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SUMMARY

Small area ecological studies are commonly used in epidemiology to assess the impact of area level risk
factors on health outcomes when data are only available in an aggregated form. However, the resulting
estimates are often biased due to unmeasured confounders, which typically are not available from the
standard administrative registries used for these studies. Extra information on confounders can be provided
through external data sets such as surveys or cohorts, where the data are available at the individual level
rather than at the area level; however, such data typically lack the geographical coverage of administrative
registries. We develop a framework of analysis which combines ecological and individual level data from
different sources to provide an adjusted estimate of area level risk factors which is less biased. Our
method (i) summarizes all available individual level confounders into an area level scalar variable, which
we call ecological propensity score (EPS), (ii) implements a hierarchical structured approach to impute
the values of EPS whenever they are missing, and (iii) includes the estimated and imputed EPS into the
ecological regression linking the risk factors to the health outcome. Through a simulation study, we show
that integrating individual level data into small area analyses via EPS is a promising method to reduce the
bias intrinsic in ecological studies due to unmeasured confounders; we also apply the method to a real
case study to evaluate the effect of air pollution on coronary heart disease hospital admissions in Greater
London.
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1. INTRODUCTION

Small area studies are commonly used in epidemiology to investigate the spatial variation of a health con-
dition across the population or to evaluate the geographic patterns of diseases in relation to environmental,
demographic, and socio-economic factors.

These studies are based on administrative registries, which are characterized by good spatial coverage
for large populations, but usually only record a very limited set of information (typically age, sex, and
spatial location) and thus miss important confounders (e.g. data on lung cancer or respiratory diseases
from Hospital Episode Statistics (HES) databases do not include information about smoking), potentially
leading to biased estimates of the effects of risk factors (e.g. air pollution).

In this article, we integrate data from administrative registries with cohorts/surveys, which contain
detailed information on participants. Through this, the inferences drawn at the ecological level will take
advantage of the population representativeness and of the statistical power from the administrative reg-
istries, but at the same time will allow to adjust the effect estimates for all the potential confounders
available from the cohorts/surveys.

Registries contain data on each individual in the target population, while cohorts/surveys typically
cover only a subset of individuals; for this reason confounders obtained from the latter source will be
typically partially measured and available only on a subset of areas, leading to a missing data issue which
needs to be tackled. Multiple imputation (MI), pioneered by Rubin (1987) is probably the most common
strategy to deal with this issue and consists of a Monte Carlo simulation to replace the missing values
with a relatively small number of simulated versions. The two main approaches to implement MI are joint
modeling and chained equations. As Hughes and others (2014) showed that the difference in the results
from the two approaches are negligible, chained equations are preferred as they are based on conditional
distributions, enabling fast computations. As an example, the Multiple Imputation using Chained Equation
(MICE) proposed by Buuren and Oudshoorn (1999) fixes initial values for all the missing variables and
regresses each of these against the remaining ones cyclically a number of times (see White and others
2011 for a thorough review of the method). Then, in a separate step, the imputed variables are included
in the substantive model, which evaluates the link between the exposure/risk factor and health outcome.
Such approach can suffer from lack of “congeniality”: Meng (1994) states that for a model to be congenial
the imputation model needs to include the same variables (including the dependent variable) as those of
the substantive model, in order to avoid estimates biased toward the null; this might be non-trivial for
non-linear relationships between the outcome and the exposure/risk factors, which is the case when the
outcome is available in the form of aggregated counts as in small area studies. Furthermore, such method
is not suited to add spatial dependency in the imputation model, which may lead to bias if the missing
values are geographically related, as it is often the case in a small area study.

In a Bayesian perspective, missing data imputation is generally considered via the integration of the
imputation and the analysis models in a coherent global framework (see for instance Molitor and others
2009, Daniels and Hogan 2008). This approach benefits from extreme flexibility, but entails heavy com-
putational burden if there are more than a few missing covariates, de facto requiring oversimplifications
of the epidemiological problem, as in reality the number of potential partially measured confounders is
typically large.

To avoid high-dimensional imputation, a viable alternative summarizes the partially measured con-
founders from the cohorts/surveys through a composite index, so that only one variable needs to be
imputed. In this perspective, the propensity score (PS) has been suggested, in the form of a calibration
model proposed by Sturmer and others (2005) as well as in a Bayesian framework developed by McCan-
dless and others (2012). The first approach estimates a gold standard PS on the units with information on
the partially measured confounders, while an “error-prone” PS is estimated on all the units. Then Sturmer
and others (2005) specify a regression model to estimate the relationship between the gold standard PS and



Ecological propensity score for small area studies 3

the error-prone PS in order to predict the gold standard where missing. Note that the proposed calibration
model assumes a linear relationship between the gold standard PS and the error-prone PS; moreover, the
outcome variable is not included in the regression (in contrast to what is recommended in the missing data
literature). The second method is a Bayesian Propensity Score formulated to include information from a
cohort with fully observed confounders in an individual level study based on administrative data. The PS
is built on the cohort data to summarize the confounders. On the individuals who do not have information
on the confounders, the approach then imputes the PS from its empirical distribution. This strategy can
be applied effectively regardless of the number of unmeasured confounders.

