
Towards microstructure fingerprinting: estimation of tissue 
properties from a dictionary of Monte Carlo diffusion MRI 
simulations

Gaëtan Rensonneta,b,*, Benoît Scherrerc, Gabriel Girardb, Aleksandar Jankovskie,f, Simon 
K. Warfieldc, Benoît Macqa, Jean-Philippe Thiranb,g, and Maxime Taqueta,c,d

aICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium bSignal 
Processing Lab (LTS5), École polytechnique fédérale de Lausanne, Lausanne,Switzerland 
cComputational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, 
Boston, MA, USA dDepartment of Neurology, Boston Children’s Hospital, Harvard Medical 
School, Boston, MA, USA eInstitute of Neuroscience, Université catholique de Louvain, Louvain-
la-Neuve, Belgium fDepartment of Neurosurgery, Centre hospitalier universitaire Dinant Godinne, 
Université catholique de Louvain, Namur, Belgium gRadiology Department, Centre hospitalier 
universitaire vaudois and University of Lausanne, Lausanne, Switzerland

Abstract

Many closed-form analytical models have been proposed to relate the diffusion-weighted magnetic 

resonance imaging (DW-MRI) signal to microstructural features of white matter tissues. These 

models generally make assumptions about the tissue and the diffusion processes which often 

depart from the biophysical reality, limiting their reliability and interpretability in practice. Monte 

Carlo simulations of the random walk of water molecules are widely recognized to provide near 

groundtruth for DW-MRI signals. However, they have mostly been limited to the validation of 

simpler models rather than used for the estimation of microstructural properties.

This work proposes a general framework which leverages Monte Carlo simulations for the 

estimation of physically interpretable microstructural parameters, both in single and in crossing 

fascicles of axons. Monte Carlo simulations of DW-MRI signals, or fingerprints, are pre-computed 

for a large collection of microstructural configurations. At every voxel, the microstructural 

parameters are estimated by optimizing a sparse combination of these fingerprints.

Extensive synthetic experiments showed that our approach achieves accurate and robust estimates 

in the presence of noise and uncertainties over fixed or input parameters. In an in vivo rat model of 

spinal cord injury, our approach provided microstructural parameters that showed better 

correspondence with histology than five closed-form models of the diffusion signal: MMWMD, 
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NODDI, DIAMOND, WMTI and MAPL. On whole-brain in vivo data from the human 

connectome project (HCP), our method exhibited spatial distributions of apparent axonal radius 

and axonal density indices in keeping with ex vivo studies.

This work paves the way for microstructure fingerprinting with Monte Carlo simulations used 

directly at the modeling stage and not only as a validation tool.

Keywords

diffusion-weighted magnetic resonance imaging; Monte Carlo simulations; tissue microstructure; 
sparse optimization; microstructure fingerprinting

Introduction

Adequate modeling of the diffusion-weighted magnetic resonance imaging (DW-MRI) 

signal holds the promise of characterizing white matter tissues at the micrometer level, 

including information about the principal orientation of axons, their average radius or 

packing density. Traditionally, a forward signal model is formulated relating the DW-MRI 

signal measured in a voxel to the externally-applied magnetic field gradient profile and the 

microstructural properties of the tissue. The estimation stage or inverse problem generally 

consists in minimizing a cost function incorporating the measured DW-MRI data and the 

closed-form forward formula.

Estimating microstructural features from closed-form mathematical expressions of the signal 

poses three major limitations. First, the formulations are generally so complex that 

simplifying assumptions need to be incorporated to obtain closed-form formulas. For 

example, representing intra-axonal restriction for molecules trapped inside a simple model 

of straight cylinders often requires assuming a Gaussian phase distribution (McCall et al., 

1963; Vangelderen et al., 1994) or a short gradient pulse (Tanner and Stejskal, 1968; 

Callaghan, 1995) to obtain analytical formulas. Describing the complex diffusion in the 

extra-axonal space almost exclusively relies on the basic diffusion tensor (Basser et al., 

1994), albeit with possible refinements such as considering a peak-shaped distribution of 

tensors (Scherrer et al., 2016, 2017) or a dependence on diffusion time (Burcaw et al., 2015; 

Ning et al., 2017) or gradient frequency (Xu et al., 2014) when more complex DW-MRI 

sequences are used. Coupling the intra- and extra-axonal models in a physically consistent 

way is usually addressed by tortuosity models (Whitaker, 1967; Szafer et al., 1995), the 

accuracy of which has been questioned (Lampinen et al., 2017). Second, generalizing 

models from the diffusion sequence they were originally designed for, often the pulse-

gradient spin-echo (PGSE) (Stejskal and Tanner, 1965), to sequences such as double 

diffusion encoding (DDE) (Cory et al., 1990; Callaghan and Manz, 1994) or oscillating-

gradient spin-echo (OGSE) (Gross and Kosfeld, 1969) generally requires non-trivial 

modifications (Xu et al., 2014; Lam et al., 2015). Third, the cost function used in the inverse 

problem is often highly non-linear in the parameters to estimate, leading to the well-known 

pitfalls of non-linear optimization: convergence to local rather than global minima, multiple 

equivalent minima (Jelescu et al., 2016; Novikov et al., 2018), long fitting times or 

sensitivity to the initialization strategy (Harms et al., 2017). These difficulties are usually 
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overcome by making further simplifications to reduce complexity and stabilize the 

estimation, such as assuming axons with zero radius (Zhang et al., 2012) or neglecting 

fascicle crossings altogether (Alexander et al., 2010; Zhang et al., 2012). A recent alternative 

to such simplifications for stabilizing the estimation is to recast the inverse problem into a 

convex optimization program on a pre-computed dictionary. This was proposed by Daducci 

et al. (2015) and Sepehrband et al. (2016) for single fascicles and by Auría et al. (2015) for 

multiple fascicles. It should be noted that some models target the ensemble average 

propagator (EAP) of water molecules rather than tissue properties directly (Özarslan et al., 

2013; Ning et al., 2017). Those frameworks make little to no assumption about the tissue 

and the signal is linearly decomposed in a chosen functional basis. The estimation of the 

coefficients of the expansion is done efficiently through convex optimization under 

positiveness (Özarslan et al., 2013) or sparsity constraints (Merlet et al., 2013) for instance. 

These models provide indices that must then be interpreted in terms of specific tissue 

features (Avram et al., 2016; Zucchelli et al., 2016).

Monte Carlo simulations of the random walk of water molecules have the potential to 

provide near ground-truth forward signals for any type of gradient profile and for any 

geometry of the cellular environment (Hall and Alexander, 2009; Balls and Frank, 2009). 

Because they provide numerical results rather than a closed-form formula for the signal, they 

are not well suited for parameter estimation through traditional continuous optimization. As 

a consequence, Monte Carlo simulations have been widely used in the validation of simpler 

closed-form models (Grebenkov, 2007; Fieremans et al., 2008; Nilsson et al., 2009; Hall and 

Alexander, 2009; Panagiotaki et al., 2010; Fieremans et al., 2010; Nilsson et al., 2010; 

Drobnjak et al., 2011; Raffelt et al., 2012; Dyrby et al., 2013; Pizzolato et al., 2015; Lam et 

al., 2015; Clayden et al., 2015; McHugh et al., 2015; Burcaw et al., 2015; Scherrer et al., 

2016; Ianuș et al., 2016; Kakkar et al., 2017; Vellmer et al., 2017; Ning et al., 2017; 

Ginsburger et al., 2018; Mercredi and Martin, 2018). They have also been used to investigate 

the sensitivity of the DW-MRI signal to complex biophysical features (Hall and Alexander, 

2009; Nilsson et al., 2012; Harkins and Does, 2016; Palombo et al., 2017; Rensonnet et al., 

2018; Lin et al., 2018). However, their use for the direct estimation of microstructural 

properties has been scarce and thus far limited to areas containing single fascicles of axons. 

For instance, in Nilsson et al. (2010), nearest-neighbor matching from a collection of Monte 

Carlo signals was compared with an analytical model of diffusion considering permeable 

membranes. In Nedjati-Gilani et al. (2017), a similar analytical model was assessed against a 

random forest regressor used to learn a mapping between microstructural properties of single 

fascicles and orientationally-invariant features extracted from their Monte Carlo signals. In 

the context of MR spectroscopy, Monte Carlo simulations were integrated in a 

computational model to assess the intracellular diffusion of cell-specific metabolites in 

rodent and primate brain (Palombo et al., 2016).

The framework proposed in this article aims at exploiting the accuracy and interpretability of 

Monte Carlo simulations directly in the forward signal model and not solely as a validation 

tool. Single-fascicle DW-MRI signals or fingerprints are first pre-computed for a large 

collection of microstructural configurations using Monte Carlo simulations. The final multi-

fascicle estimation then consists in selecting the optimal sparse combination of these 

fingerprints, which is done by solving many small convex sub-problems. The approach is 
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applied to the estimation of an apparent axonal radius index and an axonal density index in 

single- as well as in crossing-fascicle configurations, using synthetic and in vivo data.

