year of study Origin/country Treatment Sample Results

Quan et al. (2015) China Rituximab Healthy controls (n = 19) NMO 
patients (n = 9)

Tregs increased from 0.3 to 1.2% of total 
lymphocytes after 48 weeks

De Mercanti et al. (2016) Europe Alemtuzumab RRMS patients (n = 29) Significant increase in CD4(+)CD25(hi)
CD127(lo)FoxP3(+) Tregs after 
24 months of treatment

Haas et al. (2015) Germany Fingolimod Healthy controls (n = 37) MS 
patients (n = 74)

Increased median percentage of Tregs 
from 3 to 6,7% after 3 months of treat-
ment

Blumenfeld et al. (2016) Israel Fingolimod MS patients (n = 10) Increase in the percentage of CD38(hi)
CD24(hi) “transitional” Bregs from 3.7 
to 11.6%

Piancone et al. (2016) Italy Fingolimod RRMS patients (n = 12) Significant increase in CD19(+)
BTLA(+)IL-10(+) B cells both as a 
percentage of total lymphocytes and 
CD19(+) B cells

Lundy et al. (2016) USA Dimethyl Fumarate RRMS patients (n = 13) After 12 months of treatment: CD19(+) 
B cells concentration was halved and 
CD24(hi)CD38(hi) Bregs were doubled

Stenner et al. (2008) Germany Natalizumab RRMS patients (n = 15) No significant change in Tregs percent-
age 30 days after initiation of therapy

Putzki et al. (2010) Switzerland Natalizumab RRMS patients (n = 28) Relative decrease in CD4(+)CD25(+) 
Tregs from 18.9 to 14.1%

Schubert et al. (2015) USA IFN-β Treatment-naïve RRMS patients 
(n = 10) IFN-β-treated RRMS 
patients (n = 11)

Increase in CD24(hi)CD38(hi) “transi-
tional” Bregs from 1.09 to 9.50%

Ireland et al. (2014) USA Glatiramer acetate Treatment-naïve MS patients 
(n = 22) Glatiramer acetate-treated 
MS patients (n = 22)

Treated patients IL-10 production by B 
cells was equivalent to those in healthy 
donors and up to 6.5-fold greater than 
the levels in treatment-naive patients
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associated with multiple defects in regulatory T cell popula-
tions [83].

Bregs

Bregs are a subset of B cells that display suppressive func-
tions toward pro-inflammatory and autoreactive immune 
responses. They express IL-10 and other regulatory 
cytokines such as TGF-β and IL-35 that limit inflamma-
tion [63, 96–98]. On the other hand, an overly suppressed 
immune system is vulnerable to infection or cancer, so a bal-
anced number and function of Bregs is essential [99, 100].

Phenotype

Despite extensive research on Bregs in recent years, to date 
there is no consensus on a specific Breg phenotype [101]. 
Although there is a number of identifiable Breg subsets, it 
is still not known if they are developed from a distinct cell 
lineage, like thymus-derived Tregs, or are induced by immu-
nological triggers [102]. On a similar note, no Breg-specific 
transcription factor has been identified. Although expression 
of Foxp3 by certain Bregs is documented [103], it is still a 
matter of debate whether B cell-specific expression of FoxP3 
facilitates acquisition of suppressive capacity. Due to the 
lack of molecular markers, Bregs are usually identified by 
their ability to express IL-10, and these are termed B10 cells. 
In humans, both “naïve” CD19(+)CD24(hi)CD38(hi) [104] 
and “memory” CD19(+)CD24(hi)CD27(+) [105] Bregs 
have been identified as the principal IL-10-expressing sub-
sets [106]. Bregs also express high levels of CD5 [107–109], 
while CD5(+)IL-35-producing Bregs and TGFβ-producing 
Bregs have also been described [110, 111]. Furthermore, B 
cells with regulatory function can also express CD25 and 
LAG-3, similarly to Tregs [112, 113]. Moreover, Bregs such 
as CD73(−)CD25(+)CD71(+) BR1 subsets of plasma cells 
are associated with anti-inflammatory IgG4 antibody secre-
tion which is important for allergic airway inflammation 
[114, 115]. This illuminates a further immune-regulatory 
role of the non-inflammatory and blocking antibody function 
of IgG4, which may require further investigation.

