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Abstract

Motivation: A number of pseudotime methods have provided point estimates of the ordering of

cells for scRNA-seq data. A still limited number of methods also model the uncertainty of the pseu-

dotime estimate. However, there is still a need for a method to sample from complicated and multi-

modal distributions of orders, and to estimate changes in the amount of the uncertainty of the

order during the course of a biological development, as this can support the selection of suitable

cells for the clustering of genes or for network inference.

Results: In applications to scRNA-seq data we demonstrate the potential of GPseudoRank to sam-

ple from complex and multi-modal posterior distributions and to identify phases of lower and

higher pseudotime uncertainty during a biological process. GPseudoRank also correctly identifies

cells precocious in their antiviral response and links uncertainty in the ordering to metastable

states. A variant of the method extends the advantages of Bayesian modelling and MCMC to large

droplet-based scRNA-seq datasets.

Availability and implementation: Our method is available on github: https://github.com/magStra/

GPseudoRank.

Contact: strauss.magda@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single cell RNA-seq (scRNA-seq) technology can assay mRNA ex-

pression levels in individual cells and has revealed substantial inter-

cell heterogeneity. Technical noise contributes to this heterogeneity

but part of it is attributable to biologically meaningful inter-cell differ-

ences, see, for instance, Brennecke et al. (2013); Vallejos et al. (2015).

Due to the destruction of the cells as a result of the measurement pro-

cess, scRNA-seq only provides a single measurement per cell (Stegle

et al., 2015), never time series data following the development of the

same single cell. However, individual cells progress through changes

at different time scales (Trapnell et al., 2014). Thus, it is possible to

obtain a form of time series data even from cross-sectional data by

statistical means, an approach referred to as pseudotime ordering.

Most approaches to pseudotemporal ordering are based on rep-

resenting cells as ng-dimensional vectors, where ng is a selected num-

ber of genes in a cell. Algorithms exploit the neighborhood structure

of these vectors to find a pseudotemporal ordering, a linear ordering

of all or most cells so that cells which are close in R
ng are also close

in the linear ordering.

Wanderlust (Bendall et al., 2014) and SLICER (Welch, 2017;

Welch et al., 2016) are two examples of methods based on k nearest

neighbors graphs. SLICER additionally first applies LLE (local lin-

ear embedding) (Roweis and Saul, 2000) for dimensionality reduc-

tion. A number of methods are based on diffusion maps (Angerer

et al., 2016; Haghverdi et al., 2015, 2016; Setty et al., 2016).

TSCAN (Ji and Ji, 2016, 2015) is based on the construction of a

minimum spanning tree (MST) between centroids of clusters, with

an intermediate clustering step. Another well-known method using

MST and clustering is Monocle 2 (Qiu et al., 2017), which applies

graph structure learning (Mao et al., 2015).

The approaches mentioned above and a number of others pro-

vide singular pseudotime orderings without modelling uncertainty.
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Campbell and Yau (2016) examined the stability of Monocle’s pseu-

dotime estimation when applied to random subsets of cells. They

showed that the estimates can vary significantly. Thus, quantifica-

tion of uncertainty in pseudotime is crucial to avoid overconfidence.

There are two existing methods for pseudotime estimation using

MCMC to sample from a posterior distribution (Campbell and Yau,

2016; Reid and Wernisch, 2016), and a few others using variational

methods (Ahmed et al., 2018; Reid and Wernisch, 2016; Welch

et al., 2017). Both use Gaussian processes (GPs, see Section 2.1) to

model the data. However, these methods sample from, or approxi-

mate in the case of variational inference, posterior distributions of

continuous pseudotime vectors in R
n, rather than sampling the

ordering as a permutation.

We propose GPseudoRank, an algorithm sampling from a pos-

terior distribution of pseudo-orders instead of pseudotimes, avoiding

the exploration of pseudotime assignments that all map to the same

ordering. MCMC samplers [such as NUTS (Hoffman and Gelman,

2014)] suitable for use in continuous pseudotime spaces make local

moves that can have problems exploring bi-modal posteriors.

GPseudoRank, by contrast, exploits a range of local and long-

distance MCMC moves tailored to traverse the space of permuta-

tions efficiently. It also provides continuous pseudotime estimates

by deriving a pseudotime vector from a fixed ordering through a

deterministic transformation. This is based on the observation

that most continuous pseudotime vectors with high likelihood are

concentrated around pseudotime vectors derived from orderings

through this transformation.