1. Theory

This section first presents our general multi-fascicle signal model incorporating signals from 

Monte Carlo simulations, the theory of which is reviewed in a second subsection. A third 

subsection presents mathematical properties that allow large collections of Monte Carlo 

signals to be obtained at a minimal computational cost. Finally, the inverse problem of 

estimating microstructural features is formulated as a structured sparse optimization problem 

in the last subsection.

1.1. Signal model

The DW-MRI signal S at echo time TE under the application of an effective magnetic field 

gradient profile g(t) (0 ≤ t ≤ TE) in a voxel of white matter is assumed to arise from the 

independent contributions of K fascicles of axons with principal unit orientation u1,…,uK 

occupying fractions ν1,…,νK of the physical volume of the voxel and of a partial volume 

νcsf of cerebrospinal fluid (CSF)

S = M0 ⋅ ∑
k = 1

K
νkAfasc Ωk, Tk, uk; g + νcsfAcsf Dcsf, Tcsf; g

= ∑
k = 1

K
wkAk + wcsfAcsf,

(1)

where the scaling factor M0 captures the net initial transverse magnetization of the voxel 

detected by the scanner and wk ≔ M0νk is the NMR-apparent signal weight of the 

contribution of the k-th fascicle. The normalized DWMRI signal Ak ≔ Afasc (Ωk, Tk, uk; g) 

of the k-th fascicle is modeled by a Monte Carlo simulation of the random self-diffusion of 

molecules in an environment characterized by the set of microstructural parameters Ωk, 

typically featuring geometrical arrangements of cylinders representing axons. The set of 

parameters Tk captures NMR relaxation such as T1, T2 and proton density, which is 

generally assumed to occur independently of diffusion and therefore only affects Ak via a 

multiplying factor. Water is assumed to diffuse freely and isotropically in the CSF 

compartment; its normalized DW-MRI contribution Acsf is therefore characterized by a 

scalar diffusivity Dcsf. Since ν1 + ⋯ +νK +νcsf = 1, the physical volume fractions νk have a 

one-to-one correspondence with the NMR-apparent weights wk:

wk = M0νk νk =
wk

∑k = 1
K + 1wk

, k = 1, …, K + 1, (2)

where the index k = K + 1 refers to the CSF compartment.
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The flexibility of Monte Carlo simulations allows any type of gradient profile g(t) to be 

used, including PGSE, DDE, OGSE or more general b-tensor encoding (Topgaard, 2017) 

without the need to mathematically derive a new signal model.

A vector Afasc Ω, T, u; gi i = 1
M  corresponding to the set of M gradient profiles gi t

i = 1
M

making up the acquisition protocol is defined as a fingerprint It uniquely relates to the 

particular microstructural parameters Ω for given relaxation parameters T and orientation u.

1.2. Monte Carlo simulations

Monte Carlo simulations consist in sampling the distribution of the phase ϕ (g) accumulated 

at echo time TE by spin-bearing nuclei or spins undergoing random diffusion in a spatial 

domain Ω when a diffusion-sensitizing gradient profile g(t) (0 ≤ t ≤ TE) is applied. As 

described in Hall and Alexander (2009), a large set of Nspin Brownian trajectories rl(t), 1 ≤ l 
≤ Nspin, are approximated in the environment Ω by discrete trajectories rl consisting of 

spatial jumps with random orientation and length

L = 2nDδt (3)

where the time step δt = TE/Nstep is chosen in order to ensure a small bias, D is the local 

diffusivity and n (1 ≤ n ≤ 3) is the intrinsic spatial dimension of the diffusion process of 

interest. If Ω consists of parallel straight cylinders for instance, diffusion is unrestricted 

along the cylinders and Monte Carlo simulations can be limited to the plane perpendicular to 

the cylinders, implying n = 2. Interactions with boundaries and obstacles in Ω such as 

cellular membranes are tested for at each spatial jump.

With gα (t) and rlα denoting the components of g and rl(t) along the direction eα and γ the 

gyromagnetic ratio of the spin-bearing nuclei, the phase ϕl of spin l accumulated at echo 

time is defined as

ϕl g : = γ∫
0

TE
g t ⋅ rl t dt

= ∑
α = 1

n
γ∫

0

TE
gα t rlα t dt

: = ϕlα gα

.
(4)

It is approximated from the discrete trajectory rl by a numerical quadrature such as a 

rectangle rule
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ϕl g ≈ ϕl g = γδt ∑
s = 0

Nstep − 1

g s ⋅ δt ⋅ r l s ⋅ δt

= ∑
α = 1

n
γδt ∑

s = 0

Nstep − 1

gα s ⋅ δt r lα s ⋅ δt

: = ϕlα gα

(5)

where ϕlα is the numerical approximation of the directional phase ϕlα due to gα (t). It should 

be noted that ϕ (equivalently, ϕ) is linear with respect to g(t):

ϕ β1g1 + β2g2 = β1ϕ g1 + β2ϕ g2 ∀β1, β2 ∈ ℝ . (6)

The normalized diffusion attenuation A(g) in Ω associated with the gradient profile g(t) is 

finally approximated as the empirical mean

A g = e jϕ g ≈ 1
Nspin

∑
l = 1

Nspin
e

jϕl g
, (7)

where j denotes the complex number.

1.3. Data augmentation

1.3.1. Augmenting sequences—This paragraph demonstrates how the generation of 

directional phases-rather than final DW-MRI signals- can make Monte Carlo simulations 

reusable for new gradient directions and make the simulation time almost independent of the 

number of sequences M, at the expense of a moderate increase in storage space.

The M gradient profiles g(t) of a DW-MRI protocol can be expressed as a linear combination 

of Mχ ≤ M basis temporal profiles χm(t)

g t = ∑
m = 1

M χ
∑

α = 1

n
βmαχm t eα, (8)

where every βmα ∈ ℝ. If the n × Nspin × Mχ directional phases ϕl χmeα  are computed and 

stored, they can later be used to compute the accumulated phase ϕl g  of spin l arising from 

the application of any gradient profile g(t)
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ϕl g = ϕl ∑
m = 1

M χ
∑

α = 1

n
βmαχmeα

= ∑
m = 1

M χ
∑

α = 1

n
βmαϕl χmeα

(9)

based on the linearity of ϕ expressed in Eq. (6). This quantity can then be used to compute 

the normalized diffusion attenuation A(g) using Eq. (7).

Most current clinical protocols use a small number of temporal profiles, making this strategy 

particularly useful. For instance, PGSE-based Multi-shell HARDI (Tuch et al., 2002) and 

CUSP protocols (Scherrer and Warfield, 2012) with gradient duration δ and separation Δ 

fixed across all shells have an optimal Mχ = 1. Once computed, the n × Nspin × Mχ 
directional phases are used to simulate every sequence of the protocol. Among others, this 

approach can efficiently generate signals for patient-specific gradient maps corrected for 

motion. With a fixed protocol, the stored phases also provide DW-MRI signals for any 

microstructural orientation by considering an adequately-rotated new set of gradient 

directions with the same temporal profiles χm(t).

Compared with a strategy in which just the final DW-MRI signals are stored, the storage 

space increases by a factor 
nNspinM χ

M . On the other hand, the computational complexity of 

the quadrature rule in Eq. (5) is reduced by a factor M/Mχ, e.g., a factor 100 for a protocol 

with 100 sequences using fixed Δ and δ.

1.3.2. Augmenting configurations—This paragraph demonstrates that many more 

microstructural configurations Ω can be obtained from a finite set of stored DW-MRI 

directional phases or signals by leveraging the scaling properties of Brownian diffusion.

Considering spin-bearing particles evolving in an environment with characteristic length 

scale L and homogeneous diffusivity D under the application of a magnetic gradient profile 

g(t) with characteristic gradient intensity G and time scale T, dimensional analysis shows 

that the DW-MRI signal A(L, D; G, T) is entirely characterized by the dimensionless 

parameters (Grebenkov, 2008)

p1 = DT
L2 ,

p2 = γGLT .
(10)

The following equivalence

Rensonnet et al. Page 7

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A L, D; G, T = A αL, αD; G
α

, T (11)

therefore holds for any real number α > 0, meaning that the same simulated signal can be 

interpreted as arising from configurations characterized by different spatial dimensions and 

diffusivity under the application of an adequately scaled magnetic gradient. For instance, the 

DW-MRI signal arising from an environment with 3 μm-wide axons separated by 1 μm gaps 

is identical to the signal arising from 6 μm-wide axons separated by 2 μm gaps if the 

diffusivity is 4 times as large and the gradient magnitude is twice as small.

This property is useful in the context of generating large collections of DW-MRI signals. 