Bregs function

Bregs suppress the pro-inflammatory cytokine production 
by dendritic cells, leading to inhibition of Th1 and Th17 
differentiation [116]. Bregs have also been documented to 
support in vivo Tregs expansion in both mice and humans 
[104, 117]. In several reports, flow cytometry and/or mag-
netically sorted CD4(+) T cells were co-cultured with 
autologous Bregs to elucidate the effector mechanisms of 
Bregs on CD4(+) T cells, including the generation of sup-
pressive Tregs [118–120]. In co-culture with Bregs, CD4(+)

CD25(−) T cells produced less IFN-γ and IL-17, whereas 
Treg induction was predominantly facilitated by expression 
of IL-10 and TGF-β. All these studies confirmed previous 
data from murine systems where naïve T cells co-cultured 
with a mixture of APCs consisting of B and dendritic cells in 
the presence of TGF-β, retinoic acid and IL-2, differentiated 
into allogeneic Tregs [121]. In addition, through the expres-
sion of TGF-β, lipopolysaccharide (LPS)-activated B cells 
can promote both the apoptosis of CD4(+) [122] and anergy 
in CD8(+) [123] effector T cells.

(a)	 B10 B10 is a Breg subset whose regulatory function is 
entirely attributed to their IL-10 production. Moreo-
ver, this suppressive function seems to be antigen spe-
cific, most likely due to antigen-specific B cell recep-
tor (BCR) signaling [124, 125]. This BCR specificity 
explains the rapid B10 response to antigens, self- or 
otherwise, rendering them capable of suppressing 
unwanted excessive immune responses [reviewed by 
[126] ].

(b)	 IL-10 independent Bregs A novel CD138(+)IL−35(+) 
Breg (i35 Breg) population has been characterized 
recently, which produces IL-35, apart from IL-10. 
Through IL-35 expression, these cells regulate CNS 
inflammation. IL-35 has the ability to transform con-
ventional B cells or B10 cells to IL-35-expressing 
i35-Bregs [reviewed by [127] ]. Furthermore, TGF-β-
expressing Bregs are thought to play a role in the sup-
pression of allergic reactions. They evidently promote 
Treg differentiation by upregulating FoxP3 production 
in T cells and regulate food allergy-induced inflamma-
tion in mice. In addition, thrombospondin 1-secreting 
CD35(+) B cells induced a Treg phenotype through 
TGF-β, but not IL-10 and suppressed co-stimulatory 
molecule expression on dendritic cells. Moreover, 
there is evidence that PD-L1 (programmed death 1) is 
involved in Bregs function, as PD-L1Hi B cells nega-
tively regulate T cell differentiation [128] (reviewed by 
[129]).

(c)	 BTLA-expressing Bregs B and T lymphocyte attenua-
tor (BTLA or CD272) is an immunoglobulin, which, 
like programmed death-1 (PD-1), is involved in the 
suppression of immune responses. BTLA contains 
two immunoreceptor tyrosine-based inhibitory motifs 
(ITIM) and is expressed on a wide range of immune 
cells including T and B lymphocytes, NKT cells, NK 
cells, macrophages, dendritic cells [130] and follicular 
Th1 cells [131].

Bregs and multiple sclerosis

EAE mouse model  B cells can play a regulatory role in 
EAE pathophysiology, as mice with genetically deficient B 



	 Autoimmunity Highlights (2018) 9:9

1 3

9  Page 6 of 15

cells cannot recover from the disease, whereas transfer of 
IL-10-producing B cells suppresses EAE symptoms [124, 
125]. For instance, Bregs, transduced into mice with EAE, 
accumulated in the spleen and mesenteric lymph nodes, 
leading to an expansion of Tregs and Tr1 cells in  vivo 
[132]. Importantly, Tregs and Tr1 s were also enriched in 
the CNS of the same littermates. In the EAE model again, 
treatment with MOG protein fused to reovirus protein σ1 
(MOG–pσ1), resulted in an expansion of IL-10-producing 
B220(+)CD5(+) Bregs, which restored Tregs and facili-
tated the rapid improvement of EAE [133]. Additionally, 
PD-L1Hi Bregs transferred to afflicted animals suppressed 
the disease. In total, Bregs, in contrast to effector B cells, 
protect from the development of EAE, by suppressing pro-
inflammatory cytokines and the transmigration of activated 
cells to the CNS [97, 134, 135].