In this article, we develop a novel Bayesian modeling framework to fit the PS on small area studies
and ecological covariates, which we call ecological propensity score (EPS). In particular, (i) we propose
an imputation model for areas with a missing EPS; this accounts for the spatial structure of the data
and can easily accommodate non-linearity in the relationship with other variables; (ii) we include the
estimated/imputed EPS in the analysis model in a flexible way to provide effective confounder adjustment
when evaluating the effect of a risk factor on a health outcome; (iii) we discuss and account for the different
sources of feedback across the overall modeling framework.

The structure of this article is as follows: Section 2 introduces our proposed EPS framework for
small area studies, and Section 3 presents an extensive simulation study to evaluate the performance of the
developed approach and to compare it with the commonly used MICE for imputing missing data; Section 4
applies this method to assess the link between airborne particle pollution and coronary heart disease CHD
hospital admissions in Greater London; finally we include a discussion and concluding remarks.

2. THE ECOLOGICAL PROPENSITY SCORE (EPS)

Before starting with the description of the EPS framework, we set the notation used throughout the paper:
(i) i ∈ S identifies the set of areas with coverage from the survey or cohort; (ii) i ∈ I identifies the
set of areas without coverage from the survey or cohort; (iii) Oi, Ei are the number of health outcome
occurrences, which are observed and expected (using standardized rates); they are available on all the
areas (i ∈ I ∪ S); d) Xi is the exposure or risk factor of interest observed on all the areas (i ∈ I ∪ S);
e) C i is the set of P area level confounders observed on all the areas (i ∈ I ∪ S); f) M i is the set of Q area
level confounders which are unobserved on all the areas (i ∈ I ∪ S), but for which individual level data
mqi = {mqi1, . . . , mqin} are available on i ∈ S from the survey or cohort.

To develop the modeling framework, we consider three steps: (i) EPS estimation—in the areas with
available individual level information on the full set of confounders (i ∈ S) the information is aggregated
through small area estimation models and the EPS is estimated using these ecological confounders. (ii) EPS
imputation—in the areas without survey coverage (i ∈ I ) a Bayesian imputation model is set up to impute
EPS based (1) on the relationship between the estimated EPS and other variables in the S survey areas
and (2) on the spatial structure of the data. (iii) EPS adjustment—the EPS (estimated or imputed) for
all the areas is then included in the analysis model providing confounder adjustment to the ecological
relationship of interest between X and O.

As our approach is formulated in a Bayesian framework a joint model could be specified for the three
components; however, when using PS approaches to adjust for confounder effects, may be necessary to
prevent feedback in estimating some parameters to avoid biases (Zigler and others, 2013). In the remainder
of this section, we describe the model in details and discuss the issues around feedback.

2.1. EPS estimate

The first step of the EPS framework consists in using the individual level confounding information to
estimate corresponding (latent) area level confounders on the survey areas; as the survey samples are
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typically small and at the same time they are often spatially distributed, we carry out this estimation by
using a hierarchical spatial model for all the confounders allowing for each survey area to be embedded in
a larger spatial unit di, e.g. used for the survey stratification, to ensure complete spatial coverage. From the
survey (or cohort), n values {mqi1, . . . , mqin} are observed on the i-th area (i ∈ S), for the q-th confounder
variable; such variables are typically dichotomous (e.g. smoking status, so that mqij ∼ Bernoulli(Mqi)),
discrete (e.g. number of cigarettes smoked, so that mqij ∼ Poisson(Mqi)), or continuous (e.g. BMI, so that
mqij ∼ Normal(Mqi, σ 2

q )), hence to estimate Mqi, we specify a linear model through the appropriate link
function (logit, log, identity) as follows:

g(Mqi) = αq + ψ1qdi + ψ2qdi + vqi, (2.1)

where α = (α1, . . . ,αQ) is the intercept for each confounder, and ψqdi
model the spatially structured and

unstructured variability for the larger spatial units (d = 1, . . . , D); a multivariate version of the BYM
prior (MVBYM) proposed by Besag and others (1991) is specified to account for spatial dependency
for each confounder as well as for correlation between these. An intrinsic autocorrelation structure is
assumed on ψ1qd governed by the variance σ 2

ψ1q
(Besag and Kooperberg, 1995), while each ψ2qd follows a

normal distribution with a common variance σ 2
ψ2q

. For the qth confounder, a local smoothing is provided
byψ1qd based on the values of the set of neighbors N (d), and a global smoothing is included throughψ2qd

based on the values of all the units. In addition, a structure of the correlation between the confounders
should be included to allow borrowing of strength, as some are observed on more individuals than others
(e.g. some confounders might have been collected for several years while others might not). Thus, we
extend σ 2

ψ1q
to the multivariate �ψ1 (where the diagonal of �ψ1 is σ 2

ψ1q , q=1,...,Q and the off diagonal is
the covariance, ρψ ′

1qq
σψ1qσψ1q′ , q′ �=q); similarly the between confounder non-spatial correlation ρψ ′