Instead of running Monte Carlo simulations for all combinations (Li, Dj) of a biological 

region of interest [Lmin, Lmax] × [Dmin, Dmax] in the space of microstructural parameters Ω, 

it is sufficient to run simulations for one fixed diffusivity Dsim in [Dmin, Dmax] and a 

sampling {Lsim,i}i spanning a slightly larger region 
Dsim
Dmax

Lmin,
Dsim
Dmin

Lmax . By setting 

α =
Dsim

D  in Eq. (11), a collection of DW-MRI signals corresponding to a new arbitrary D ∈ 

[Dmin, Dmax] is then directly obtained as

A D
Dsim

Lsim,i, D; G, T = A Lsim, iDsim; D
Dsim

G, T , (12)

where the left-hand-side corresponds to a sampling D
Dsim

Lsim,i
i
 covering the region of 

interest Lmin ≤ L ≤ Lmax. Appendix A shows that the choice of Dsim does not affect the 

number of reference simulations N required to achieve sufficient resolution in L for all D ∈ 
[Dmin, Dmax].

If the reference simulations with Dsim stored the directional phases as explained in the 

previous in the previous paragraph, then the right-hand-side of Eq. (12) can be exactly 

evaluated at D
Dsim

G Otherwise, signal interpolation with respect to G must be performed. In 

order to avoid extrapolation outside of the range [Gmin, Gmax] covered by the acquisition 

protocol, the reference simulations can be run for G spanning the slightly larger interval 
Dmin
Dsim

Gmin,
Dmax
Dsim

Gmax .

1.4. Inverse problem

Our framework consists in pre-computing a dictionary of Monte Carlo DW-MRI 

fingerprints, each corresponding to a unique microstructural configuration. At runtime, for 

every voxel, our method then aims at finding the optimal combination of single-fascicle 
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configurations Ω1, …, ΩK and volume fractions ν1, …, νK for a vector y ∈ ℝM of M noisy 

DW-MRIs. More specifically, the process involves five steps: two during the pre-computing 

stage and three during runtime.

Step 1 (pre-computing) performs a discrete sampling of N points Ω1,…,ΩN of the space Ω 
of microstructural parameters with bounds and granularity justified by tissue biology and the 

expected resolution of the M diffusion-encoding gradient profiles g1(t),…,gM(t) of the 

protocol 𝒫 = gi t
i = 1
M  at hand.

Step 2 (pre-computing) generates a canonical single-fascicle dictionary F0 ∈ ℝM×N 

containing the DW-MRI fingerprints of the N selected microstructural configurations for a 

single fascicle along a fixed direction u0

F0 = A1
0, …, AN

0 , (13)

where A j
0 = Afasc Ω j, T0, u0; 𝒫 , 1 ≤ j ≤ N. This the most time-consuming step involving up to 

N Monte Carlo simulations which, however, need only be performed once and can be done 

before any data is even acquired.

Step 3 (runtime) requires an external routine to estimate in each voxel the number K of 

fascicles and their orientations u1,…, uK.

Step 4 (runtime) requires an efficient routine for rotating single-fascicle signals in order to 

obtain the single-fascicle dictionaries F1,…, FK ∈ ℝM×N from F0 along the orientations u1,

…,uK estimated in Step 3.

Step 5 (runtime) finally consists in solving the following sparse optimization problem

w = argmin
w ≥ 0

y − F1 … FK|Acsf .

w1
⋮

wK

wcs f 2

2

subject to wk 0 = 1, k = 1, …, K,

(14)

where the sparsity constraints on the sub-vectors wk guarantee that only one fascicle 

configuration Ωjk per single-fascicle dictionary Fk contributes to the measured signal y. 

Problem (14) is solved exactly by selecting the optimal solution out of NK independent non-

negative least-squares sub-problems of (K + 1) variables
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j 1, …, j K = argmin
1 ≤ j1, …, jK ≤ N

min
w ≥ 0

y − A j1
1 … A jK

K |Acsf .

w1
⋮

wK

wcs f 2

2

. (15)

Each sub-problem is convex and is solved exactly by an efficient active-set algorithm 

(Lawson and Hanson, 1995, chap. 23, p. 161). The optimal microstructural parameters Ωk

are taken as those of the optimal fingerprint j k in each Fk and the volume fractions νk are 

estimated from the corresponding optimal weights wk using Eq. (2). Note that the weights 

wk are not required to sum to one since the quantity ∑k = 1
K + 1wk should reflect the scale M0 of 

the acquired signals y.

2. Materials and Methods

This section presents the synthetic and in vivo experiments performed to validate the general 

estimation framework described in Section 1.4. The first part is concerned with voxels 

containing only single fascicles of axons while the second part considers voxels with 

crossing fascicles. All the synthetic experiments were designed to reproduce the 

experimental conditions of the in vivo acquisitions as closely as possible.

2.1. Validation on single fascicles

2.1.1. Diffusion protocol—The DW-MRI protocol used for the synthetic and in vivo 
validation on single-fascicle configurations, referred to as the rodent protocol, consisted of 6 

PGSE shells of b-values 300, 700, 1500, 2800, 4500, 6000 s mm−2 with high gradient 

intensities G ∈ [140, 628] mT m−1 and short gradient duration δ =4.5 ms and diffusion time 

Δ = 12 ms, with TE = 23 ms. Each shell contained 36 non-collinear directions computed 

with the electrostatic repulsion method of Caruyer et al. (2013) and 3 unweighted or b0 

images for a total of 234 images.

2.1.2. Implementation details of the dictionary estimation—In Step 1 of the 

procedure described in Section 1.4, hexagonal packing of straight, impermeable cylinders 

was selected to represent single fascicles of axons, characterized by a cylinder radius r, 
interpreted as an apparent axonal radius index, and a cylinder packing density f, interpreted 

as an axonal density index (Budde and Frank, 2010; Alexander et al., 2010). The space of 

microstructural parameters Ω = (r, f) was sampled at 34 values for r from 0.4 μm to 7 μm by 

steps of 0.2 μm and 23 values for f from 0.21 to 0.87 by increments of 0.03. This resulted in 

a canonical single-fascicle dictionary F0 containing the diffusion fingerprints of N = 782 

microstructural configurations along a reference orientation. The groundtruth diffusivities of 

the intra- and extra-axonal or “white matter” space were kept equal and fixed to Dwm = 2.0 × 

10−9 m2 s−1 based on the intra-axonal estimate by Dhital et al. (2017). The diffusivity of 

CSF was set to Dcsf = 3.0 × 10−9 m2 s−1 (Xing et al., 1997). Since a PGSE protocol was 
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considered, NMR relaxation consisted of T2 decay of the form exp (−TE/T2), assumed 

independent of the diffusion process. In order to match our in vivo rat data set acquired at 

11.7T, the groundtruth relaxation times were considered to be T2wm = 30 ms for the intra- 

and extra-axonal space based on estimates at 11.7T in the rat corpus callosum and cerebellar 

white matter (de Graaf et al., 2006). For CSF, T2csf = 120ms was selected in line with rat 

brain estimates at 7.0T (Crémillieux et al., 1998) and at 11.7T (Pohmann et al., 2011).

The Monte Carlo simulations of Step 2 in our estimation procedure were performed using an 

in-house software for the extra-axonal signal of the gradient components perpendicular to 

the cylinders with a number of random walkers Nspins = 150 000 and a time step δt between 

1 and 5 μs based on the distance between cylinders (Rensonnet et al., 2015, 2016). Exact 

intra-axonal signals were obtained using an efficient implementation1 of the Multiple 

Correlation Function (MCF) approach (Grebenkov, 2008). As described in Section 1.3.1, 

one single set of directional phases ϕx and ϕy per fingerprint needed to be stored in order to 

compute all 216 diffusion-weighted acquisitions of the rodent protocol.

In Step 3, the number of fascicles in each voxel was limited to K = 1 and the orientations 

were obtained from a ball-and-sticks model estimated using a maximum a posteriori 

approach as described in Scherrer et al. (2016), using the CRKIT software2 without spatial 

regularization across voxels.

Since a multi-shell PGSE protocol was considered, the rotation of DWMRI signals required 

in Step 4 was done by simple linear spline interpolation separately on each shell.

2.1.3. Synthetic experiments—Two synthetic experiments were designed to validate 

the estimation method in a variety of controlled groundtruth configurations and to 

investigate the effect of uncertainties on fixed or pre-estimated parameters.

In both experiments, the results of our Monte Carlo based estimations were systematically 

compared with the output of the minimal model of white matter diffusivity (MMWMD) 

introduced in Alexander et al. (2010). MMWMD was chosen for comparison as it provides 

direct indices of the radius and axonal density to which our method can be compared. More 

specifically, the quantity 
f cylinder

f cylinder + f zeppelin
 was used as an axonal density index, where 

fcylinder and fzeppelin are the fractions of signal modeled by the cylinder and the zeppelin-like 

diffusion tensor, respectively. All MMWMD fitting was performed with the Camino 

Diffusion MRI Toolkit (Cook et al., 2006) using Markov chain Monte Carlo (MCMC) fitting 

with 40 samples at intervals of 200 iterations after a burn-in of 2000 iterations as 

recommended in Alexander et al. (2010).

