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Abstract

Esophageal squamous cell carcinoma (ESCC) is a deadly disease that requires extensive research. 

Here, we review the current understanding of the functions of the NRF2 signaling pathway in the 

esophagus. Genomic data suggest that gene mutations and several other mechanisms result in 

NRF2 hyperactivation in human ESCC. As a consequence, NRF2high ESCC is more resistant to 

chemoradiotherapy and has poorer survival than NRF2low ESCC. Mechanistically, we believe 

NRF2, functioning as a transcription factor, causes an esophageal phenotype through regulation of 

gene transcriptional. We discuss metabolism, mitochondria, proteasomes, and several other 

signaling pathways as downstream players that may contribute to esophageal phenotype due to 

NRF2 hyperactivation. Finally, strategies are proposed to target the NRF2 signaling pathway for 

future therapy of NRF2high ESCC.
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Genomic data suggest that gene mutations and several other mechanisms result in NRF2 

hyperactivation in human esophageal squamous cell carcinoma (ESCC). As a consequence, 

NRF2high ESCC is more resistant to chemoradiotherapy and has poorer survival than NRF2low 

ESCC. We discuss metabolism, mitochondria, proteasomes, and other signaling pathways as 

downstream players that may contribute to phenotypes due to NRF2 hyperactivation
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As a major cellular defense mechanism, the nuclear factor erythroid-derived 2–like 2 (NRF2 

or NFE2l2) signaling pathway is known to regulate the expression of enzymes involved in 

detoxification and the antioxidative stress response. NRF2 forms heterodimers with small 

Maf proteins and binds to the antioxidant response elements of target genes when cells are 

exposed to oxidative stress or xenobiotics. Kelch-like ECH-associated protein 1 (KEAP1) 

inhibits the function of NRF2 by retaining NRF2 in the cytoplasm under normal 

physiological conditions and allowing nuclear translocation of NRF2 under stress 

conditions.1 Although the cancer-preventive function of the NRF2 signaling pathway has 

been well documented, recent studies have revealed that NRF2 activity is a double-edged 

sword, as it can be carcinogenic when hyperactive. NRF2 was found to prevent initiation but 

accelerate the progression of lung carcinogenesis in vivo.2,3 Many studies have repeatedly 

shown that NRF2 helps cancer cells survive chemoradiation-induced oxidative stress and 

accelerates drug metabolism4–7 thus contributing to chemoradioresistance.8 NRF2 

overexpression is associated with poor prognosis in cancer.9 Genetic targeting of the NRF2 

signaling pathway impaired tumorigenesis in the lung, pancreas, and colon.10–12

NRF2 in the esophagus

The role of the NRF2 signaling pathway in the esophagus was first revealed in a mouse 

study by Yamamoto’s group in 2003. Genetic activation of NRF2 in Keap1−/− mice resulted 

in esophageal hyperproliferation and hyperkeratosis. These mice died from poor nutrition 

due to esophageal blockage, and Nrf2−/−–Keap1−/− mice completely rescued the esophageal 

phenotype.13 The esophageal phenotype of Keap1−/− mice was further attributable to 

constitutive activation of NRF2 with the assistance of small Maf proteins.14,15 Tissue-

specific deletion of esophageal NRF2 in Keap1−/− mice (K5Cre Nrf2fl/fl Keap1−/−) allowed 

survival until adulthood. However, these mice developed polyuria with low osmolality and 

bilateral hydronephrosis due to defects in water reabsorption as a result of reduced 

expression of aquaporin 2 in the kidney.16 Consistent with these findings using genetic 

models, chemical activation of NRF2 by tert-butylated hydroxyanisole or its metabolite tert-

butylhydroquinone caused hyperkeratosis and squamous cell carcinoma in rodent 

forestomach.17–19 It should be noted that hyperkeratosis is a precursor lesion of carcinogen-

induced esophageal squamous cell carcinoma (ESCC) in rodents.20–22 In humans, 

esophageal hyperkeratosis has also been reported as a result of gastroesophageal reflux, 

vitamin A deficiency, or tylosis A.22 On the other hand, Nrf2−/− mice were more susceptible 

to 4-nitroquinoline-1-oxide–induced tongue and esophageal carcinogenesis than wild-type 

mice, whereas KEAP1 knockdown mice were resistant.23

When we compared differential gene expression between the normal esophagus and 

Barrett’s esophagus,24 NRF2 was found to be one of the transcriptional factors enriched in 

normal esophageal squamous epithelium. We then studied how the NRF2 signaling pathway 