Human MS  There is no consensus on Breg numbers in auto-
immune diseases. In most diseases or disease states, Bregs 
are reduced [136–140] but increased numbers were also 
reported [105]. In MS in particular, Bregs are reported to 
be numerically decreased [141, 142], unaltered [143, 144] 
or increased [145]. A representative phenotypic flow cyto-
metric analysis of Bregs in RRMS is shown in Fig. 1. Irre-
spective of their numbers, Bregs function is impaired in MS 
patients, as IL-10 production and suppressive function of B 
cells are reduced [21, 146–148]. In addition, the proportion 
of naïve Bregs in disease relapses is reduced, leading to an 
increased memory/naïve ratio [141]. Whether this reduction 
is the cause or the consequence of disease relapse remains 
to be seen. Recent data also have indicated that reduced 
peripheral blood Breg levels were not associated with the 
Expanded Disability Status Scale score in MS [149].

A novel type of Bregs, CD19(+)CD25(+) cells, was 
described in both healthy subjects and MS patients [112, 
145]. This new subtype seems to be numerically increased in 

MS compared to healthy controls, and also in relapse com-
pared to disease remission [135]. It is apparent that much 
more research is needed to illuminate the role of different 
Breg subsets in MS [150].

Effects of MS therapies on Tregs and Bregs

Monoclonal antibodies

Anti‑CD20  B cell-depleting therapies in MS focus on two 
main targets, CD20 and CD19. Monoclonal anti-CD20 
includes rituximab, ocrelizumab and ofatumumab, which 
differ in their CD20 epitope recognition and in the intensity 
of their action [151]. CD20 is expressed on most B cells, 
from PreB to IgG memory B cells, while leaving plasmab-
lasts and ProB cells mostly lack expression. All anti-CD20 
therapies cause an almost complete extinction of B cell sub-
types in peripheral blood [152]. B cell repopulation begins 
several months post-treatment and appears to be inclined 
toward a more naïve and regulatory phenotype [153]. B 
cell depletion also suppresses TH1 and TH17 responses and 
increases circulating Tregs. In general, this therapy has 
shown to ameliorate disease symptoms and activity, and 
reduce relapse rate, including reduction in gadolinium-
enhancing lesions on brain MRI [154, 155].

Anti‑CD19  Anti-CD19 monoclonal therapy also looks prom-
ising. IgG1 anti-CD19 antibody (MEDI-551) [156] recently 
entered a phase II clinical trial in MS. CD19 is expressed on 
all B cells and is progressively lost in terminally differenti-
ated plasma cells [157]. As a result, it comes as no surprise 
that MEDI-551 induced a longer-lasting B cell depletion 
than rituximab, while also reducing immunoglobulin serum 
levels, including autoantibodies [155]. Anti-CD19 therapy 
in EAE-induced mice suppressed disease severity and dura-
tion and increased circulating Tregs, whereas potentially 

Fig. 1   Typical flow cytometric analysis of memory and transitional 
Bregs in RRMS. PBMCs from representative patients with RRMS 
at diagnosis, relapse and remission were stained with CD19, CD24, 
CD27 and CD38 moAbs and analyzed by flow cytometry. Total 
lymphocytes were gated based on forward-side scatter characteristic 
excluding dead cells and debris (gate R1). Transitional Bregs were 

identified based on high expression of CD38 and CD24 markers 
(green color—gate R2) and positivity for CD19. Memory Bregs were 
identified based on high expression of CD24, positivity for CD19, 
CD27 markers and lack of CD38 expression (blue color—gate R3). 
At remission, transitional Bregs appear significantly increased
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protective CD1d(hi)CD5(+) Bregs displayed resistance to 
depletion [158]. Hence, MEDI-551 is expected to have simi-
lar effects to anti-CD20 therapy on MS patients and could 
be approved for the treatment of MS in the future especially 
targeting autoreactive CD19(+)CD20(−) plasma cells that 
would be resistant to CD20 mAb treatment [159].