The signal-to-noise ratio (SNR) was defined as SNR = 0.5M0/σ, where σ is the standard 

deviation of the noise in an individual MRI detection coil. The factor 0.5 comes from the 

mid-point value of the unweighted b0 signal for 0 and 25% of the volume occupied by CSF, 

1Our code was based on publicly available scripts from the original author’s web page https://pmc.polytechnique.fr/
pagesperso/dg/MCF/MCF_e.htm.
2http://crl.med.harvard.edu/software/.
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using the T2 values described above. The scaling parameter M0 depends on the sensitivity of 

the MRI scanner in practice and was fixed to an arbitrary M0 = 1000 in the groundtruth 

signals throughout all synthetic experiments.

Experiment 1.A. Single-fascicle groundtruth, effect of fixed diffusivity.: This 

experiment focused on the estimation of microstructural properties in single fascicles and 

included no CSF contribution in the synthetic groundtruth and in the fitted models. 

Consequently Eq. (15) was solved with wcsf = 0 in our Monte Carlo dictionary estimation 

while the ball and dot compartments were ignored in the MMWMD fitting.

Equation (1) was used to generate reference groundtruth signals for 64 single-fascicle 

configurations obtained from the combinations of 8 groundtruth radius index values r from 

0.6 to 4.8 μm by steps of 0.6 μm and 8 groundtruth density index values f from 0.42 to 0.84 

by steps of 0.06. Each signal was corrupted by 10 independent simulations of Rician noise 

with 10 SNR levels varying from 5 to 150. Estimation was performed for all 4 combinations 

of groundtruth diffusivity D* = {2.0, 3.0} × 10−9 m2 s−1 and model diffusivity D = {2.0, 

3.0} × 10−9 m2 s−1 in order to investigate the effect of fixing D to an under- or overestimated 

value (with signals generated using data augmentation as explained in Section 1.3.2). This 

yielded a total of 64 × 10 × 10 × 4 = 25 600 independent synthetic voxels.

Experiment 1.B. CSF partial volumes, effect of fixing T2 values.: In this experiment, 

partial volumes of CSF were added both to the groundtruth voxels and to the fitted models. 

The 64 single-fascicle configurations selected in Exp.1.A were considered and isotropic CSF 

contributions with physical volume fractions νcsf = {0.0, 0.25, 0.50} were successively 

added following Eq. (1). The levels of Rician noise corruption and number of repetitions 

were as in Exp. 1.A and the model diffusivities were set to the groundtruth values. Three 

configurations of T2 values were examined as detailed in Table 1. The “T2✓” scenario was 

the ideal case; in the “T2✘1” setting the groundtruth values were unchanged but the models 

assumed uniform T2 at a typical 3T value of 70 ms; the “T2✘2” case was more challenging 

as the groundtruth signals were generated with different T2 values in the intra- and extra-

axonal space of the single fascicle. MMWMD fitting was performed using the full four-

compartment model including a dot compartment.

2.1.4. In vivo experiment

Animal model of Wallerian degeneration.: Three female Long Evans rats (Janvier Labs, 

Le Genest-Saint-Isle, France; weight 180 – 200 g) underwent laminectomy of verterbrae L2-

L3 to expose the spinal cord. A left unilateral dorsal root axotomy was then performed, 

inducing Wallerian degeneration in the ipsilateral side of the gracile fasciculus of the spinal 

cord while leaving the contralateral side untouched. Two similar rats served as the control 

group and underwent laminectomy at identical vertebral levels without the dorsal root 

axotomy, leaving the whole spinal cord unaffected. All rats were scanned 51 days after 

surgery (see next paragraph) and sacrificed immediately after the imaging session. The 

spinal cords were then extracted, frozen and sliced axially in 20-μm thick sections to 

perform SMI312 staining, used to expose neurofilaments and indicate the presence of axons. 
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The entire protocol was approved by the local animal care and ethics committee at 

Université catholique de Louvain (2016/UCL/MD/011).

In vivo DW-MRI.: DW-MRI was performed on all five rats on an 11.7T Bruker BioSpec 

scanner (Bruker, Billerica, MA) using a 72-mm diameter transmitter volume coil and a 4-

channel, 3 × 3 cm surface receiver coil covering the L4-T12 vertebral segments. Rats lay in 

the dorsal decubitus position on a custom-made bed, anesthetized with an isoflurane-air 

mixture (2.5% for induction and 1–1.5% for maintenance). Respiration and rectal 

temperature were continuously monitored and body temperature was kept stable at 37°C 

using a circulating warm-water pad. Diffusion-weighted images were acquired with the 

PGSE parameters described in Section 2.1.1 and TR = 3s, using 2-D echo planar imaging 

(EPI) with in-plane voxel resolution 0.1 × 0.1mm2 (128 × 128 matrix) and slice thickness 1 

mm for 16 contiguous axial slices, for a total acquisition time of about 2.5 h per rat. 

Correction for animal motion and Eddy current was achieved by affine registration of each 

scalar DW-MRI to the b0 images interleaved in the protocol. To this end, images were 

resampled to a resolution of 0.05 × 0.05 × 0.06mm enabling improved multi-scale pyramidal 

registration.

Model fitting and statistical analysis.: The gracile fasciculus was manually segmented 

based on the hypo-intense signal of the anterior spinal vein on the b0 images and the high 

fractional anisotropy (FA) values of the corticospinal tract obtained from diffusion tensor 

fitting, while CSF voxels were manually removed at the periphery of the spinal cord.

Estimation was performed in the voxels of the gracile fasciculus of all five rats using our 

Monte Carlo dictionary approach, yielding estimates of r, f and νcsf. MMWMD was 

estimated as described in Exp. 1.B, providing an extra parameter νdot. For further 

comparison, the four closed-form microstructural models DIAMOND (Scherrer et al., 

2016), NODDI (Zhang et al., 2012), WMTI (Fieremans et al., 2011) and MAPL (Fick et al., 

2016) were also fitted to the data. From DIAMOND, the compartment heterogeneity index 

cHEI, compartment radial diffusivity cRD, compartment axial diffusivity cAD and isotropic 

volume fraction νiso were examined. From NODDI, the intra-neurite volume fraction ficvf, 

orientation dispersion index ODI and isotropic volume fraction νiso were estimated using the 

NODDI MATLAB (The MathWorks, Inc, Natick, MA) Toolbox3. From WMTI, the axonal 

water fraction (AWF), intra-axonal radial diffusivity RDin, extra-axonal radial diffusivity 

RDex and extra-axonal axial diffusivity ADex were estimated using the reconst.dki_micro 

module from the DIPY software project4 (Garyfallidis et al., 2014). From MAPL, the 

Return-to-Origin Probability RTOP, Return-to-Axis Probability RTAP, Return-to-Plane 

Probability RTPP and mean squared displacement MSD were estimated using the 

reconst.mapmri module from DIPY.

After model fitting, the following linear mixed-effect regression was estimated for each of 

the microstructural parameters described above using MATLAB’S fitlme routine

3http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
4http://nipy.org/dipy/index.html
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y = β0 + βWD × S × I + βsurgery × S + βipsilateral × I, (16)

where y is the microstructural property of interest, S and I are indicator variables 

respectively indicating surgery (S = 1) versus controls (S = 0) and ipsilateral (I = 1) versus 

contralateral (I = 0) sides. A subset of voxels in the gracile fasciculus corresponding to the 

original DW-MRI resolution were selected for the analysis in order to avoid artificially 

increasing our sample size and driving p-values to zero. In Eq. (16), the coefficient βWD 

captures the effect of Wallerian degeneration. It should only be large for parameters 

physically impacted by the surgery and not by intrinsic differences between the control and 

the injured group (βsurgery) or rat-specific differences between the left and right sides of the 

spinal cord (βipsilateral). In this experiment, the quality of a model does not lie in its ability to 

detect significant group differences but rather in its ability to attribute the signal change to 

specific microstructural parameters in line with histological observations.

2.2. Validation on crossing fascicles

2.2.1. Diffusion protocol—All synthetic and in vivo experiments on crossing-fascicle 

configurations were carried out using the MGH-USC Adult Diffusion protocol of the Human 

Connectome Project (HCP) described in Setsompop et al. (2013). The protocol comprised 4 

PGSE HARDI shells containing 64 gradient directions at b = 1000 s mm−2, 64 at b = 3000 s 

mm−2, 128 at b = 5000 s mm−2, 256 at b = 10 000 s mm−2 and 40 b0 images interleaved 

throughout the protocol, for a total of 552 acquisitions. Gradients intensities reached G = 

219 mT m−1 with δ/Δ= 12.9/21.8 ms, enabling TE = 57 ms.