regulates morphogenesis of the esophageal epithelium in mice by comparing gene 
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expression profiles in wild-type, Nrf2−/−, Keap1−/− and Nrf2−/− Keap1−/− esophagi using 

gene microarrays. We found that the NRF2 signaling pathway had a baseline activity at the 

early stage and was further activated later during the development of mouse esophageal 

squamous epithelium. Keap1−/− esophagus had an increased expression of keratinization 

genes, PI3K/Akt pathway genes, and PPARβ/δ.22 Since the keratinized layer is the major 

protective layer against physical stress and chemical injuries,25 and terminally differentiated 

keratinocytes express proteins that can provide protection by quenching reactive oxygen 

species,26 we hypothesized that NRF2 may be involved in esophageal epithelial barrier 

function and may therefore play a protective role during gastroesophageal reflux. Indeed, 

NRF2 deficiency reduced transepithelial electrical resistance and increased intercellular 

space in the esophageal epithelium through downregulation of claudin 4 (CLDN4). 

Chromatin immunoprecipitation (ChIP) analysis clearly showed binding of NRF2 to the 

predicted sites in the promoter region of mouse Cldn4. Meanwhile, NRF2 target genes and 

gene sets associated with oxidoreductase activity, mitochondrial biogenesis, and energy 

production were downregulated in Nrf2−/− esophagus. Consistent with these observations, 

ATP biogenesis and CoxIV (a mitochondrial marker) were also downregulated.27 These data 

suggested that energy-dependent tight junction integrity was subject to NRF2 regulation. 

Activating NRF2 may potentially strengthen esophageal epithelial barrier function as a 

therapeutic approach for gastroesophageal reflux disease.28–30

Que’s group further demonstrated that basal progenitor cell–specific expression of 

constitutively active bone morphogenetic protein (BMP) promoted squamous differentiation 

in mouse esophagus. The action of BMP was mediated through increased intracellular 

oxidative stress and an NRF2-mediated antioxidative response. This mechanism is further 

involved in the development of eosinophilic esophagitis, in which reduced squamous 

differentiation is associated with high levels of follistatin (a BMP inhibitor) and disrupted 

BMP/NRF2 pathways.31

Gene mutations and NRF2 hyperactivation in human ESCC

With the recent technological advances in next-generation sequencing, human ESCC 

samples from North and South America, China, Japan, Vietnam, and Malawi have been 

sequenced.32–46 ESCC shares similar genomic profiles with head and neck SCC and lung 

SCC, but not esophageal adenocarcinoma, suggesting common etiological factors.47–49 In 

fact, NRF2 and KEAP1 have been classified among 291 high-confidence cancer-driver 

genes acting on 3205 tumors from 12 different cancer types.50

Among many gene mutations, NRF2 mutations were commonly seen, with a frequency over 

5%, even up to ~ 20% in certain reports. Mutations in other genes of the NRF2 signaling 

pathway (KEAP1 and CUL3) were relatively less common. NRF2 mutations were mostly 

located in the DLG and ETGE motifs (KEAP1-binding domain) and the DNA-binding 

domain, while KEAP1 mutations tended to be scattered across the whole gene (Fig. 1). 

NRF2 mutations and KEAP1 mutations were mutually exclusive in human lung cancer cell 

lines.51 In human ESCC tissue samples, such mutual exclusivity was also suggested.33,52
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On the basis of the genomics data, ESCC can be clustered into three subtypes, with subtype 

1 (56%, 50/90) characterized by genomic alterations in the NRF2 signaling pathway. This 

subtype had a higher frequency of SOX2 and/or p63 amplification and potential involvement 

of the Hippo pathway, similar to head and neck SCC and lung SCC.44 Asian patients tended 

to be clustered in subtype 1, whereas Eastern European and South American patients 

clustered in subtype 2, and North American patients in subtype 3.44 ESCC in African 

American patients also tended to involve the NRF2 signaling pathway.53 Similar to ESCC, a 

molecular subtype with NRF2 activation has also been reported in head and neck SCC based 

on microarray data.54,55

NRF2 mutations have not been reported in esophageal squamous hyperplasia and non-

tumorous dysplasia. However, they were present in low-grade dysplasia and high-grade 

dysplasia associated with ESCC.36–38 Phylogenetic analysis showed that NRF2 mutation as 

a driver mutation tended to be located on the branches of the tumor phylogenetic tree, while 

mutations of tumor suppressor genes (e.g., p53) tended to be located on the trunk, 

suggesting that NRF2 mutation may be a relatively late event during the development of 

ESCC.37,46

Many point mutations in NRF2 have been shown to activate NRF2 as a result of altered 

interaction between NRF2 and KEAP156–58 and increased nuclear localization of NRF2.59 

Certain KEAP1 mutations, when heterozygous, had a dominant-negative effect on the wild-

type KEAP1 and thus gave rise to NRF2 activation.60 Genomic mutations of the NRF2 

signaling pathway correlated with the transcriptional activity of the NRF2 signaling pathway 

in ESCC.45 We also found that human ESCC can be clustered into NRF2high and NRF2low 

cases according to gene microarray data of several esophagus-specific NRF2 target genes.