Alemtuzumab  Alemtuzumab is a humanized IgG1 mono-
clonal antibody that targets the CD52 (Campath-1 antigen), 
a 12 amino acid glycoprotein anchored to glycosylphos-
phatidylinositol, which is widely expressed on the cell sur-
face of mature immune cells. Anti-CD52 induces a rapid 
and prolonged depletion of lymphocytes from the circula-
tion, which results in a profound immunosuppression sta-
tus followed by an immune reconstitution phase [160]. In 
EAE, anti-CD52 treatment abrogated B cell infiltration 
and disrupted existing B cell aggregates in the CNS [161]. 
Recently, it has been shown that it can also ameliorate coli-
tis through suppressing Th1/17 mediated inflammation and 
promoting Tregs differentiation in IL-10 deficient mice 
[162]. Much of the research on alemtuzumab focuses on the 
lymphocyte repopulation progress and shows that CD4(+)
CD25(+)CD127(low) Treg cells preferentially expand 
within the CD4(+) lymphocytes, reaching their peak within 
1  month [163]. A recent study demonstrated that alemtu-
zumab increased anti-inflammatory cytokines (such as 
IL-10 and TGF-β) while diminishing pro-inflammatory 
cytokines (such as IFN-γ, IL-17, IL-6 and TNF-α) within 
6 months of treatment and increased Tregs percentage and 
function after 24 months post-treatment [164]. In addition, 
alemtuzumab seems to affect B cells, as it increased the per-
centage of repopulated naïve/immature B cells [165, 166]. 
Alemtuzumab may thus be a promising therapy for MS [6]; 
however, it also causes loss of immune-tolerance leading 
to secondary autoimmunity such as Graves’ disease and 
marked anti-drug antibody responses [160, 167].

Natalizumab  Natalizumab, approved for the treatment of 
MS, is a humanized IgG4 monoclonal antibody. It mainly 
binds to the α4-chain of α4β1 integrin heterodimer—also 
known as very late activating antigen-4 (VLA-4), on the sur-
face of leucocytes and inhibits binding of VLA-4 to vascu-
lar cell adhesion molecule-1 (VCAM-1) and, consequently, 
the attachment of leucocytes to the inner lining of cerebral 
vascular walls and their crossing of the BBB. This crossing 
directly diminishes IgM and partially IgG in the CSF [168] 
as well as in the serum [169]. Thus, natalizumab modulates 
B cell functions, but appears to be unable to restore the sup-
pressive function of Tregs while marginally decreasing their 
percentages in MS [170, 171].

Tocilizumab  Tocilizumab is a humanized IgG1 anti-IL-6 
receptor monoclonal antibody approved by the FDA for the 

treatment of rheumatoid arthritis, active systemic juvenile 
idiopathic arthritis and polyarticular juvenile idiopathic 
arthritis. IL-6 is known to induce plasmablast production of 
anti-aquaporin 4 (Aqp-4) antibodies in vitro and may account 
for neuromyelitis optica (NMO) disease activity [172]. IL-6 
concentration is increased in the CSF of NMO patients 
[173] and IL-6 induces pro-inflammatory Th17 cells in both 
NMO and MS patients [174]. Thus, tocilizumab modulates 
Th17 cells and plasmablasts. Although there are no data on 
its effect on Tregs and Bregs, tocilizumab appears to be an 
attractive candidate therapeutic agent for MS.

Other immunomodulatory agents

Fingolimod  Fingolimod is an approved therapeutic agent 
for RRMS. It has a potent pharmacological action because 
it functions as an unselective agonist of sphingosine 1-phos-
phate receptors (S1PR) and as a selective antagonist of 
the S1P1 subtype by induction of receptor downregulation 
[175]. Since S1P1 is fundamental in the regulation of lym-
phocyte trafficking, its downregulation leads to redistribu-
tion of the immune cells to secondary lymphoid tissues, 
resulting in the depletion from the circulation and therefore 
immunosuppression [175]. It prevents lymphocyte egress 
from secondary lymphoid tissues, promoting loss of CCR7-
expressing T cells and increase in Treg numbers and their 
suppressive function on T cell proliferation [176, 177]. It 
may affect B cells, as it leads to increased percentage of 
plasma cells and a shift toward a more naïve and transi-
tional B cell phenotype. In addition, treatment with fingoli-
mod increases both Breg numbers and function, indicated 
by a boost in IL-10 production [8]. According to recent 
data, fingolimod significantly enhances CD19(+)BTLA(+)
IL−10(+) B cells in RRMS patients, which may relate to 
amelioration of symptoms [142].