2qq
is

taken into account by replacing σ 2
ψ2q

with �ψ2 . This specification leads to the multivariate BYM model
(MVBYM). See Gamerman and others (2003) for details and applications of MVBYM (see also Section
1 of supplementary material available at Biostatistics online for more details on the MVBYM prior). In
addition, vqi ∼ Normal(0,ω2

v) captures the residual over-dispersion at the inference unit level.
EPS is then derived following the specification of McCandless and others (2012):

logit(P(Xi = 1|C i, M i)) = θ1 + CT
i θC + M T

i θM ; EPSi = M T
i θM , (2.2)

where X needs to be dichotomized and θC = (θC1 , . . . , θCP ), θM = (θM1 , . . . , θMQ ), while M i are the
area level estimates for the Q confounders obtained in (2.1). Note that through this EPS specification we
summarize only the Q confounders that can be estimated in the survey areas S. This is a crucial point
as the approach allows the imputation of the EPS on the I areas where the Q confounders are missing
(see next section for the details), while at the same time the P confounders available on all the areas are
included directly in the analysis. We expand on this point in Section 5.

Here feedback from X to M in (2.2) needs to be cut as it would distort the estimates of M in (2.1).
Nevertheless uncertainty on M is fed forward from (2.1) to the EPS estimate in (2.2), which thus has a
mixing distribution over the uncertainty in M . A summary of that mixing distribution will then be used in
the imputation model as detailed below.

2.2. EPS imputation

The EPS estimation presented in (2.2) can be used only on the survey areas; when incomplete areas are
present in the study region an additional step is needed to impute EPS due to the fact that the individual
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level covariates and consequently M i are missing. Thus for each area i (i ∈ S ∪ I ) we specify:

EPSi ∼ Normal(η1 + f (C i)+ γXi + φdi , σ
2
EPS), (2.3)

where EPSi is the posterior mean from the estimation in (2.2) for i ∈ S and is missing for i ∈ I . In
(2.3), the link between X and M as written in (2.2) changes and now specifies a relationship between
the posterior mean for EPS and (i) the dichotomous X and (ii) the confounders C through the function
f (.). This function should meet three criteria: (i) be data-driven, as (2.3) does not have an epidemiological
interpretation, (ii) be able to cope with a high dimensional C = (C1, . . . , CP), c) be easy to scale up to
over thousands of observational units if needed. In order to satisfy these three requirements, we choose
a second-order random walk (RW(2)) as functional form for f () to link each C to (2.3), which was
initially proposed by Fahrmeir and Lang (2001) to adjust for non-linearity. The specification of the RW2
is presented in Section 2 of supplementary material available at Biostatistics online.

An additional random effect φ is included to account for residual variation using the same spatial
resolution as in (2.1) to ensure full spatial coverage. As it is likely that these residuals will exhibit a spatial
structure, a conditional autoregressive model is specified onφ based on neighborhood similarities, through
the univariate formulation of the BYM included in (2.1).

The EPSi for i ∈ I is predicted using the relationship with C , X , and the spatial structure estimated
on i ∈ S.

2.3. EPS adjustment

The analysis model is specified in a small area framework to evaluate the direct (area level) effect of a
risk factor (or exposure) X on a health end point O after adjustment for observed confounders C and
unobserved confounders M using EPS. In its typical formulation, for each area (i ∈ S ∪ I ) the number of
cases of the health outcome Oi is modeled as follows:

Oi ∼ Poisson(Eiλi)

log(λi) = β1 + β2Xi + CT
i βC + h(EPSi)+ ξ1i + ξ2i, (2.4)

where Ei represents the expected number of cases obtained from standardized rates. The parameter ξ1i

accounts for over-dispersion, while ξ2i accounts for spatially structured variation and is typically modeled
through a conditional autoregressive structure similarly to (2.1) and (2.3).

The EPSi feeds into (2.4) as:

• M iθM estimated for i ∈ S from (2.2);

• the posterior predictive distribution from (2.3) for i ∈ I .

As EPS is an index, it is not interpretable per se, thus it needs to be included in the analysis model
through a non-linear flexible function h(·); similarly to the imputation model specification, we assign a
RW(2) to link the EPS into the analysis model.

Note that (2.3) and (2.4) are jointly estimated, so that the outcome is allowed to influence the missing
EPS imputation via its feedback, as recommended in the missing data literature (see for instance Kenward
and Carpenter, 2007); at the same time uncertainty from the EPS imputation is carried forward into the
analysis model.

A graphical representation of the EPS framework including where feedback is allowed/cut is visualized
in Figure 1.
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Fig. 1. The figure represents the developed EPS framework. The left hand side corresponds to (2.1) and (2.2): the area
level confounders M are estimated from the individual level confounders m (2.1) and the EPS is estimated (2.2). Note
that this model is only specified on the i ∈ S areas. EPS is represented by a circle as a latent quantity (not observed).
The right hand side presents the EPS imputation and adjustment and is specified on i ∈ I ∪ S: at the top the EPS is
either obtained from (2.2) for i ∈ S and included as an observed quantity or missing for i ∈ I , imputed through the
relationship with C , X , and the spatial structure (2.3) and included as a latent quantity. Thus the EPS is represented
here as both a square and a circle as the combination of observed and latent quantities. At the bottom, the estimated
and imputed EPS is included in the analysis model (corresponding to (2.4)) to provide confounder adjustment when
assessing the effect of X on O. Note that the right hand side is separated from the left hand side as the EPS estimation
is carried out disjointly from the imputation and adjustment (no feedback from the latter to the former). At the same
time the imputation and adjustment are jointly carried out so that feedback is allowed from O to influence the EPS
imputation.