2.2.2. Implementation details of the dictionary estimation—In Step 1 of the 

inverse problem (Section 1.4), the same single-fascicle model as in Section 2.1.2 was 

selected, along with the same sampling of the microstructural parameter space Ω = (r, f) and 

identical diffusivities. Groundtruth T2 values were set to typical human brain values at 3T 

with T2wm = 70 ms based on Stanisz et al. (2005) and Smith et al. (2008), assumed identical 

in all fascicles. In CSF, T2csf = 1000 ms was interpolated from 0.14 T estimates in humans 

(Condon et al., 1987) as well as rat estimates at 4.7 T (Ting and Bendel, 1992) and 7 T 

(Crémillieux et al., 1998).

Steps 2, 3, and 4 were performed as in the single-fascicle experiments except that the ball-

and-sticks estimation in Step 3 was set to detect up to K = 2 fascicles. In step 5, N2 = 611 

524 non-negative least squares subproblems were solved in voxels containing two fascicles.

2.2.3. Synthetic experiments—Two synthetic experiments were designed to validate 

the estimation method in a variety of controlled crossing-fascicle configurations and to 

investigate the effect of misestimating fixed or estimated parameters.

As with the rodent protocol, the scanner-specific scaling parameter was fixed to M0 = 1000 

and the SNR was computed as SNR = 0.5M0/σ based on unweighted b0 signals without CSF 

contamination and with 25% of CSF in the voxel, using the above T2 values.
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Experiment 2.A. Independent voxels, effect of orientation misestimation and crossing 
angle.: This experiment focused on the estimation of microstructural properties in crossing 

fascicles and included no CSF contribution in the synthetic groundtruth and in the Monte 

Carlo dictionary estimation, i.e. Eq. (15) was solved with wcsf = 0.

Equation (1) was used to generate reference groundtruth signals for fascicles with identical 

microstructural properties r = r1 = r2 and f = f1 = f2 with volume occupied by the first 

fascicle ν1 = {0.3, 0.4, 0.5} and ν2 = 1 − ν1, for all 32 combinations of 4 radius index 

values r = {1, 2, 3, 4} μm and 8 density index values f from 0.42 to 0.84 by steps of 0.06. 

Each signal was corrupted by 10 independent simulations of Rician noise with 10 SNR 

levels varying from 5 to 150.

To examine the effect of an incorrect estimation of the fascicle’s orientations in Step 3 of the 

inverse problem, the estimation was performed by independently selecting u1 and u2 

randomly on a cone with principal axis along the groundtruth orientations, forcing angular 

errors of 0°, 5° and 10° successively. Fascicles crossing at angles ∠u1, u2 = {30°, 60°, 90°} 

were considered in order to study the effect of the groundtruth crossing angle, thereby 

yielding a total of 3 × 32 × 10 × 10 × 3 × 3 = 86 400 independent voxel estimations.

Experiment 2.B. Synthetic 2D phantom, effect of dissimilar fascicles.: A synthetic 

phantom was designed containing three axonal tracts (see Fig. 7(a)). Each tract had a 

constant radius index r (respectively 1.2, 1.6 and 2.0 μm) and spatially-smooth variations of 

the fascicle-specific density index f ranging from 0.45 to 0.81. The complete 2D-slice 

featured 17 × 17 = 289 voxels including 119 voxels containing one single fascicle of axons, 

34 voxels containing a single fascicle with 25% of CSF and 86 voxels containing two 

fascicles intersecting at angles comprised in [31.4°, 86.0°] with mean 62.7°. The crossing-

fascicle configurations were more complex than in Exp. 2.A because the two crossing 

fascicles had different microstructural properties r1 ≠ r2, f1 ≠ f2 in general. Estimation was 

performed at SNR levels of 25, 50 and 100.

In the ball-and-sticks estimation of Step 3 of the Monte Carlo dictionary estimation, spatial 

regularization across voxels was enabled and sticks with directions separated by fewer than 

15° were merged. Denoting by β1 the largest weight attributed to a stick, all secondary sticks 

were then removed if their weight β verified either β < β1/2.5 and β < 0.20 or just β < 0.10. 

The Monte Carlo dictionary estimation of Step 5 set wcsf = 0 when two fascicles were 

detected in Step 3.

2.2.4. In vivo experiment

In vivo DW-MRI.: One healthy subject was randomly selected from the MGH Adult 

Diffusion data release5 (Setsompop et al., 2013).

Model fitting and statistical analysis.: Voxels containing white matter were identified 

based on the segmentation obtained with the FAST algorithm (Zhang et al., 2001) from the 

5https://www.humanconnectome.org/study/hcp-young-adult/document/mgh-adult-diffusion-data-acquisition-details
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FMRIB Software Library (FSL)6. Monte Carlo dictionary estimation was performed 

independently in each voxel as described in the synthetic experiments.

Our experiment focused on extracting the distribution of apparent axonal radius index r and 

density index f of axons passing through the anterior, mid-anterior, central, mid-posterior 

and posterior sub-regions of the corpus callosum (CC) as identified by the subcortical 

segmentation tool of the FreeSurfer software (Fischl et al., 2002). As these axons cross other 

macroscopic tracts such as the corticospinal tract (CST) or the longitudinal fasciculus (LF), 

each fascicle or peak at the local voxel level had to be assigned to one or more of these 

macroscopic tracts. In order to do so, probabilistic tractography was first performed with 5 

seeds per voxel and streamline segments constrained to follow the orientation of a detected 

peak in each voxel, using routines from DIPY. The streamlines were clustered into tracts 

using the white matter query language (Wassermann et al., 2016) and a local voxel fascicle 

was considered to belong to a macroscopic tract if at least 5% of all streamlines going 

through the local peak had been assigned to that tract.

3. Results

3.1. Validation on single fascicles

3.1.1. Experiment 1.A. Single-fascicle groundtruth, effect of fixed diffusivity
—The mean absolute error (MAE) in the estimation of the radius and density index for our 

approach and for MMWMD are depicted in Fig. 1. When the correct diffusivity D was 

assumed (green curves), the MAE over all repetitions and over all configurations with our 

approach converged to zero with increasing SNR. Underestimating (resp. overestimating) D 
led to a systematic underestimation (resp. overestimation) of r and f as indicated by the blue 

(resp. yellow) estimate bars at SNR level 25. On the other hand, systematic errors persisted 

for MMWMD estimates at large SNR values even when the correct value for D was assumed 

in the model.

3.1.2. Experiment 1.B. CSF partial volumes, effect of fixing T2 values—Figure 

2 suggests that our approach was able to provide accurate microstructural estimates in the 

presence of CSF. Errors on r and f exhibited a moderate upward trend as the fraction of CSF 

increased, likely due to a reduced relative signal (and hence a reduction in apparent SNR) 

arising from the fascicle of axons. The estimation errors for MMWMD were systematically 

larger than in Exp. 1.A. The MAE on νcsf hovered around 0.05 across SNR levels even in 

the T2✓ scenario and when there was no CSF in the groundtruth. As shown in Figure 3, the 

MMWMD estimates exhibited a larger variability than those of our Monte Carlo dictionary 

approach.

Notably, the estimates of r and f using the incorrect T2 values of the T2✘1 scenario (cross 

markers in Fig. 2) were identical to those obtained with the groundtruth T2 values (circle 

markers in Fig. 2) for both models. The error in T2 was simply corrected by scaling the 

fascicle and CSF signals by an adjusted weight w, which then led to a misestimated volume 

6https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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fraction νcsf. This was no longer the case in the T2✘2 scenario because the model and the 

groundtruth signals no longer differed by just a scaling constant.

3.1.3. In vivo experiment—Histological slices of the rats which underwent surgery 

revealed lighter SMI312 staining on the ipsilateral side, indicating axonal loss induced by 

Wallerian degeneration (Fig. 4(a)).

As depicted in Fig. 4(b–c), our Monte Carlo dictionary approach exhibited an important 

decrease in axonal density index f (−0.15, p = 1.6 × 10−5) and statistically non-significant 

changes in r and νcsf. In contrast, MMWMD detected no significant change in f and a large 

increase in r (+1.9 μm, p = 2.1 × 10−2) while yielding no statistically-significant changes in 

νcsf and νdot. NODDI found a non-significant increase in ficvf, an increase in dispersion 

(+0.09, p < 2.9 × 10−22) and no significant change in νiso. DIAMOND obtained a non-

significant change in cHEI, an increase in cRD (+0.12 μm2 ms−1, p = 1.4 × 10−4), a decrease 

in cAD (−0.40 μm2 ms−1, p = 4.2 × 10−4) and a slight increase in νiso (+0.07, p = 3.0 × 

10−2). WMTI saw a slight decrease in AWF (−0.04, p = 4.8 × 10−3), no statistically-

significant change in RDin, an increase in RDex (+0.19 μm2 ms−1, p = 2.2 10−3) and a 

decrease in ADex (−0.57 μm2 ms−1, p = 4.4 10−12). MAPL identified a decrease in RTAP 

(−5.4 × 10−3 μm−2, p = 1.6 × 10−2), an increase in RTPP (+1.5 × 10−2 μm−1, p = 1.2 × 10−8) 

and no statistically-significant changes in RTOP and MSD.