Other than mutations, at least five additional mechanisms are known to activate NRF2 in 

cancer: hypomethylation of KEAP1, accumulation of disruptor proteins, increased 

production of NRF2, electrophoretic attack of KEAP1 by oncometabolites, and 

downregulation of NRF2-targeting microRNAs (miRNAs).61,62 This explains why there is a 

much higher percentage of ESCC with NRF2 hyperactivation than with point mutations.

Consequences of NRF2 hyperactivation in ESCC

Significant correlations were found between positive NRF2 expression and unfavorable 

response to chemoradiotherapy in ESCC patients. NRF2 overexpression was significantly 

correlated with lymph node metastasis, postoperative recurrence, and overall survival.36,63,64 

Multivariate analysis showed that NRF2 expression status was an independent prognostic 

factor.64 Even the molecular signatures due to NRF2 mutations were significantly predictive 

and prognostic for clinical response. Mutant NRF2 conferred increased cell proliferation, 

attachment-independent survival, and resistance to 5-fluorouracil and γ-irradiation.36 

Blockage of NRF2 suppresses the migration and invasion of ESCC cells in a hypoxic 

microenvironment.63 These data support the notion that NRF2 hyperactivation plays an 

important role in ESCC and can be targeted to improve the therapeutic efficacy of 

conventional therapy.
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How does NRF2 hyperactivation contribute to ESCC?

NRF2, working as a transcription factor, regulates gene transcription.65 Previous ChIP-Seq 

experiments have shown that NRF2 potentially up- or downregulates transcription of 

hundreds of genes.66–69 We hypothesized that NRF2 hyperactivation caused esophageal 

hyperproliferation and hyperkeratosis through gene transcriptional regulation in esophageal 

squamous epithelial cells. Due to the nature of cell and tissue specificity in transcription 

factor binding,70–72 the ChIP-Seq experiment will need to be repeated with esophageal 

samples. Several pathways are known to be regulated by NRF2.

Metabolism

In addition to their involvement with the metabolic phenotype of NRF2 hyperactivation in 

the esophagus, mitochondria also regulate oxidative stress, cell signaling, and cell death 

during carcinogenesis.73,74 Our previous study showed that the number of mitochondria was 

decreased in NRF2−/− esophagus compared with wild-type esophagus. Mitochondrion-

related gene sets were downregulated in NRF2−/− esophagus. Reduction of mitochondria 

was confirmed by downregulation of a mitochondrial marker protein (Cox IV). These data 

were consistent with other studies showing that NRF2 regulates mitochondrial biogenesis 

and cellular bioenergetics.75–77 It is also known that KEAP1 and NRF2 are tethered to 

mitochondria through PGAM5 and p62.78,79 NRF2 regulates productions of reactive oxygen 

species and thus protects against mitochondrial decay.80,81 Therefore, mitochondria may be 

potentially critical for the phenotypes attributable to NRF2 hyperactivation.82,83

Proteasome

Proteasomal subunits are known to be regulated by the NRF2 signaling pathway.84 

Proteasome inhibitors may be effective for NRF2high ESCC.85 It has been reported that 

NRF2 contributes to colon carcinogenesis through its regulation of proteasomes.86 Inhibition 

of NRF2 by the alkaloid trigonelline rendered pancreatic cancer cells more susceptible to 

apoptosis through decreased proteasomal gene expression and proteasome activity.87

Notch signaling

Recent literature suggests a cross talk between the NRF2 and Notch signaling pathways.88,89 

We also showed that expression of both NICD1 and HES1 in oral squamous epithelial cells 

were regulated by NRF2,90 consistent with previous findings in hematopoietic stem cells,91 

airway basal stem cells,92 and mouse embryonic fibroblasts.93 Although the Notch signaling 

pathway is believed to be anti-carcinogenic through its regulation of squamous epithelial cell 

differentiation,94,95 several recent studies indicated that upregulation of the Notch signaling 

pathway may contribute to the malignant phenotype in these cells as well.96–98 It remains to 

be determined whether NRF2-activated Notch signaling pathway plays a dual role in ESCC.