Dimethyl fumarate  Dimethyl fumarate (DMF) is an 
approved therapeutic agent for MS. Its in vivo metabolite 
monomethyl fumarate (MMF) can bind to brain endothe-
lium cells leading to activation of nuclear factor (erythroid-
derived 2)-related factor 2 (Nrf2) and downregulation of 
vascular cell adhesion molecule 1 (VCAM-1) [178].This 
can be mediated via the G-protein-coupled receptor (GPCR) 
hydroxycarboxylic acid receptor 2 (HCA2), a known molec-
ular target of MMF. Studies have documented the binding 
of DMF to HCA2 on dendritic cells followed by the inhibi-
tion of pro-inflammatory cytokines production in vitro and 
in MS murine models [179]. Although its precise mecha-
nism of action remains unclear, evidence indicates that acti-
vation of HCA2/GPR109A pathway can decrease immune 
responses and may enhance anti-inflammatory functions in 
the intestinal mucosa, possibly leading to reduction in CNS 
tissue damage in MS patients [180]. In addition, it causes 
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depletion of circulating lymphocytes in peripheral blood 
[181, 182]. More precisely, DMF alters lymphocyte subsets 
homeostasis in MS patients, decreasing absolute lympho-
cyte counts, but does not affect all subsets uniformly [183]. 
CD8(+) T cells are mainly affected, with reductions in the 
CD4(+) cells, particularly within the pro-inflammatory 
T-helper Th1 and Th17 subsets also occurring, creating a 
bias toward more anti-inflammatory Th2 and regulatory 
subsets [183]. Both naïve and memory B cells were dimin-
ished in certain patients, while Bregs were increased after 
4–6 months of therapy and remained in higher numbers at 
12 months post-treatment. Also, IL-10 production was ele-
vated in some patients [184]. Other studies showed a skew-
ing from memory CD8(+) and CD4(+) T cells toward their 
naïve counterparts together with a curtail on TH1 cells in 
dimethyl fumarate-treated RRMS patients [9] and an anti-
Inflammatory shift in B Cell subsets [183, 185]. These lim-
ited data appear very promising.

Teriflunomide  Teriflunomide is an approved oral therapeu-
tic agent for MS relapses. Its main mechanism of action 
involves the suppression of the de novo synthesis of pyrimi-
dines in rapidly proliferating cells such as T and B lympho-
cytes [186]. Pyrimidine synthesis inhibition leads to halt of 
the cell cycle in G1 phase and it thus has anti-proliferative 
results, reducing autoantigen-specific immune responses. In 
a recent study of teriflunomide in murine EAE, a signifi-
cant increase in CD39(+) Treg concentration was observed, 
along with decrease in APCs of Peyer patches [187] 
[reviewed by [10] ].

Glatiramer acetate  Glatiramer acetate (GA), a random pol-
ymer consisting of four amino acids of the myelin basic pro-
tein, is considered a first-line treatment for MS. It prevents 
disease relapses and patient disability. This agent shifts T 
cells from a TH1 to a TH2 response [188, 189]. GA induces 
a Treg phenotype and increases FoxP3 expression while 
restoring Treg function [190]. B cells from GA-treated 
EAE mice also increased production of IL-10 and reduced 
expression of co-stimulatory molecules [191]. Importantly, 
the therapeutic effect of GA in EAE was abrogated in B cell-
deficient mice [191, 192]. Another study demonstrated that 
B cell IL-10 expression was restored, and IL-6 production 
was diminished after glatiramer acetate treatment. There 
was also altered proliferation in response to CD40L and an 
increased immunoglobulin production by B cells [193].

Ifn  IFNβ-1b and IFNβ-1a are disease-modifying agents 
for RRMS, affecting multiple immunological processes. 
IFNβ suppresses the ability of APCs to present antigens 
and stimulate T cells [194] and prevents T cells from 
crossing the BBB, while channeling autoreactive T cells 
into lymphoid tissues [195]. In addition, IFNβ has the 

ability to induce Tregs, probably due to a shift to Treg-
promoting cytokines, such as IL-4, IL-5 and IL-13 [195]. 
Transitional Bregs are thought to increase as well, as a 
result of IFN-β therapy [24, 196]. Moreover, the treat-
ment causes Th17 death [197], reduces TNF and increases 
IL-27 production, known to slow down EAE progression. 
Thus, IFN-β therapy both impedes pro-inflammatory cells 
and cytokines and promotes anti-inflammatory ones in 
MS (Reviewed by [198]).

Statins  Apart from specialized therapies, there are other 
agents with immunomodulatory properties that could 
prove useful as supportive and/or complementary treat-
ments for MS. One example is HMG-CoA reductase inhib-
itors (statins), which are a class of lipid-lowering medica-
tions known to have immunomodulatory properties. For 
instance, atorvastatin increases Tregs and reduces clini-
cal disease activity in patients with rheumatoid arthritis. 
It also displayed anti-inflammatory effects on peripheral 
blood [199]. In a recent study, atorvastatin and lovastatin 
enhanced Tregs numbers, but also FoxP3 mRNA levels 
30 days post-treatment. However, Treg numbers returned 
to standard levels after 45  days of treatment. Neverthe-
less, increased values of TGF-β, FoxP3, CTLA-4 and 
GITR-expressing Tregs were observed [200]. Simvastatin 
also regulated TGF-β signal transduction, leading to an 
increase of Tregs [201], and reduced pro-inflammatory 
cytokines in patients with rheumatoid arthritis. Statins 
have an effect on MS as well. Simvastatin suppressed 
mononuclear cell responses, reduced IFN-γ, TNF-α and 
IL-2 production and inhibited the antigen-presenting 
capacity of macrophages [202]. Furthermore, atorvasta-
tin combined with glatiramer acetate showed synergistic 
immunomodulatory effects in MS [203].

Vitamin D  Vitamin D or 25-hydroxy vitamin D (25(OH)
D)—the main vitamin D metabolite measured in blood—
is known to have immunomodulatory properties. Vitamin 
D affects both B and T lymphocytes. It inhibits T cell 
proliferation and reduces IFN-γ, IL-2 and IL-17 expres-
sion [204], while increasing IL-10 and Tregs [205]. It 
also inhibits plasma cell production and increases IL-
10-Bregs. Recent evidence from the EAE mouse model 
indicated that vitamin D-induced dendritic cells could 
ameliorate symptoms by enhancing the proportions of 
regulatory lymphocytes and reducing T-helper type 1 and 
type 17 cells [206]. Vitamin D deficiency is associated 
with an increased incidence of MS [207]. During MS 
relapse, 25(OH)D levels are generally decreased [208]. In 
a small study, vitamin D supplementation led to a signifi-
cant reduction of the number of newly active brain lesions 
[209] (reviewed by [210]).
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Conclusion

Multiple sclerosis is the most prevalent autoimmune dis-
ease of the CNS and a frequent cause of neurological dis-
ability in young adults. As there is no cure for the disorder, 
the aim of new treatments is the alleviation of symptoms 
and the reduction of relapses. As with most autoimmune 
diseases, MS patients exhibit impaired immunoregulatory 
mechanisms that lead to harmful immune responses. It is not 
yet recognized whether this dysregulation is the cause or a 
consequence of the disease. Nevertheless, regulatory mecha-
nisms play a major role in MS. Thus, it comes as no surprise 
that most if not all of MS therapies have immunomodulatory 
actions. It is important to conduct more research on current 
medications and their influence on regulatory lymphocytes 
to uncover their exact mechanism of action and to be able to 
administer the appropriate therapeutic agent to each patient, 
according to their particular condition (personalized or pre-
cision medicine). On a final note, other agents that are not 
currently in use in MS but have immunomodulatory proper-
ties, such as vitamin D or statins, could be beneficial as a 
complementary treatment for MS.
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