3.2. Validation on crossing fascicles

3.2.1. Experiment 2.A. Independent voxels, effect of orientation 
misestimation and crossing angle—As suggested by Fig. 5, the crossing angle had a 

marginal impact on the estimation as all the curves are very close to one another. Figure 6 

indicates that the MAE over all noise repetitions and groundtruth configurations converged 

to zero as the SNR increased when the orientation of each fascicle was perfectly estimated in 

Step 3 of our estimation procedure (blue curves). Misestimation of the orientation of 

fascicles introduced systematic errors in the microstructural estimation (red and yellow 

curves). The estimates were generally slightly better for the dominant groundtruth fascicle: 

at a crossing angle of 60° with ν1 = 0.3, the MAE on r1 exceeded the MAE on r2 in 25 out 

of 30 cases with a mean signed difference of 0.23 μm; the MAE on f1 exceeded the MAE on 

f2 in all 30 cases, with a mean difference of 0.060.

3.2.2. Experiment 2.B. Synthetic 2D phantom, effect of dissimilar fascicles—
Figure 7 suggests that the errors on the estimated microstructural properties converged to 

zero as the SNR increased. At SNR=25, the average absolute error made on the radius index 

r expressed as a percentage of the groundtruth value was 33.0% in single fascicles, close to 

its value of 37.4% in voxels of crossing fascicles (Fig. 7(b)). The difference was more 

pronounced for the density index f with an average 4.94% error in single-fascicle voxels and 

29.7% in crossing fascicles. As shown in Fig. 7(c), the fastest convergence with SNR in r 
occurred for Tract 3, which had the largest groundtruth radius index. Convergence for f was 

slightly faster in Tracts 1 and 2, which were less exposed to fascicle crossings and CSF 

contamination. The mean absolute angular error on the fascicles’ orientations by the ball-

and-sticks routine at SNR=25 was as low as 0.43° in single-fascicle voxels and 0.85° in 

Rensonnet et al. Page 17

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



crossing-fascicle voxels, suggesting that the impact of Step 3 on the final errors was 

minimal.

3.2.3. In vivo experiment—The top row in Fig. 8 suggests that the estimates of both the 

apparent axonal radius index r and density index f were spatially smooth. The distributions 

over all voxel-level fascicles (histograms in Fig. 8) were smoother for r than f. As reported 

in Table 2, both parameters exhibited a low-high-low trend, with lower mean values in axons 

passing through the anterior and posterior parts of the CC compared to axons of the mid-

anterior, central and mid-posterior CC. The standard deviations for the two parameters were 

very similar across the five considered sub-regions.

4. Discussion

Advantages of Monte Carlo modeling

The main strength of Monte Carlo simulations is their ability to provide exact signals for any 

fixed tissue geometry. This advantage was made apparent throughout the comparison with 

MMWMD, which captures the same level of tissue complexity as the particular single-

fascicle model selected in this study but differs in the way the signal is formulated. 

MMWMD for instance failed to consistently estimate r and f in Exp. 1.A, which can only be 

attributed to the formulation of the extra-axonal signal. In Exp. 1.B, a nonzero CSF weight 

for the full 4-compartment MMWMD persisted although no isotropic compartment was 

included in the groundtruth, suggesting that some of the extra-axonal signal may be captured 

by the isotropic compartment. MMWMD relies on a zeppelin-like diffusion tensor with 

perpendicular diffusivity proportional to the parallel diffusivity and the extra-axonal volume 

fraction through a tortuosity model. Monte Carlo simulations on the other hand naturally 

incorporate physical compatibility between the intraand extra-axonal compartment.

Our in vivo rat model of spinal cord injury demonstrated that the parameters provided by 

Monte Carlo simulations are generally more specific and interpretable than those of closed-

form continuous models (Figure 4). Wallerian degeneration is a process with dramatic 

consequences on the fascicles of the spinal cord which after several weeks is mainly 

characterized by severe axonal loss (Waller, 1850; George and Griffn, 1994). This was 

correctly captured by our Monte Carlo dictionary approach but not by MMWMD, which 

detected an increase in radius index. NODDI attributed all the signal differences to an 

increase in dispersion and not to a decrease in neurite density. This unexpected result is 

likely caused by the use of fixed parameters in NODDI which impairs our ability to interpret 

the remaining free parameters (Scherrer et al., 2016; Jelescu et al., 2016; Hutchinson et al., 

2017). The increase in fascicle-specific RD and decrease in fascicle-specific AD detected by 

DIAMOND were in agreement with a large body of studies correlating diffusion tensor 

imaging with Wallerian degeneration (Song et al., 2003; Kim et al., 2007; Sun et al., 2008; 

Zhang et al., 2009; Liu et al., 2013). However no parameter in DIAMOND directly relates to 

axonal density. The WMTI model predicted a decrease in axonal density similar (although 

of smaller magnitude) to our Monte Carlo dictionary method as well as changes in extra-

axonal RD and AD similar to DIAMOND. Taking the intra-axonal RD as a proxy for axonal 

radius then the non-significant change agrees with our own findings for r. The good 
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agreement between our approach and WMTI will be investigated in the future. In MAPL, a 

decrease in RTAP has been shown to represent an increase in mean apparent axonal radius 

(Fick et al., 2016), similar to what MMWMD detected. Alternatively, considering that 

Wallerian degeneration causes the number of diffusion barriers to decrease in the extra-

axonal space, RTAP could be interpreted as inversely proportional to the extra-axonal RD, 

which would be in agreement with DIAMOND and WMTI. Similarly, if diffusion is 

assumed unhindered along the axons, the increase in RTPP can be interpreted as a decrease 

in AD.

This highlights that signal models such as DIAMOND and MAPL do capture group 

differences; however these must be carefully interpreted a posteriori. Our approach 

outperforms geometric models such as MMWMD and NODDI by ascribing the signal 

difference to the correct variation in microstructural features.

Whole-brain estimation

The whole-brain HCP experiment was intended to showcase the ability of our method to 

extract microstructural properties in vivo in each voxel locally in areas of crossing fascicles, 

which is still an open issue in the field. The MIX optimization technique (Farooq et al., 

2016) provides a faster and more stable algorithm to fit multi-fascicle extensions of 

analytical compartment-based models but these models still intrinsically rely on approximate 

analytical formulas. The multi-fascicle extension of Amico (Daducci et al., 2015) to Amico-

X (Auría et al., 2015) uses a simple diffusion tensor for the extra-cellular signal and does not 

impose the geometrical compatibility between the intra- and extra-axonal signal that is 

naturally enforced in Monte Carlo simulations. DIAMOND was also formulated as a multi-

fascicle model from the onset but its fascicle-specific parameters are tensor-related 

quantities and are therefore surrogate measurements of tissue properties.

The low-high-low trend in apparent axonal radius r observed in the human CC (Aboitiz et 

al., 1992) was found to extend to all callosal axons in our experiment. Remarkably, this 

pattern was obtained by independent estimations of our model at each voxel and was 

therefore not a consequence of spatial regularization. In Girard et al. (2017), a similar trend 

for r was observed on most of the 34 HCP subjects, albeit on DW-MRI data upsampled for 

tractography analysis. In the same work, the streamline-specific estimates of apparent fiber 

density computed over all 34 subjects were found to be lowest in the anterior CC, 

intermediate in the mid-anterior and posterior CC and largest in the central and mid-

posterior CC. This roughly coincides with the estimates of f obtained in our particular 

subject. It should be noted that the values of radius index reported in the experiment (≈ 4 

μm) are considerably larger than actual measurements of axonal radius in the human brain 

(≈ 0.5 – 1 μm), as discussed in the next paragraph.

Limitations

In our framework, the tissue geometry selected for the Monte Carlo simulations at the 

single-fascicle level determines the complexity of the final model. To compare our approach 

with models of similar tissue complexity such as MMWMD, the simple hexagonal packing 

geometry was selected in this work. In particular, the use of the single scalar parameter r to 
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characterize the whole intra-axonal signal is known to considerably overestimate actual 

axonal radii (Alexander et al., 2010; Dyrby et al., 2013) and as such should only be 

considered as an index of apparent axonal radius.

In order to fully exploit the potential of Monte Carlo simulations, future tissue geometries 

will need to be more realistic and include randomly-located axons with a distribution of radii 

(Hall et al., 2017), a myelin sheath around axons (Harkins and Does, 2016), axonal 

undulation (Nilsson et al., 2012), cells with complex morphology such as glia and neurons 

(Palombo et al., 2016, 2017) or tissue geometries directly obtained from histological slices 

(Xu et al., 2014). Incorporating axonal orientation dispersion in synthetic substrates for 

Monte Carlo simulations requires the careful configuration and location of all axons in order 

to avoid unrealistic intersections. Axonal oscillations with large periodicity may help 

achieve apparent orientation dispersion (Nilsson et al., 2012).