PI3K/Akt signaling

The epidermal growth factor (EGF) signaling pathway has long been associated with human 

ESCC. With eight ligands and four receptors, this pathway has several downstream signaling 

paths, one of which is the PI3K/Akt pathway.99–101 Recent next-generation sequencing 

studies have confirmed PIK3CA mutations as drivers in ESCC.32–34 Phospho-Akt levels 
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were increased in the KEAP1−/− esophagus.22 In the literature, transgenic overexpression of 

EGF ligand or receptor (AREG, ERBB2) and a constitutively active Akt or transgenic 

knockout of PTEN (an inhibitor of the PI3K/Akt pathway) caused esophageal hyperkeratosis 

in mice.102–105 It appears that NRF2 and PI3K/Akt regulate each other in a reciprocal 

manner. Loss of PTEN increased NRF2 activity.106 Since PI3K/Akt mutations and activation 

are commonly seen in human ESCC,33,52 it would be interesting to further understand how 

these two signaling pathways interact with each other. More importantly, targeting both 

signaling pathways may have synergistic effects on ESCC.

The NRF2 signaling pathway as a therapeutic target in ESCC

We believe that the esophagus is a unique organ site for studies on NRF2 hyperactivation 

owing to the strong esophageal phenotype in the KEAP1−/− esophagus.13 Targeting the 

NRF2 signaling pathway in the esophagus will not only help us develop a better therapy for 

NRF2high ESCC but also potentially contribute to therapy of NRF2high cancers of other 

organ sites (e.g., head and neck, lung). However, tissue of origin and environment are critical 

factors implicated in carcinogenesis driven by genetic alterations. It will be essential to focus 

on the esophagus to develop therapeutic strategies for NRF2high ESCC. Additionally, in vivo 
studies will likely be more reliable than in vitro cell culture studies, as seen in recent cancer 

metabolism studies.107,108

Several strategies have been proposed to target the NRF2 signaling pathway for cancer 

therapy: transcriptional downregulation of NRF2; increased degradation of NRF2 mRNA or 

decreased translation; enhancement of NRF2 degradation through upregulation/activation of 

KEAP1–CUL3, β-TrCP-SCF, or HRD1; blocking the dimerization of NRF2 with small Maf 

proteins; and blocking the NRF2–sMaf DNA-binding domain.109 In addition, NRF2 

downstream pathways may also be targeted if they can be shown to be functionally critical 

for NRF2high ESCC.110 For example, a recent study used chemical proteomics to map 

druggable proteins that are selectively expressed in NRF2high lung cancer. NR0B1 was 

identified as a downstream druggable target, and small molecules were found to disrupt 

NR0B1 protein complexes and thus inhibit NRF2-dependent lung cancer.111 Several small 

molecule NRF2 inhibitors––halofuginone,112 brusatol,113 AEM1,114 and ML385115––have 

been identified by high-throughput screening. We are also in the process of screening NRF2 

inhibitors from chemical libraries for NRF2high ESCC. Yet, targeting a transcription factor 

can be a challenge. Most known NRF2 inhibitors may actually target mechanisms other than 

NRF2 itself. In addition to small molecule inhibitors, miRNA can be an alternative 

approach. A reporter-coupled miRNA library screen identified four miRNAs (miR-507, 

-634, -450a, and -129-5p) that negatively regulate the NRF2 signaling pathway. 

Administration of miR-507 alone or in combination with cisplatin inhibited tumor growth in 
vivo.62

It should be noted that the location of NRF2 mutations on the branches of tumor 

phylogenetic trees suggests that targeting NRF2 may not be as effective as targeting the 

trunks (e.g., p53). Targeting branches may even lead to growth acceleration of non-mutated 

subpopulations.46 In fact, Clemons proposed targeting the glutathione biosynthesis pathway 
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(or NRF2 signaling pathway) in p53-mutanted cancers, considering that more than 80% of 

ESCCs harbor mutations in the p53 gene.116

Conclusions

NRF2 hyperactivation is one of the commonly seen molecular alterations in human ESCC. 

Multiple studies have clearly shown a poor prognosis in cases with hyperactive NRF2. 

Therefore, it is critical to understand the molecular mechanisms of ESCC associated with 

hyperactive NRF2 and develop targeted therapy directed at NRF2 signaling. We believe 

NRF2 as a transcription factor causes an esophageal phenotype through gene transcriptional 

regulation. Several strategies have been proposed to target the NRF2 signaling pathway for 

future therapy of NRF2high ESCC.
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Figure 1. 
Point mutations in NRF2 and KEAP1 in human ESCC based on original data from four 

recent next-generation sequencing studies from China.32–34,40
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