2.4. Specifying priors

To complete the model specification, prior distributions need to be assigned. For MVBYM in Model 1,
the priors for �−1

ψ1
or �−1

ψ2
are chosen to be Wishart(ν,W) centred around the empirical variance �̂ by

specifying Wψ1 = νψ1�̂ or Wψ2 = νψ2�̂. In general, an empirical variance �̂ is considered to be an
approximate estimator of the true variance E(�). This approximation is acceptable because the degree of
freedom ν is typically chosen to be the minimum to ensure that the specified Wishart is a diffused prior, i.e.
νψ1 = νψ2 = Q where Q is the number of confounders as presented in Section 2.1 (Lunn and others, 2012).

The rest of priors are chosen to be minimally informative, i.e. the regression coefficients are modeled
as Normal(0, 105) and the standard deviation of the random effects are modeled as Uniform(0, 103).

All the models were implemented in the BUGS language (Lunn and others, 2012).
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3. SIMULATION

In this section, we present a simulation study to evaluate the performance of the EPS framework and to com-
pare it with the commonly used MICE approach (Buuren and Oudshoorn 1999), which we implemented
through the corresponding miceR package.

We consider three scenarios: (i) the missing confounders M i = (M1i, . . . , MQi) are available in all
areas (i ∈ S ∪ I ), and this is the benchmark (Scenario 1); (ii) the missing confounders M i are assumed
to be available in some areas (i ∈ S, Scenario 2); (iii) the missing confounders M i are not directly
available, and these confounders might be estimated through individual level data from surveys/cohorts
(only on the survey areas, i ∈ S). To assess the impact of the sample size of individual level data on the
exposure estimation, Scenario 3 includes different numbers of individuals (5, 10, 20, 100) sampled from
the survey/cohort in each area.

The variables are simulated in the following sequence on 300 areas: (i) two confounders C and four
confounders M are generated from the inverse logit transformation of multivariate normal distributions,
(ii) X is simulated based on C and M (using (2.2)), (iii) O is simulated from a Poisson with E = 100 (to
mimic the real case we are illustrating in the next section), X and confounders C and M , (iv) for each
area n individual data mqi = (mqi1, . . . , mqin) are simulated from a Bernoulli distribution based on the
proportion M qi. To mimic the limited survey coverage, Missing At Random (MAR) criterion is applied to
remove M (for Scenario 2) or m (for Scenario 3) from around 50% of the areas. The detailed simulation
process is described in Section 3 of supplementary material available at Biostatistics online. This process
is repeated 100 times to create 100 paired ecological level and individual level data sets.

As MICE cannot account for spatial dependency, we did not include spatial random effects in this
simulation. Additionally at present MICE cannot be linked to a multilevel model to estimate M as in (2.1),
thus we extract the posterior means of M provided by (2.1), and then plug these into MICE. The outcome
is included into the imputation model by adding the Standardized Mortality Ratio (i.e. SMR = O/E) as
an extra predictor. The missing M are imputed ten times and included in the analysis model to estimate
the exposure effect parameter β2 using the same formulation as (2.4).

Then the ten estimated β2 are summarized through Rubin’s combination rule (Rubin, 1987).
Bias, root mean squared error (RMSE), width and coverage of the 95% credibility interval

(CI) are used to compare the performance of the simulation scenarios; the true β2 is chosen to
be 0.5, which corresponds to a 64.9% ((exp(0.5) − 1) × 100) increment in the health risk for
high vs low exposure. The BUGS code and simulated data sets are provided at https://github.com/
martablangiardo/Wangetal_Biostatistics.

Note that an additional simulation set to evaluate the performance of our model for spatially struc-
tured variables and non-linearity in the confounder–outcome relationship is included in Section 5 of
supplementary material available at Biostatistics online.

3.1. Results

Table 1 presents the results of the simulation study when the true value of β2 = 0.5. The benchmark
(Scenario 1) assumes the availability of confounders M in all areas, which allows to evaluate the impact
of using EPS as a summary index instead of including each confounder separately into the analysis model.
The estimation from EPS adjustment is almost identical to the regression approach which directly includes
M as covariates. The CI width of β2 from the EPS adjustment model is slightly wider than that of the
regression adjustment, and this agrees with Senn and others (2007) which showed that the estimation from
PS stratification (very close to PS adjustment) is more conservative than that from the direct regression
analysis.

Ignoring the information from the confounders M allows us to evaluate what size of bias we are
potentially dealing with (naïve case). Since M is simulated to be a confounder for the relationship between

https://github.com/martablangiardo/Wangetal_Biostatistics
https://github.com/martablangiardo/Wangetal_Biostatistics
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Table 1. EPS performance and comparison with MICE on the simulation study (true β2 = 0.5, 100
simulated data sets)

Adjustment/ Posterior Bias RMSE CI95 CI95
imputation mean for β2 width coverage

Scenario 1: M are available in all areas
Direct adj 0.50 0.00 0.02 0.054 0.90
EPS adj 0.50 0.00 0.02 0.062 0.95

Naïve case: Ignoring M
NA 0.78 0.28 0.28 0.049 0.00

Scenario 2: M are only available in some areas
Case 2.1: Analysis on i ∈ S EPS adj 0.51 0.01 0.03 0.087 0.89
Case 2.2 : Analysis on MICE 0.54 0.04 0.05 0.107 0.65
i ∈ S ∪ I EPS imput 0.50 0.00 0.03 0.084 0.90

Scenario 3: M are NOT directly available, but m are available in some areas
extbfSample size n = 5

Case 3.1.1: Analysis on i ∈ S EPS adj 0.59 0.08 0.09 0.094 0.16
Case 3.2.1: Analysis on MICE 0.62 0.12 0.14 0.132 0.20
i ∈ S ∪ I EPS imput 0.57 0.07 0.08 0.087 0.32

Sample size n = 10
Case 3.1.2: Analysis on i ∈ S EPS adj 0.59 0.09 0.10 0.094 0.47
Case 3.2.2: Analysis on MICE 0.62 0.12 0.14 0.129 0.51
i ∈ S ∪ I EPS imput 0.57 0.07 0.08 0.086 0.60

Sample size n = 20
Case 3.1.3: Analysis on i ∈ S EPS adj 0.59 0.09 0.10 0.094 0.52
Case 3.2.3: Analysis on MICE 0.60 0.10 0.11 0.128 0.53
i ∈ S ∪ I EPS imput 0.57 0.07 0.08 0.085 0.65

Sample size n = 100
Case 3.1.4: Analysis on i ∈ S EPS adj 0.52 0.02 0.04 0.088 0.78
Case 3.2.4: Analysis on MICE 0.56 0.06 0.06 0.119 0.56
i ∈ S ∪ I EPS imput 0.51 0.01 0.03 0.083 0.85

outcome and exposure, ignoring it leads to a serious bias and RMSE in estimating β2 (both equal to
0.28), as well as to a small uncertainty around it (CI width equal to 0.049, which is smaller than in any
other case).

Scenario 2 and 3 assume the partial availability of M and two missing data approaches are adopted to
include the areas with missing M : MICE and EPS imputation. In Scenario 2, M is available directly at
the ecological level, whereas Scenario 3 mimics the real situation where M is not available directly at the
ecological level, but may be estimated through the individual level information.

We find that considering only the survey areas (which can be interpreted as a complete case analysis)
provides slightly more biased results and at the same time greater uncertainty than when all the areas are
considered and EPS is imputed whenever missing; this is expected as the sample size is smaller (i ∈ S as
opposed to i ∈ S ∪ I ). In addition using MICE leads to more biased results than using the survey areas
only (e.g. bias ranging from 0.04 to 0.10) and is also characterized by a much larger uncertainty (CI width
ranging from 0.107 to 0.132).

Furthermore, Scenario 3 allows us to assess the impact of individual level sample size (n = 5, 10, 20,
100) on the risk estimate for EPS imputation. As expected the bias decreases and the coverage increases
as the number of sampled individuals increases, while the uncertainty tends to decrease slightly; the latter
might seem counter-intuitive, but it can be explained by the fact that the number of incomplete areas is
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kept the same across cases 3.2.1–3.2.4 in the table, to be able to clearly evaluate the gain in accuracy and
precision when more individuals are surveyed. In the next section, we will show how considering a larger
number of surveyed individuals leads to an increase in the proportion of incomplete areas and how this
impacts on the β2 point estimates and uncertainty.

Table 1 in supplementary material available at Biostatistics online shows that the same conclusion can
be drawn in the absence of an exposure effect (β2 = 0).

4. ILLUSTRATIVE EXAMPLE: AIR POLLUTION AND HEALTH IN GREATER LONDON

We apply the proposed methodology to investigate the link between air pollution exposure and CHD (a
subset of cardiovascular diseases, CVD) hospital admissions in Greater London. Many studies have pro-
vided evidence that short-term exposure (hours or weeks) is associated with CVD incidence (COMEAP
2006) and large cohort studies in the US (Puett and others, 2009; Miller and others, 2007; Lipsett and oth-
ers, 2011) and in the Netherlands (Hoek and others, 2002) have focused on the association of long-term
exposure to outdoor particulate matter (PM, defined as a mixture of particles smaller than a specific size,
e.g. PM10 includes particles smaller than 10 μm) and CVD related death. However the epidemiological
evidence is more limited regarding the association between long-term exposure to air pollution and CVD
morbidity, for instance non-fatal outcomes, such as hospital admissions due to CVD (COMEAP 2006).

We consider the HES, an administrative registry which provides information on admissions at popula-
tion level and available to us through the Small Area Health Statistics Unit (SAHSU) at Imperial College
London. The analysis is conducted for the year 2001 at the electoral ward level, with an average population
of about 9600 persons. To identify the cases, we used the International Classification of Disease version
10 (ICD-10) codes I20 to I25. The number of observed cases in each ward is denoted as Oi (the total
number of cases across Greater London was 52 358 in 2001). The total number of residents aged 16 and
above in the same region and same year is 5 723 855.

As exposure X , we consider the annual mean level of PM10 in 2001 at the ward level published by
Vienneau and others (2010) and obtained through a land used regression model combining monitoring
data from the national air quality networks (UK) and additional predictors related to traffic, population,
land use, and topography. As a binary exposure variable is needed to estimate the EPS as presented in
(2.2), for the purpose of our paper we dichotomize X using the median of the PM10 concentration as
cut-off (25μg/m3).

The confounders C available for every ward at the ecological level are deprivation (measured through
the Carstairs index, issued by the Census 2001) and ethnicity (defined as the proportion of non-white
and issued by the Census). In addition, the age–sex stratified population count in 2001 census is used to
calculate the expected number of hospital admissions Ei in each ward, and thus age and sex are included
indirectly in the outcome-exposure analysis.

Following the standard approach in small area studies, we first run an ecological regression model
which assumes a Poisson distribution on the number of hospitalizations, Oi ∼ Poisson(Eiλi), and a linear
regression on λi:

log(λi) = β1 + β2Xi + CT
i βC + ξ1i + ξ2i,

where X is the exposure, C are the confounders and ξ1i and ξ2i are spatially unstructured and structured
random effects as described in (2.4). The results show a posterior mean estimate (95% CI) for exp(β2)

[relative risk (RR)of CHD hospital admissions for high vs low air pollution exposure] equal to 0.89 (0.84
− 0.94). This result is counter-intuitive as it suggests that the risk of hospital admissions is reduced by
11% for the wards with PM10 higher than 25 μg/m3 compared with the wards with the PM10 level lower
than that threshold. Note that the “protective” effect of air pollution on hospital admissions persists if
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other categorizations (e.g. quintiles) or a continuous exposure is considered. Residual confounding is the
likely cause of this result as the confounders included in the analysis are far from exhaustive given the
limited information collected from administrative data sets like HES and Census.

To overcome this issue we integrate additional sources of data providing information on potential
confounders via the EPS. We consider the Health Survey for England (HSfE) which is an on-going survey
on the health of the individuals living in England and includes each year around 8000 subjects across the
country. Through this, we collect information on the following individual level confounders for the years
1994–2001: Education, Smoking, Passive smoking, Drinking, Obesity, Mental illness, Regular exercise,
Diabetes, High blood pressure, Vitamin taken, High cholesterol, and Table salt intake.

The combined HSfE surveys covered 87.1% of London wards. From the simulation in Section 3.1, it
emerged that the number of individual measurements (i.e. sample size n per area) in each area can affect
the accuracy of the risk estimates. It might be possible to set a threshold defining the minimum number
of subjects per area: above this threshold the areas are included in the EPS calculation, whereas below
they are pooled with the incomplete areas (with missing M ) and then imputed through (2.3). However,
this needs to be traded-off against the information lost when areas with some surveyed individuals (albeit
a small number) are considered missing. Figure 2(a) shows the histogram of the number of HSfE samples
in the wards of London, and Figure 2(b) displays the trade-off between the number of subjects per area
and the geographical coverage. If there is at least one subject sampled in any ward, 87.1% of the areas
will be used in the EPS estimation, while the remaining 12.9% will be included through the imputation
model. Setting the threshold to 5 subjects leads to a drop in coverage to 75.4%, while considering 10 and
20 subjects per ward as threshold lead to 62.6% and 32.0% of the survey coverage, respectively, as shown
in Figure 2(b). Due to the low geographical coverage, we did not consider the threshold higher than 20
subjects per ward.

We checked for differences in the values of the measured confounders, outcome, and exposure between
wards above and below the threshold. For instance, the wards with at least 5 subjects are compared with
the ones with <5 subjects through density plots in Figure 3, showing the distribution of common shared

Fig. 2. HSfE distribution and coverage in Greater London: (a) the number of surveyed subjects per ward; (b) the
trade-off between spatial coverage and number of sampled individuals. The four dashed lines represent the thresholds
considered for estimating/imputing EPS (1, 5, 10, and 20 subjects per ward).
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Fig. 3. Comparison of wards covered/not covered by HSfE. The four density plots represent the distribution of the
following variables across wards (from left to right): (a) SMR=O/E; (b) PM10, included as a continuous variable
(μg/m3); (c) IMD01, the Carstairs index at 2001; (d) Proportion of non-white individuals. The solid lines are the
distributions in the wards with ≥5 individuals sampled by HSfE, while the dashed line the distributions for the wards
with <5 individuals sampled by HSfE or not covered by HSfE. A similar behavior can be seen for all the variables
across wards.

Table 2. RR of hospital admission: PM10 higher than 25 μg/m3 (chosen cut point) in Greater London. The
main analysis with ≥5 subjects per wards is presented in bold, while the others are used as sensitivity
analyses

Areas Data used ≥1 subject ≥5 subjects ≥10 subjects ≥20 subjects
(12.9% missing) (24.6% missing) (37.4% missing) (68.0% missing)

RR 95% CI RR 95% CI RR 95% CI RR 95% CI
(95% CI) width (95% CI) width (95% CI) width (95% CI) width

i ∈ S X,C 0.91 0.94 0.96 0.96
(0.86–0.96) 0.10 (0.89–1.00) 0.11 (0.90–1.03) 0.13 (0.88–1.04) 0.16

X,C ,EPS 1.04 1.06 1.07 1.05
(0.94–1.14) 0.10 (1.01–1.12) 0.12 (1.01–1.15) 0.14 (0.95–1.16) 0.21

i ∈ S ∪ I X,C 0.89 0.89 0.89 0.89
(0.84–0.94) 0.10 (0.84–0.94) 0.10 (0.84–0.94) 0.10 (0.84–0.94) 0.10

X,C ,EPS 1.05 1.02 1.03 1.06
(0.99–1.12) 0.13 (0.96–1.09) 0.13 (0.97–1.10) 0.13 (0.99–1.13) 0.14

X,C ,M 0.98 0.93 0.92 0.89
(MICE) (0.93–1.04) 0.11 (0.88–0.99) 0.11 (0.87–0.98) 0.11 (0.84–0.94) 0.10

variables are comparable for these two groups. Based on this we use ≥5 subjects as our main analysis
while ≥1, 10, and 20 subjects per ward serve as the sensitivity analysis (see Table 2).

The final data set includes 757 wards and 11 364 individuals from the HSfE. The EPS framework ran on a
desktop with a Intel i7 3.6 GHz processor and 16Gb of RAM. It took 90 min to run two Markov Chain Monte
Carlo chains, each for 50 000 iterations (25 000 discarded as burnin and 25 000 retained to estimate the
posterior distribution). In Figure 1 of supplementary material available at Biostatistics online, we provide
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convergence checks through the R̂ statistics, as suggested by Gelman and Hill (2006). The BUGS code is
provided at https://github.com/martablangiardo/Wangetal_Biostatistics.

First, we present the results of the analysis on the survey areas, i.e. including only the wards with
at least five subjects from HSfE (i ∈ S). Table 2 shows that in a standard small area framework, the
naïve approach ignoring the confounders M leads to a protective effect of air pollution (posterior mean
of the RR equal to 0.914 with 95% CI (0.89–1.00)). However, after the inclusion of M through EPS
adjustment, it changes to 1.08 (1.01–1.14). This implies that residual confounding is still substantial
in the outcome–exposure relationship in Greater London if only adjusting for the few confounding
factors available in all areas (deprivation, ethnicity, age, and sex), while the protective effect disap-
pears when including the confounders M as well. By including all the wards in the analysis via EPS
imputation, the results are similar with an estimate of 1.03 and a slightly narrower CI (0.97–1.09). On
the other hand MICE produces a relative risk estimate equal to 0.93 (0.88–0.99), suggesting the pres-
ence of some bias in the MICE imputation framework. We list potential reasons behind this bias in the
Discussion.

Changing the threshold on the minimum number of subjects surveyed in each area does not impact
substantially on the results: the point estimates remain stable across the different analyses, which points
towards robustness of the estimated relationship between air pollution and CHD. However, when con-
sidering only i ∈ S uncertainty of the estimates increases from 0.13 to 0.21 for the model including the
EPS. This is expected as the sample size decreases substantially when the number of surveyed individuals
increases. In comparison, the model on i ∈ S ∪ I which includes the EPS imputation does not show an
important change in uncertainty as the threshold change, which is stable around 0.12–0.14; this suggests
that what is gained in precision increasing the number of surveyed individuals is counterbalanced by the
increase in uncertainty from the imputation step. In comparison, MICE shows biased results towards the
naïve approach, consistently across the different thresholds.

In summary, the result of EPS in Table 2 shows that the wards exposed to a high level of PM10

(over 25 μg/m3 annually) have on average a 2–4% higher risk of hospital admission than the wards with
PM10 below that threshold in Greater London, albeit the estimate is characterized by a certain degree
of uncertainty (95% CI – 3%–12%). Note that the results are consistent for different thresholds on the
PM10 scale (see Section 6 of supplementary material available at Biostatistics online for the results of the
model using a threshold of 25% or 75% on the PM10 distribution). This is somewhat consistent with the
individual level study by Cesaroni and others (2014) which showed a small but positive effect of PM10

on coronary events across 11 cohorts in Europe.

5. DISCUSSION AND CONCLUSION

In this article, we developed a novel small area modeling framework based on a propensity score index
to estimate the effect of an exposure on a health outcome when there are only a limited number of
confounders available at the ecological level. We estimate EPS which synthesizes additional individual
level confounders from external sources into an area level scalar and define a strategy to impute EPS for
the areas where the individual records are missing.

Our EPS is built on the PS defined by McCandless and others (2012) which considers only the partially
measured confounders M ; this differs from the original definition proposed by Rosenbaum and Rubin
(1983) that is PSi = θ0 + CT

i θC + M T
i θM , which would include also the ecological confounders fully

observed on all the areas. Our choice is justified by the fact that, being C fully observed, they should be
directly included in the adjustment model. Hence, our interest is to link only M to the outcome–exposure
analysis via EPS and at the same time to model the missingness of M . An imputation model can be
assigned to the partial PS to model the missingness of M , but this would not be possible if the original PS
definition were used.

https://github.com/martablangiardo/Wangetal_Biostatistics
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We build on from the partial PS and we (i) propose to estimate M from the individual data through
a hierarchical model with a spatial structure, (ii) specify a structured imputation model to predict the
EPS when missing which accommodates a non-linear relationship between the EPS and the C as well
as a spatial structure, (iii) block the feedback from the outcome O to the EPS estimation, and (iv) allow
the feedback from O to the EPS imputation. Points (iii) and (iv) are crucial: in McCandless and others
(2012) the feedback from the outcome influences the estimate of the PS estimation model since this is
jointly estimated with the adjustment model. This joint framework has been criticized by Rubin (2007)
and recently by Zigler and others (2013), which in a simulation study showed that the feedback from
the outcome leads to a biased estimation of the PS estimates. As we separate the EPS estimate from the
analysis model, we are not affected by this issue. In light of this, it is crucial to stress that we are not
framed in a fully Bayesian perspective, but we acknowledge recent contributions in this direction (see for
instance Saarela and others, 2016, who presented a fully Bayesian doubly robust regression for causal
inference, focusing on inverse probability of treatment weighting as opposed to PS covariate adjustment).
On the other hand in line with the missing data literature (e.g. Kenward and Carpenter, 2007) the EPS
imputation should allow for the input of the outcome O which we ensure through the joint specification
of the EPS imputation and of the analysis model.

We note that an alternative formulation of the imputation model presented in (2.3) would consist of
including the exposure variable X as a response: logit(P(Xi = 1|C i, EPSi)) = θ1 + CT

i θC + EPSi and
consequently EPSi = η1 + f (C i) + φdi , as originally presented in McCandless and others (2012). This
alternative formulation would be the most natural way of defining the relationship between EPS and
C as it is framed in the same perspective of the estimation model in (2.2). Through a simulation study
(presented in the Section 4 of supplementary material available at Biostatistics online), we have concluded
that the two formulations are equivalent in terms of model performance; at the same time the alternative
formulation requires an additional logistic regression, being potentially less computational efficient, thus
for the main simulation and for the illustrative example we have presented the specification in (2.3).

We run an extensive simulation study to evaluate the performance of our method and to compare
it with MICE, a well-designed (and commonly used) method to deal with missing data; note that this
was the natural model to compare against as a standard Bayesian imputation model would not have been
computational viable when considering a relatively large number of confounders. We found that the results
from MICE are biased towards the naïve model (i.e. ignoring the confounders M ) and consider that this
might be related to the following two issues: (i) MICE suffers from the uncongeniality meaning that the
functional form of Y in the imputation model is different from its feedback in the analysis model; for
instance, in a Poisson model, the outcome has to be included through the SMR to predict EPS in the
imputation model, which is different from the feedback function of the observed and expected count in
a Poisson likelihood; (ii) in MICE, a missing confounder will be predicted based on other confounders
in the same area which are also missing, thus little can be gained from the iterative prediction with the
missing confounders as predictors, and this results in increased uncertainty in the estimates. In addition,
as MICE is not designed to take into account the spatial correlation in the imputation stage, to ensure a fair
comparison we did not include any spatial structure in the simulation study; however ecological variables
are in general spatially correlated, and it is important to account for such correlation in the prediction of
missing confounders.

The issues mentioned above can be mitigated by using EPS. First, EPS incorporates the imputation
model as a sub-model via a full Bayesian framework, which guarantees the feedback from the outcome
to the missing variable is congenial, thus eliminating the bias arising from imputing a missing covariate
in a Poisson likelihood.

Second, EPS compresses all missing covariates into one scalar variable, and the single missing EPS
can be dealt with more effectively by the imputation model, thus avoiding the issue of using variables with
missing data as predictors (as in MICE); as a result, the EPS framework is characterized by less uncertainty
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than considering the survey areas only. Third, EPS provides the foundation to extend the complexity of the
imputation model via the Bayesian framework: we showed through an additional simulation (in Section
5 of supplementary material available at Biostatistics online) that the proposed method works when
spatially structured variables are considered as well as when there is a degree of non-linearity between
the confounders and the health outcome.

We believe that for a adequate performance of our EPS strategy, the predictive strength of the imputation
model in (2.3) is crucial and should be carefully investigated in each case study. Indeed, adequate predictive
strength is needed in order to balance the influence of the outcome on the EPS imputation. This is a delicate
and understudies issue which will be explored in further work.

By adopting RW(2) as the link function in the PS adjustment, the EPS framework is not only highly
flexible in dealing with non-linearity, but can also be implemented to analyze a large ecological data
set due to its much faster speed than the splines based functions. Moreover, RW(2) can be extended
to multiple covariates like C , and we also considered RW(2) as the ideal function to accommodate the
potential non-linearity in the imputation model.

Through the simulation and the application, we showed that EPS is a promising way to incorporate
individual level data sets like surveys or cohorts to adjust for unmeasured confounders in small area
studies. Future work will extend the framework to deal with categorical instead of binary exposures and to
several correlated exposure variables which are particularly relevant aspects in the field of environmental
epidemiology aiming at feeding back policy makers on the epidemiological risk of environmental hazards.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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