It is worth recalling that the only simplifying hypothesis made in our framework is that no 

water exchange occurs between fascicles during the acquisition, which allowed us to write 

the fundamental equation (1) as a simple superposition (Rensonnet et al., 2018). This 

however does not prevent the incorporation of membrane permeability and water exchange 

within a fascicle.

In theory, the sparsity constraints used in Eq. (14) do not allow mixtures of fingerprints to 

reconstruct the signal arising from a single fascicle of axons. This could be a limitation for 

fascicles consisting of several well-delimited sub-regions exhibiting distinct microstructural 

properties (e.g., one half with a high and one half with a low axonal density). As discussed 

in Appendix B, with the DW-MRI protocols used in this study, the signals of non-uniform 

voxels were very similar to the fingerprints of uniform voxels with a density index f 
precisely corresponding to the average packing density of the non-uniform configuration. If 

non-uniform configurations were not distinguishable from uniform, “average” 

configurations, a possible workaround would be to add fingerprints arising from non-

uniform configurations to the single-fascicle dictionary (Steps 1 and 2 in Section 1.4).

The traditional PGSE sequence used in our experiments has been shown to have limited 

sensitivity to microstructural features such as the axonal radius (Dyrby et al., 2013). 

Improved sensitivity may be obtained using other diffusion-encoding sequences such as 

OGSE (Drobnjak et al., 2016; Mercredi and Martin, 2018), STEAM-DTI with varying 

diffusion times (Fieremans et al., 2016) or b-tensor encoding (Topgaard, 2017). One major 

advantage of the presented framework is precisely its ability to promptly integrate such 

extensions, which will be considered in future work.

Fixed parameters and external routines

A number of parameters such as the intrinsic diffusivity and the T2 values of the intra-

axonal, extra-axonal and CSF compartments were fixed a priori based on literature values 

rather than estimated from the data in order to simplify the estimation. Our synthetic 

experiments have shown however that the model is quite resilient to slightly misestimated 

parameter values, in particular for T2 relaxation which in some situations can be exactly 

compensated by the free weights w in Eq. (14). As seen in Exp. 1.B, care must be taken in 
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case multiple T2 values should be present within a single fascicle, as has recently been 

suggested (Veraart et al., 2017).

It was shown in Experiment 2.A (Figure 6) that errors in the orientation of fascicles 

(estimated with an external routine) could bias the microstructural estimates. To overcome 

this issue, orientation-estimation methods based on rotationally-invariant dictionary learning 

(Reisert et al., 2014; Christiaens et al., 2017) could use the estimated fingerprints as their 

fiber orientation response and retroactively refine the estimated orientations, eventually 

leading to more accurate microstructural estimates.

Efficiency

The pre-computing stage described as Step 2 of our estimation procedure in Section 1.4 may 

come with a high computational cost. The two canonical single-fascicle dictionaries used in 

this study required about 35 days worth of computation time on a standard laptop i5 core. In 

practice this was reduced to about 1–2 days using computing clusters at Université 

catholique de Louvain depending on cluster load and availability. Algorithmic improvements 

such as proposed by Hall et al. (2017), optimized implementation and mathematical 

properties such as presented in Section 1.3 should further help assuage the burden of 

massive Monte Carlo simulations in the future.

Runtime efficiency is not an issue in single-fascicle voxels, where Eq. (15) takes less than a 

second to solve for dictionary sizes N such as used in our experiments. For voxels containing 

K > 1 fascicles, exactly solving NK convex problems leads to longer computation times and 

is likely to become a more important issue with larger dictionaries (resulting from a finer 

resolution in microstructural parameters for instance). Different techniques can be used to 

reduce the size of the problem, such as a multi-scale optimization approach starting with a 

coarse-grained dictionary or initial dictionary pruning using sparsity-enforcing methods 

(Canales-Rodríguez et al., 2015, 2018).

Conclusion

A framework was proposed for the estimation of microstructural features incorporating 

Monte Carlo simulations known for their accurate modeling of the DW-MRI signal. The 

inverse estimation problem was formulated as a sparse optimization problem on a large pre-

computed dictionary and decomposed into many independent convex and easy-to-solve sub-

problems. Owing to their unique correspondence with a microstructural configuration, the 

selected diffusion fingerprints provided the microstructural parameters for each fascicle of 

axons in each voxel.

In single-fascicle voxels, our approach demonstrated more accurate, consistent and 

interpretable results than popular closed-form microstructural models of the literature in 

many simulation settings as well as in the analysis of an in vivo dataset of rat spinal cord. 

When extended to crossing fascicles, our framework achieved consistent estimates of 

apparent axonal radius and density indices in synthetic experiments and on whole-brain 

HCP data. Future work will focus on using a more realistic model at the single-fascicle level 

and generalizing the microstructural trends found in one HCP subject to larger cohorts.
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This work paves the way for microstructure fingerprinting in which Monte Carlo simulations 

are used as the building blocks of a model of the diffusion signal which directly relate to the 

underlying microstructure. Our framework offers new opportunities for whole-brain 

quantitative and interpretable microstructure imaging. Such a capability may prove critical 

for studies exploring the pathogenesis of neurological and psychiatric disorders as well as in 

the assessment of responses to treatments.
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Appendix A.: Choice of the reference diffusivity for data augmentation

This appendix discusses the relationship between the number N of reference Monte Carlo 

simulations required to simulate configurations with different diffusivities and the fixed 

diffusivity Dsim ∈ [Dmin, Dmax] used during those simulations, as described in Section 1.3.2. 

Specifically, we show that N is independent of Dsim and only depends on the desired 

resolution δL in the length scale parameter L, assuming a uniform sampling of L.

Let δL
sim be the step size separating consecutive values of L for which reference simulations 

using a diffusivity Dsim were performed. Given D ≠ Dsim, using Eq. (12) yields a sampling 

D
Dsim

Lsim,i
i = 1

N
 of parameter L. The corresponding step size therefore becomes 

δL D = D
Dsim

δL
sim, which admits the upper bound δL D ≤

Dmax
Dsim

δL
sim for all D ∈[Dmin, 

Dmax].

Let δL denote the largest acceptable step size in L for all values of D in [Dmin, Dmax] (or 

equivalently, the coarsest acceptable granularity of a dictionary). To ensure that 
δL D ≤ δL ∀D, it is necessary to guarantee that

Dmax
Dsim

δL
sim ≤ δL δL

sim ≤
Dmax
Dsim

δL . (A.1)
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Recalling that the sampling of L should cover the interval 
Dsim
Dmax

Lmin,
Dsim
Dmin

Lmax  during 

the reference simulations using Dsim, the lower bound on the total number of simulations N 
becomes

N − 1 =

Dsim
Dmin

Lmax −
Dsim
Dmax

Lmin

δL
sim

≥

Dsim
Dmin

Lmax −
Dsim
Dmax

Lmin

Dsim
Dmax

δL

=
Lmax/ Dmin − Lmin/ Dmax

δL/ Dmax
,

(A.2)

where inequality (A.1) was used. Equation (A.2) shows that the minimum number of 

simulations does not depend on Dsim and is entirely determined by the biophysical 

constraints of the problem.

Appendix B.: Effect of non-uniform voxels on the fitting

The sparsity constraints in Eq. (14) assume that a single fingerprint can explain the signal of 

a fascicle of axons. With the hexagonal-packing model selected at the single-fascicle level 

for our experiments, all the fingerprints of our dictionary arise from voxels containing 

uniform arrangements of axons. In practice however, a voxel may contain sub-regions 

exhibiting different microstructural properties. The experiment described below examined 

how the fitted parameters behaved when the groundtruth voxels consisted of axons with 

spatially heterogeneous packing.

Experiment.

In this experiment, groundtruth voxels were split into two parts with different axonal 

packing density f. The DW-MRI signal Smixed for such a non-uniform configuration was 

obtained as

Smixed δ f low, δ f high = νlowSunif r * , f * − δ f low + νhighSunif r * , f * + δ f high ,

where Sunif is the fingerprint of a uniform configuration and where νlow = δfhigh/ (δflow + 

δfhigh) and νhigh = δflow/ (δflow + δfhigh) ensure that the average packing density of the non-

uniform voxel is f*.

First, non-uniform groundtruth voxels with symmetric halves were considered by setting 

δflow = δfhigh ≔ δf (leading to νlow = νhigh = 0.5) and letting δf vary from 0.03 to 0.18 in 6 

equal increments. Second, asymmetric halves were studied by setting δfhigh = 0.06 and 

letting δflow vary from 0.03 to 0.18 in 6 equal increments. In both cases, the fitting 
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procedure of Section 1.4 was performed setting wcsf = 0 for 3 values of reference radius 

index r* = {0.8, 1.6, 3.0} μm and 5 values of average density index f* equally spaced 

between 0.36 and 0.72, provided that f* − δflow > 0.20 and f* + δfhigh < 0.90.