2 Materials and methods

2.1 Single-cell trajectories as stochastic processes
We assume we have preprocessed log-transformed gene expression

data in the form ygðcÞ of gene g ¼ 1; . . . ; ng, in cell c ¼ 1; . . . ;T (see

Section 2.7 for preprocessing steps). We start with a vector of time

points s ¼ ðs1; . . . ; sTÞ and define an ordering of cells as a permuta-

tion o ¼ ðo1; . . . ; oTÞ; oi 2 f1; . . . ;Tg; oi 6¼ oj for i 6¼ j, where oi is

the index of the cell assigned to time si in the ordering. We model

the gene expression trajectories yg ¼ ðygðo1Þ; . . . ; ygðoTÞÞ for each

gene g by Gaussian processes (GPs) (Rasmussen and Williams,

2006), conditional on an ordering o of the cells. A GP is a distribu-

tion over functions of time in terms of a mean function l and a co-

variance function R. For an input vector s ¼ ðs1; . . . ; sTÞ of time

points, lðsÞ is a vector of T mean values of function evaluations at

these time points and RðsÞ a T�T matrix of covariances of function

evaluations at these points. The distribution of functions f �
GPðl;RÞ is described by stating that, for any vector of time points

s ¼ ðs1; . . . ; sTÞ, evaluations f ðsiÞ follow a multivariate normal

ðf ðs1Þ; . . . ; f ðsTÞÞ � N TðlðsÞ;RðsÞÞ. Here we use a squared expo-

nential covariance function for R:

½Rðs;r2
w; l;r

2
� Þ�i;j ¼ r2

w exp �ðsj � siÞ2

2l2

� �
þ dij r2

� (1)

where r2
w is a scale parameter, l a length scale and r2

� a term repre-

senting measurement noise.

Given an ordering o, the expression data for gene g can be

ordered accordingly: ygðoÞ ¼ ðygðo1Þ; . . . ; ygðoTÞÞ and we model this

trajectory as

ygðoÞ � N TðlðsÞ;Rðs;r2
w; l;r

2
� ÞÞ (2)

for each gene g ¼ 1; . . . ;ng, where s ¼ ðs1; . . . ; sTÞ are time points.

In practice, we assume a zero-mean GP: l ¼ 0. To adjust the data

accordingly we subtract the overall mean across all genes and cells

from each entry in the matrix of gene expression levels (see Section

2.7.2).

2.2 Geodesic mapping
Pseudotime should not be confused with physical time in which cell

development unfolds. In order to identify the latent time points

s ¼ ðs1; . . . ; sTÞ, which we assume to be unknown, together with the

smoothness parameters of the GP, we have to make additional

assumptions. The overall scale can be fixed by assuming si 2 ½0; 1�.
Each cell can then be assigned some rank time from equidistant time

points ðði� 0:5Þ=Tji ¼ 1; . . . ;TÞ. Rank time is similar to the concept

of master time developed in Welch et al. (2017). Simply identifying

pseudotime with rank time has some drawbacks. Rank time depends

on the number of cells sampled per capture time, which often is ra-

ther arbitrary. It also does not allow any local change in scale. We

therefore suggest a different route for identifying latent time points.

We assume the covariance structure, essentially the smoothness of

the process, is independent of time, that is, the GP is stationary.

Pseudotime can then be considered a latent variable measuring bio-

logical development rather than physical time (Ahmed et al., 2018;

Campbell and Yau, 2016; Reid and Wernisch, 2016; Welch et al.,

2017). For periods of slower development, for example, pseudotime

intervals will be shorter than physical time intervals and longer for

faster development. In order to account for such change in scale

over time we compute time points for any given ordering o as fol-

lows (recall oj is the index of the cell in position j).

~s1ðoÞ ¼ 0;
~sjþ1ðoÞ ¼ ~s jðoÞ þ jjyðojÞ; yðojþ1Þjj2; j ¼ 1; . . . ;T � 1

(3)

where yðojÞ ¼ ðy1ðojÞ; . . . ; yng
ðojÞÞT and jj:jj2 is the Euclidean norm

in R
ng . We set sðoÞ ¼ ~sðoÞ=maxð~sðoÞÞ to obtain pseudotimes sðoÞ in

the interval [0, 1]. For cells next to each other in the order o, this

mapping puts them closer in pseudotime if they are similar in their

expression profiles and further apart if they are less so. That is, the

j-th time point sj is the geodesic distance of cell oj from the first cell

o1, where we approximate the geodesic distance as the sum of the

Euclidean distances between the cells ranked next to each other,

similar to the dimensionality reduction method Isomap (Tenenbaum

et al., 2000). Geodesic distances have previously been used for pseu-

dotime estimation, see for instance Qiu et al. (2017); Welch (2017).

2.3 Gaussian process priors
The correct ordering o of cells is distinguished by comparatively low

measurement noise r2
� in (1), since most of the variation is captured

by the trajectory whose variability is determined by the scale param-

eter r2
w. Therefore, informative priors for the noise parameters are

necessary to ensure the model concentrates probability mass around

the correct order and to avoid that a sampling or estimation algo-

rithm gets trapped in local modes. Furthermore, since total variabil-

ity is a sum of measurement noise and signal variability, we sample

only r2
w and set r2

� ¼ V � r2
w, where V is the sample variance taken

across the entire ng � T matrix of gene expression levels of T cells

for ng genes. The priors are as follows:

logðrwÞ � N ðlogð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9 � V
p

Þ; 0:01Þ

logðlÞ � N ðlog
1

2

� �
; vÞ
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o � uniformðpermutations of f1; . . . ;TgÞ

ygðoÞjr2
w; l � N Tð0;RðsðoÞ;r2

w; l;V � r2
wÞÞ

We set v¼0.01 for all the single-cell datasets considered (see

Section 2.7.2). A strong prior is preferable for single-cell data be-

cause of their high noise levels. With a vague prior on the length

scale, the posterior tends to be too short and the GP tends to overfit.

2.4 MCMC sampling
Markov Chain Monte Carlo (MCMC) methods (Gilks et al., 1996)

are widely used to sample from continuous posterior densities in

Bayesian statistics. After convergence, MCMC chains provide sam-

ples from the posterior distribution. More specifically, our method

uses a Metropolis-Hastings approach (Hastings, 1970; Metropolis

et al., 1953). For each given state of the Markov Chain, a new state

is proposed using a proposal distribution, and accepted with a prob-

ability given by an acceptance ratio. While the construction of pro-

posal distributions is often straightforward in the continuous case,

we developed a set of proposal moves to sample from the discrete

distribution of orders (see Section 2.5). For the sampling of the GP

parameters, we use Gaussian proposal distributions, adapting their

standard deviation during burn-in aiming at acceptance rates be-

tween 0.45 and 0.5.

2.5 Sampling orderings
In the following, we propose a Metropolis-Hastings algorithm for

the sampling of the orderings. Preliminary experience with a variety

of combinatorial moves to sample permutations led to the following

set of five core moves, each with probability pj, j ¼ 1; . . . ;5. In the

following, we use sampling parameters n0; c;n3; n3a:

1. Move 1, iterated swapping of neighboring cells: draw the num-

ber of swaps to be applied, r1, uniformly from 1; . . . ;n0 and

draw r1 swap positions P1; . . . ;Pr1
from 1; . . . ;T � 1 with re-

placement. Then iterate for j ¼ 1; . . . ; r1: swap cell at position Pj

with its neighbor at position Pj þ 1.

2. Move 2, swapping of cells with short L1-distances:

select two positions i and j according to probability

pij / expð�dðci; cjÞ2=cÞ, where d refers to the L1 distances of

cells ci and cj (as ng-dimensional vectors) in these positions.

Move ci to position j and cj to position i.

3. Move 3, reversing segments between cells with short L1-distances:

obtain two positions i and j as in move 2 and reverse the ordering

of all cells in between, including cells at i and j.

4. Move 4, short random permutations: draw a number r2 of short

permutations uniformly from 1; . . . ; n3. For each j ¼ 1; . . . ; r2,

draw a number r3;j uniformly from 3; . . . ;maxðn3a;3ÞÞ and a cell

position kj uniformly from 1; . . . ;T � r3;j. Randomly permute

the cells at positions kj; . . . ; kj þ r3;j.

5. Move 5, reversing the entire ordering.

The rationale for moves 2 and 3 is that two cells which are posi-

tioned apart in the ordering should only be exchanged (move 2) or

the segment between them reversed (move 3) if these cells have simi-

lar expression profiles and the smoothness of the trajectory remains

intact after the move. For move 1, we use a default setting of n0 ¼
bT=4c for the simulation studies. For move 4, we set n3 ¼ bT=20c,
and n3a ¼ bT=12c. The distributions for choosing moves 2 and 3

may be tempered, that is taken to the power of a factor 0 < a < 1,

to lower acceptance rates if required.

For the simulation studies, we apply all possible combinations of

moves 1 to 4 with equal probabilities and move 5 with a probability

of 0.002. For the five experimental datasets analyzed (see Section

2.7.2), we chose default parameters depending on the number of

cells (see Section 6 of the Supplementary Material), and slightly

adapted some of them to optimize convergence rates. For details on

the parameters for the proposal distribution for all the datasets, see

Table 5 in the Supplementary Material.

As our posterior distribution is a symmetric function of the

order, each order and its reverse will be sampled with equal prob-

ability from the posterior distribution. We remove this symmetry in

further analysis by reversing orders, which are negatively correlated

with the capture times, if available, or else with marker genes and

invert posterior orders accordingly. For details and an application,

see Section 4 of the Supplementary Material.

2.6 Method for large datasets
To decrease run times for very large datasets, we perform a prepro-

cessing step clustering cells into a large number of very small clusters

using k-means clustering. If capture times are provided this is done

separately for each group of cells at the different capture times. The

recommended number of clusters for each capture time is 1/8th of

the number of cells at the capture time. One might also want to set

an absolute minimum number of cells per capture time. The number

of clusters may be decreased substantially for very large datasets, as

they include larger numbers of similar cells, making our method ap-

plicable to datasets with tens of thousands of cells. We then apply

GPseudoRank to the k centroids, reducing the computational com-

plexity of each individual likelihood computation. The proposed

preprocessing step also drastically reduces the number of samples

required for convergence by reducing the size of the sample space.

The posterior distribution of orderings of the centroids of the

mini-clusters is obtained. To the individual cells of a mini-cluster,

we assign the posterior pseudotimes of its centroid. To assess the ac-

curacy of this approximation, we applied it to two medium-sized

datasets with 307 and 550 cells respectively, where inference with

the exact model is feasible. For details and a comparison to sparse

GP approximation, see Section 3 of the Supplementary Material.

2.7 Datasets
2.7.1 Simulated data

The efficacy of the individual moves and of combinations of differ-

ent moves for different types of data is first assessed on simulated

data. We simulate ng ¼ 50 genes for T¼90 cells. For each simula-

tion study, we generate 16 datasets. On each of these datasets, we

run MCMC chains using all the possible combinations of the four

proposed moves (with equal probability for combinations of more

than one move). Since in the simulations we are mostly interested in

the assessment of ordering moves and not any parameter estimation,

we fix them to their true values and fix time points to rank time.

Simulation 1: three capture times, low noise. Each of the 16

datasets is generated as follows. First 90 temporal input points are

drawn uniformly from [0, 1]. Then for each of the 50 genes in each

of the simulated datasets, a parameter set for a GP underlying the

trajectory of the simulated gene is drawn from

logðrwÞ � Nð0; 0:1Þ

logðlÞ � N ðlogð0:4Þ;0:1Þ

logðr�Þ � N ðlogð1=
ffiffiffi
2
p
Þ;0:1Þ:

The data are assumed to be obtained at three capture times with

30 cells each.
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Simulation 2: two capture times, low noise. The setup is similar

to simulation 1, but with two capture times, where 30 cells are

assigned to the first capture time, and the remaining 60 to the second.

Simulation 3: three capture times, high noise. The setup is similar

to simulation 1, but logðr�Þ � N ð0; 0:1Þ.

2.7.2 Single cell RNA-seq and RT-PCR datasets

Shalek et al. (2014) examined the response of primary mouse bone-

marrow-derived dendritic cells in three different conditions using

single-cell RNA-seq. We apply GPseudoRank to the lipopolysac-

charide stimulated (LPS) condition. Shalek et al. (2014) identified

four modules of genes. As in Reid and Wernisch (2016), we use a

total of 74 genes from the four modules with the highest temporal

variance relative to their noise levels. The number of cells is 307,

with 49 unstimulated cells, 75 captured after 1 h, 65 after 2 h, 60

after 4 h, and 58 after 6 h. We use an adjustment for cell size devel-

oped by Anders and Huber (2010), also used in Reid and Wernisch

(2016).

Klein et al. (2015) generated a droplet-based dataset of mouse

embryonic stem cells after Leukemia inhibition factor withdrawal

(0d, 2d, 4d, and 7d). We apply GPseudoRank to the main branch

with 1543 cells identified in a previous publication (the third branch

in Fig. 2c of Haghverdi et al., 2016). Shin et al. (2015) generated an

in vivo scRNA-seq dataset of mouse adult hippocampal quiescent

neural stem cells and their immediate progeny (Shin et al., 2015)

and used 101 cells for their subsequent analysis. Stumpf et al. (2017)

generated RT-PCR data following the development of mouse em-

bryonic stem cells along the neuronal lineage (0 h, 24 h, 48 h, 72 h,

96 h, 120 h, and 172 h) (550 cells after preprocessing). Shalek et al.

(2013) obtained scRNA-seq data from mouse bone-marrow-derived

dendritic cells after exposure to lipopolysaccharide for 4 hours (18

cells). We refer to the datasets as Shalek, Klein, Shin, Stumpf, and

Shalek13, respectively. For a description of the datasets, their avail-

ability (all publicly available) and preprocessing steps, see Section 2

of the Supplementary Material. For all datasets with different cap-

ture times (excepting the Stumpf dataset, which only contains 96

genes), we use an ANOVA test (Murphy, 2012, ch. 7) for differences

of mean expression (the mean being taken across one individual cap-

ture time) for different capture times to filter a set of genes most

relevant to the ordering. In the absence of capture times, we use

genes with both a high mean expression and high variance (for

details see Section 2 of the Supplementary Material).

2.8 Convergence assessment and analysis of posterior

distribution
For thorough convergence assessment, we run multiple MCMC

chains. For the simulated datasets, we run 100 000 iterations per

MCMC chain for five chains and apply a thinning factor of 10. For

the scRNA-seq datasets, we used the same thinning factor and at least

three MCMC chains for convergence analysis (12 for those datasets

(Shalek and Shin) where we analyzed datasets without capture times).

The number of samples required depends on the dataset (see Table 5

in the Supplementary Material with all the examples, providing ap-

proximate guidance on the number of samples required for similar

datasets). In order to assess convergence and not to bias the sampler

towards specific orderings, all chains are seeded with random starting

orders and with random GP parameters sampled from the prior distri-

bution. However, we do restrict starting orders to permutations of

cells within, but not across capture times. The restriction, while result-

ing in faster convergence, is not actually necessary (see Section 4 of

the Supplementary Material for details).

To check convergence, we use the Gelman-Rubin R̂-statistic

(Gelman and Rubin, 1992), corrected for sampling variability

(Brooks and Gelman, 1998), implemented in the R-package coda

(Plummer et al., 2006). The R̂-statistic estimates the factor by which

the pooled variance across all the chains is larger than the within-

sample variance. For convergent chains, R̂ approaches 1 as the num-

ber of samples tends to infinity. According to Brooks and Gelman

(1998), convergence may be assumed to have been reached if

R̂ < 1:2. We apply the stricter recommendation of R̂ < 1:1

(Gelman and Shirley, 2011). We compute the R̂ statistics for the fol-

lowing two quantities: first, the log-likelihood, and second the L1-

distances of the sampled cell positions from a fixed reference set of

cell positions, for which we use the true order, if known, and

1; . . . ;T, where T is the number of cells, in case of scRNA-seq data.

We compute the R̂ statistics a number of times during sampling,

each time discarding the first 50% (Gelman and Shirley, 2011). We

compare the speed of convergence for different combinations of pro-

posal moves in the simulation studies. See Section 1 in the

Supplementary Material for details.

While distance from reference orders is an efficient way of

obtaining a statistic for convergence assessment, more insights into

the structure of the orders can be obtained from low dimensional

representations, for example by MDS (multidimensional scaling)

(Borg and Groenen, 2005) on the (Euclidean) distance matrix of the

position vectors of the cells. It also allows us to visualize compari-

sons with alternative methods. Figure 1 shows the TSCAN solution

located in one of the areas of higher density of the GPseudoRank so-

lution, while the solution found by SLICER lies somewhat in be-

tween two modes, around the center of the distribution.

3 Results

3.1 Simulation studies
This section summarizes the insights gained from the simulation stud-

ies. For details on the assessment criteria and results, see Section 1

in the Supplementary Material.

Fig. 1. Shalek data. Multi-dimensional scaling. Distribution sampled with

GPseudoRank, point estimates with TSCAN and SLICER. Each dot corre-

sponds to one vector of cell positions from the posterior distribution. Semi-

transparency of the points allows identification of ares of higher density, that

is local modes of the posterior distribution
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Simulation 1. Any combination of moves leads to good conver-

gence, and although there are differences in the speed and level of

convergence, any combination of moves is recommended.

Simulation 2. There are only two capture times, hence there is

more variety in the starting orders for each chain. The performance

of the combinations of moves is different from simulation 1. Move 3

performs better than any other single move.

Move 3 generally traverses the space of permutations faster by

reversing whole segments of an ordering and it is the only move for

which all R̂-statistics go below 1.1 within the first 10 000 thinned

samples. The combination of moves ranked first according to the

criteria described in Section 1 of the Supplementary Material is the

combination 1, 2, 3, and 4 of all the moves.

Simulation 3. All moves and combinations thereof perform well

in this situation, though move 3, while still achieving reasonable lev-

els of convergence, is now the comparatively less well performing

single move. The combination of all four moves performs well.

3.2 Pseudotemporal uncertainty varies during response

to infection
For the scRNA-seq data from Shalek et al. (2014), collected at five

different capture times, the true cell ordering is unknown. To check

convergence of orders the R̂-statistic is computed both on the log-

likelihood and on the L1-distances of the permutation of cell posi-

tions to an arbitrary reference permutation (Fig. 2).

Figure 2 shows that a threshold for the R̂-statistic of 1.1 has

been reached after 6000 thinned samples (see also Table 5 in the

Supplementary Material). We therefore discard a burn-in of 3000

thinned samples at the beginning of each chain, as recommended

by Gelman and Shirley (2011). Indeed, by the 1.1 threshold for the

R̂ statistic 6000 thinned samples would have been sufficient for

convergence.

Figure 1 demonstrates again the value of providing a posterior

distribution for orders, rather than a single estimate: TSCAN and

SLICER give different results. Figure 3 illustrates the uncertainty of

the pseudotime over the mean pseudotime. To ensure that the

inverted U-shape in the amount of uncertainties of the first two cap-

ture times at 0 h and 1 h is not a sampling artifact, cells from these

capture times were mixed together for initializing the sampler (that

is, capture time information was discarded). On the other hand, des-

pite being separated during initialization of the sampler, cells from

capture times 4 h and 6 h are completely merged, again indicating

that the sampler has reached convergence.

Overall uncertainty in the ordering of cells is markedly lower

around capture time 2 h, when the reaction to the infection has set

in, but is not yet complete. The slight U-shape in the amount of un-

certainty for capture times 0 h, 1 h, and 4h/6h seems to be an experi-

mental batch effect of capturing multiple heterogeneous cells at

different time points. Within a batch (or merged batches 4 h and 6h)

cells which are either lagging behind or slightly ahead in their devel-

opment are assigned a more specific pseudotime with lower uncer-

tainty behind or ahead of the bulk of cells whose pseudotimes are, in

contrast, more interchangeable with higher uncertainty. However,

for other datasets (for instance with different time intervals between

capture times) this graph might look different, as, for example, in

Supplementary Figure 7 for the Stumpf dataset.

GPseudoRank identifies two precocious cells, pointed out in the

original analysis by Shalek et al. (2014), ahead in terms of their re-

sponse to the stimulus, see Figure 4. Shalek et al. (2014) identified a

set of genes particularly associated with antiviral response. Ahmed

et al., 2018 and Reid and Wernisch (2016) also used this score to

demonstrate that their methods identify two cells at capture time 1 h

precocious in their antiviral response. Figure 5 shows the average ex-

pression of a set of genes associated with antiviral response for each

cell. As expected, this antiviral score increases over pseudotime, con-

firming that the pseudotime assignment captures a biological

Fig. 2. Convergence analysis for GPseudoRank. Gelman-Rubin statistics for

the log-likelihood and for the L1-distances of the sampled permutations of cell

positions from the reference permutation (Shalek data)
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Fig. 3. Uncertainty of pseudotime as a function of mean pseudotime. For

each cell, the mean pseudotime is plotted along the x-axis, and the respective

standard deviation along the y-axis. Cells are colored by capture time
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Fig. 4. Posterior distribution of cell positions of the precocious cells. For each

posterior position of the cells we plot the frequency at which this position

occurs among all samples. One random MCMC chain was used. Both of the

precocious cells have a high probability of being located within capture time

2 h, with S51 likely to be ahead of S52
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phenomenon. In contrast to Figure 5, both DeLorean (Reid and

Wernisch, 2016) and GrandPrix (Ahmed et al., 2018) show consid-

erable edge effects in comparable plots (Reid and Wernisch, 2016,

Fig. 4, Ahmed et al., 2018, Fig. 2). Such edge effects are not bio-

logically motivated and presumably algorithmic artifacts which

GPseudoRank is able to avoid by restricting pseudotimes to a finite

interval and by using a geodesic mapping.

3.3 Posterior uncertainty modelling for droplet-based

scRNA-seq
The mini-cluster approximation allows us to apply GPseudoRank to

larger datasets. Figure 6 shows that the uncertainty in the ordering

for the Klein dataset (see Section 2.7.2) clearly exceeds that of other

datasets in the early stages of the process. There is high uncertainty

of cell positions at the beginning of the process as seen in the large

area of intermediate densities in the lower left of Figure 6. This

reflects the metastable state found early in the main branch in

Figure 2c in Haghverdi et al. (2016). According to Haghverdi et al.

(2016), such states can be defined as states with a high density in dif-

fusion pseudotime, as many cells progress through this state slowly.

With GPseudoRank we are able to identify such states in terms of

the uncertainty of the posterior cell position in terms of rank time:

this uncertainty is large if many cells are in a similar state and their

ordering is more uncertain compared to phases where cells are more

clearly separated by their progress. That is, uncertainty in rank time

corresponds to metastable states.

The time to convergence at the 1.1-level for the Gelman-Rubin

statistic for the Klein dataset was 6 min on a laptop. For details on

computation times for all single-cell datasets analyzed, see Table 5

in the Supplementary Material.

3.4 Multi-modal structure of posterior distributions
MDS shows that posterior distributions of cell position vectors tend

to be multimodal (see Fig. 1). To understand better what this com-

plicated structure of the posterior positions means biologically, we

applied GPseudoRank to a small dataset of only 18 cells (Shalek13),

as the structure of the posterior distribution of the cell orderings is

easier to understand with a smaller number of possible orderings.

We performed MDS (Supplementary Fig. 13a), clustered the MDS

projections into four clusters, and then computed, for the medoids

of the four clusters, the antiviral score as for Figure 5. The result is

shown in Supplementary Figure 3b. It shows that differences be-

tween different regions of the posterior distribution correspond to

differences mainly in the second part of the orders, rather than the

first. More precisely, the different regions of the posterior of the

orders correspond to different trajectories of the antiviral score in

the second part of the orders. While there is little uncertainty in the

first half of the orders, the cells in the second half correspond to a

metastable state, as in Figure 6. However, even in this metastable

state, some orderings of cells are more likely than others as shown

by the multi-modal structure of the posterior distribution. This indi-

cates that there might be additional structure even in metastable

states that can be revealed by algorithms such as GPseudoRank.

4 Discussion

GPseudoRank is a new type of Gaussian process latent variable

model for pseudotemporal ordering. It samples orderings instead of

pseudotimes, with combinatorial proposal moves designed to allow

the Metropolis-Hastings sampler to make large changes to permuta-

tions and still achieve a high acceptance rate. This specific proposal

distribution allows the sampler to explore complicated posterior dis-

tributions (see Fig. 1). Point estimation methods are only able to

find a single estimate of the order, and are therefore at most able to

capture one mode or find an estimate that lies between several

modes (see again Fig. 1).

The applications to scRNA-seq and RT-PCR data illustrate an-

other advantage of sampling from the posterior of orderings: the

amount of uncertainty about the position of a cell can vary with

time. In the Shalek dataset, the uncertainty is lowest in the middle of

the process, where the heterogeneity of cells with regard to their pro-

gress through the response to the infection is highest. This identifies

parts of the process with increased change and higher biological

variability compared to technical noise. For other datasets, the noise

levels are highest at the beginning (Klein data), in the middle

(Stumpf data), or at the end (Shalek13 data).

The uncertainty of the orders is relevant to any further analysis

that models scRNA-seq data in terms of time-series data. This

applies, for instance, to any type of network inference where the

order of the input time series is relevant, including GP models

(Penfold et al., 2012) and vector-autoregressive ones (Opgen-Rhein

and Strimmer, 2007). Alternatively, identifying the regions of the

process where the uncertainty of a cell’s position is low can support

the selection of suitable cells for the clustering of genes for example.

Variational inference, which avoids sampling altogether, is con-

sidered a computationally efficient if only approximate Bayesian in-

ference alternative to MCMC sampling. Considering that it samples

Fig. 6. Klein data. Posterior distribution of cell positions. Posterior probabil-

ities of the positions of the cells in terms of rank time: the mean cell position

is along the x-axis, the posterior density is plotted along the y-axis. Larger un-

certainty of cell positions in the early stages indicates metastable state
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Fig. 5. Core antiviral score as a function of mean pseudotime
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from the full posterior distribution of the orders, GPseudoRank is

very efficient and though runtimes obviously exceed those of well-

designed variational methods (Ahmed et al., 2018), the mini-cluster

approximation allows GPseudoRank to be applied to large datasets

without losing much insight concerning the structure of the poster-

ior distribution. GPseudoRank with the mini-cluster approximation

described in Section 2.6 takes 6 min to converge on a laptop for a

dataset with more than 1500 cells. GPseudoRank can be applied to

medium-sized datasets without approximation methods, taking

about 50 min to converge at the 1.1-level of the Gelman-Rubin

statistic for a dataset with 550 cells. However, with the mini-cluster

approximation it takes 1 minute to reach the same level of

convergence.

Overall, GPseudoRank offers new insights into biological phe-

nomena and experimental artifacts. It quantifies the amount and

variability of uncertainty in single-cell ordering (Figs 1, 3, and 6).

Assessing the degree of uncertainty enables spotting experimental

batch effects created by sampling from a continuous spectrum of de-

velopmental stages at only a few capture times. Our approach is

also able to identify precocious cells (Fig. 4). By combining a geodes-

ic pseudotime mapping with sampling permutations, GPseudoRank

also avoids edge effects present in other GP methods for pseudotime

ordering (Fig. 5).

Except for relative measurements like qPCR, GPseudoRank is

applied to log-transformed data. This is a frequent procedure for

many pseudotime methods: see among many others Haghverdi et al.

(2016); Ji and Ji (2016); Reid and Wernisch (2016); Welch et al.

(2016). Modelling count data directly in GPseudoRank could be

achieved by a change in the likelihood function to, say, the negative

binomial distribution with GPs modelling the mean. However, this

would require additional sampling of latent mean values for a small

gain in accuracy over a log normal approximation, which is usually

very accurate for large count data.

We have illustrated GPseudoRank on a number of scRNA-seq

datasets. Welch et al. (2017) developed a GP-based method for the

inference of multi-omics pseudotime profiles through manifold

alignment. A similar extension of GPseudoRank to the multi-omics

case would allow insight into time-varying and multi-modal uncer-

tainty structure of orderings for the multi-omics case.

Ordering problems are not restricted to the analysis of single-cell

data. For instance, with clinical health record data the actual time of

the onset of a disease is not usually known. It would be interesting

to use an approach similar to GPseudoRank to order the measure-

ments for different patients relative to each other. Unlike in the case

of cells, the order and times of the measurements are known for

each individual person. However, neither the rate of progression of

the illness for the individual person, which is similar to the differ-

ence between actual time and pseudotime, nor the relative progres-

sion of the illness across different people are known. Generally, our

approach of proposing local and wider proposal moves for MCMC

in a sample space of distributions suggests new ways of addressing a

number of discrete sampling problems, such as covariate selection or

ranking in mixture models for clustering.
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