Results.

The results are displayed in Figure B.9. In all 168 cases with the rodent protocol, the fitted 

axonal density index f  precisely matched the average density index f* of the non-uniform 

voxels. This implied that f − f * ≤ 0.03 given the granularity in f of the single-fascicle 

dictionary used for the estimation (see Section 2.1.2). With the HCP protocol, the bound 

reached f − f * ≤ 0.06 in only 4 out of 168 cases, systematically for the largest density 

spread δf. Root-mean-square differences between the normalized groundtruth DW-MRI 

signals and their best fits were of the order of 1 × 10−4.

Even though our Monte Carlo fingerprints arise solely from voxels with a uniform packing 

density, our estimation procedure systematically explained the signal by selecting a packing 

density corresponding to precisely the average density of the non-uniform voxel.

Figure B.9: Fingerprints assuming uniform microstructural configurations capture the average 
axonal packing density of non-uniform configurations.
Fitted axonal density index f  for groundtruth voxels containing two sub-regions of different 

axonal packing density, in a symmetric or asymmetric configuration, using the rodent 

protocol (Section 2.1.1) or the HCP protocol (Section 2.2.1). The missing data points 
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correspond to scenarios in which one of the local density indices fell outside the range ]0.20, 

0.90[.
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Highlights

• Diffusion signals are modeled by Monte Carlo simulations rather than 

analytic formulas

• Measured signals are matched to a large dictionary of simulated signals 

(fingerprints)

• Microstructural features are more accurately estimated than with conventional 

models

• Our approach is sensitive and specific to microstructural alterations in axonal 

loss

• Microstructure fingerprinting separately characterizes crossing fascicles in a 

voxel
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Figure 1: (Exp. 1.A) Consistent microstructural estimates in single fascicles with Monte Carlo 
(MC) dictionary estimation.
The left column displays the mean absolute error on the radius index r (top) and density 

index f (bottom) as a function of signal-to-noise ratios (SNR). The right column provides a 

snapshot of estimates at SNR=25, with markers indicating the median over all noise 

repetitions and groundtruth configurations and bars ranging from the 25th to the 75th 

percentile of all estimates. Asymptotic errors remained for the minimal model of white 

matter diffusivity (MMWMD) even though it used the true diffusivity D.
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Figure 2: (Exp. 1.B) Consistent microstructural estimates from Monte Carlo dictionary in the 
presence of CSF contamination.
Mean absolute errors on the radius index r (top), density index f (middle) and cerebrospinal 

fluid (CSF) volume fraction νcsf (bottom) as a function of signal-to-noise ratio for various 

levels of CSF contamination. The MMWMD approach yielded generally larger errors. 

Assuming incorrect T2 values in the model did not affect the estimation of r and f in the the 

first two scenarios described in Table 1.
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Figure 3: (Exp. 1.B) Consistent microstructural estimates from Monte Carlo dictionary in the 
presence of CSF contamination.
Snapshot of the estimates of r, f and νcsf at SNR=25 (see Fig. 2), with markers indicating the 

median over all noise repetitions and groundtruth configurations and bars ranging from the 

25th to the 75th percentile of all estimates. The estimates of the T2✘2 scenario were left out 

for clarity. MMWMD had larger variability and more biased estimates.
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Figure 4: Monte Carlo dictionary approach yields physically-interpretable parameters consistent 
with histology
(a) Histology of a slice in the spinal cord of a rat which underwent surgery, stained with 

SMI312 immunohistochemistry. Darker colors indicate more neurofilaments present inside 

axons. (b) Representative map of axonal density index f obtained with our Monte Carlo 

dictionary approach, laid atop a fractional anisotropy (FA) map. (c) Effect of Wallerian 

degeneration (WD) on selected parameters from our approach and from popular closed-form 

models of the microstructure. Vertical bars indicate the 95% confidence interval on βWD. 

Non-significant (ns) corresponds to p > 0.05; * to p ≤ 0.05; ** to p ≤ 0.01; *** to p ≤ 0.001; 

**** to p ≤ 0.0001.
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Figure 5: (Exp. 2.A) The groundtruth crossing angle has limited impact on the estimation of 
fascicles’ microstructural properties.
Mean absolute error on each fasicle’s radius index r1 and r2, density index f1 and f2 and on 

the physical volume fraction occupied by the first fascicle ν1. The groundtruth volume 

fraction of the second fascicle decreases from left to right. The fascicles’ orientations were 

perfectly estimated.
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Figure 6: (Exp. 2.A) Errors in the initial estimation of fascicles’ orientations yield 
asymptotically-biased estimates.
Mean absolute error on each fasicle’s radius index r1 and r2, density index f1 and f2 and on 

the physical volume fraction occupied by the first fascicle ν1. The groundtruth volume 

fraction of the second fascicle decreases from left to right and the groundtruth crossing angle 

was fixed to 60°.
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Figure 7: (Exp. 2.B) Tract-specific microstructural estimated enabled by Monte Carlo dictionary 
estimation.
(a) Color-coded direction of all three axonal tracts with the gray-scale background indicating 

the level of CSF contamination in each voxel. (b) Signed error made on the estimated radius 

index r and density index f in regions of single (left) and crossing (right) fascicles. (c) 

Signed errors for the local voxel fascicles of each tract independently. In (b)-(c), the 

whiskers of the boxplots extend from the minimum to the maximum value of the data.
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Figure 8: Spatially-smooth estimates of apparent radius and density indices obtained with Monte 
Carlo dictionary estimation.
(a) Left and inferior view of all the axons passing through the corpus callosum (CC), color-

coded by the apparent axonal radius index r. (b) Histograms of estimated apparent radius 

index in the five axonal tracts studied in the experiment, respectively the anterior, mid-

anterior, central, mid-posterior and posterior CC tracts. The mid-sagittal maps of color-

coded axons are laid atop a referential T1 image warped into the DW-MRI space. (c)-(d) 

Same as (a) and (b) for the axonal density index f.
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Table 1:

T2 values of the intra-axonal, extra-axonal and CSF compartments assumed in the groundtruth (GT) and the 

model in three different scenarios for Exp. 1.B.

T2✔ T2✘1 T2✘2

GT Model GT Model GT Model

T2in 30 30 30 70 30 70

T2ex 30 30 30 70 45 70

T2csf 120 120 120 70 120 70
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Table 2:
Low-high-low trend in apparent radius and density index in CC streamlines.

Mean and standard deviation over all local fascicles or peaks assigned to streamlines passing through five sub-

regions of the corpus callosum (CC).

apparent radius index density index

anterior CC 4.06 ± 0.87 0.599 ± 0.12

mid-anterior CC 4.27 ± 0.73 0.636 ± 0.12

central CC 4.19 ± 0.90 0.627 ± 0.12

mid-posterior CC 4.22 ± 0.93 0.645 ± 0.13

posterior CC 3.87 ± 0.99 0.581 ± 0.14

Neuroimage. Author manuscript; available in PMC 2020 January 01.


	Abstract
	Introduction
	Theory
	Signal model
	Monte Carlo simulations
	Data augmentation
	Augmenting sequences
	Augmenting configurations

	Inverse problem

	Materials and Methods
	Validation on single fascicles
	Diffusion protocol
	Implementation details of the dictionary estimation
	Synthetic experiments
	Single-fascicle groundtruth, effect of fixed diffusivity.
	CSF partial volumes, effect of fixing T2 values.

	In vivo experiment
	Animal model of Wallerian degeneration.
	In vivo DW-MRI.
	Model fitting and statistical analysis.


	Validation on crossing fascicles
	Diffusion protocol
	Implementation details of the dictionary estimation
	Synthetic experiments
	Independent voxels, effect of orientation misestimation and crossing angle.
	Synthetic 2D phantom, effect of dissimilar fascicles.

	In vivo experiment
	In vivo DW-MRI.
	Model fitting and statistical analysis.



	Results
	Validation on single fascicles
	Experiment 1.A. Single-fascicle groundtruth, effect of fixed diffusivity
	Experiment 1.B. CSF partial volumes, effect of fixing T2 values
	In vivo experiment

	Validation on crossing fascicles
	Experiment 2.A. Independent voxels, effect of orientation misestimation and crossing angle
	Experiment 2.B. Synthetic 2D phantom, effect of dissimilar fascicles
	In vivo experiment


	Discussion
	Advantages of Monte Carlo modeling
	Whole-brain estimation
	Limitations
	Fixed parameters and external routines
	Efficiency

	Conclusion
	Choice of the reference diffusivity for data augmentation
	Effect of non-uniform voxels on the fitting
	Figure B.9:
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Table 1:
	Table 2:

