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1. Introduction
Human-induced global change is increasingly affecting life on our planet,

including living conditions for humans themselves as well as the resources

we depend on [1,2]. As a result, species diversity is strongly declining [3–5].

The Living Planet Index shows a 58% global decline in populations of amphi-

bians, fish, reptiles, mammals and birds between 1970 and 2012, varying from

36 to 38% in terrestrial and marine ecosystems to 81% in freshwater habitat [6].

Habitat loss or degradation and overexploitation are the main causes of these

steep declines. Since the worldwide expansion of modern humans (Homo
sapiens) began, humans have overexploited vertebrates, with a bias to the largest

animals being extirpated first, from the Late Pleistocene extinctions of terrestrial

megafauna to the ongoing declines of terrestrial, marine and freshwater large-

bodied animals [7–11]. There is increasing evidence that this global wildlife

loss, or defaunation, does not only imply the loss of charismatic animals but

also the functions they have in ecosystems [12–16]. To restore these missing

functions, a novel ecological restoration technique has emerged, referred to as

rewilding [17]. Rewilding aims to restore natural processes in ecosystems in

general, and often focuses on re-introduction of missing large wildlife species

or, in case these went extinct, their proxies [18]. Rewilding is increasingly

implemented in practice globally, with a strong emphasis on Europe and the

re-introduction of large herbivores [19,20].
2. Impacts of rewilding
Rewilding has recently been described as ‘a captivating, controversial, twenty-

first century concept to address ecological degradation’ [20]. Most rewilding

initiatives fit the concept of trophic rewilding, defined as an ecological restoration

strategy that uses species introductions to restore top-down trophic interactions

and associated trophic cascades to promote self-regulating biodiverse ecosystems

[18]. If it works, this would both turn around defaunation, by re-introducing miss-

ing wildlife, and halt biodiversity declines. Furthermore, rewilding may have

positive effects on multiple ecosystem services [21,22]. As such, rewilding is a nar-

rative of hope, which is the captivating part (e.g. [23–25]). The controversial part

is that opponents fear that rewilding is the new Pandora’s box in conservation and

may harm biodiversity, with particular concern about exotic species proliferation

as a consequence of rewilding ([26,27]; but see [28] for a response). However, at

present, data on the effects of explicit rewilding efforts are scarce and the scientific

literature on rewilding is strongly dominated by essays, perspectives and opinion

papers [18,20]. At the same time rewilding is increasingly implemented in practice

by initiatives such as Rewilding Europe (http://www.rewildingeurope.com).

Rewilding is also increasingly discussed and implemented in other parts of the

world, e.g. Australia [29], oceanic islands in the Pacific [30] and South America

[31]. Therefore, there is an urgent need for science to move on from ideological

debates to actual data on the impacts of rewilding.
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3. Obtaining data on rewilding impacts
Whereas data on explicit rewilding projects may be scarce,

our understanding of rewilding impacts can be expanded

by studying non-intentional rewilding events. Indeed,

Tanentzap and Smith [32] demonstrate that the top-down

regulation of lower trophic levels is equally strong in trophic

rewilding through intentional and non-intentional species

introductions. Furthermore, much relevant information

exists from studies not explicitly about rewilding. There is,

for instance, lots of experience with ecological effects of

megafauna reintroductions in South Africa, such as white

rhinoceros in Kruger National Park [33], even if these have

not been called rewilding projects. Similarly, there is ample

experience with impacts of free-ranging horses and bovids

in Europe, which could be seen as replacement of the extinct

native wild grazer populations, i.e. the aurochs (extinct in

1627) and the tarpan (extinct 1887).

In this issue, we bring together the state-of-the-art of

trophic rewilding research, using the multitude of opportu-

nities to obtain data on trophic rewilding impacts as

described above. Furthermore, we address the policy and

societal sides of trophic rewilding, such as which herbivores

can be introduced where and how to measure rewilding suc-

cess? Importantly, we here synthesize the main outcomes of

the impact of trophic rewilding on ecosystems in the light

of global change and provide an outlook of the opportunities

of trophic rewilding as a new restoration technique as well as

research avenues.
4. Effects on biodiversity and invasive species
Trophic rewilding potentially has positive effects on biodiver-

sity, and could thus mitigate the biodiversity crisis, but data

to test this are very limited. Van Klink and WallisDeVries [34]

review the evidence of the impacts of rewilding with large

herbivores on arthropods, the most species-rich group of

eukaryotic organisms, but rarely considered in rewilding.

They found that systematic monitoring is rare and that a

comparison with a relevant control treatment is usually lack-

ing. Still, they can conclude that at moderate densities large

herbivores increase grassland arthropod diversity, whereas

they decrease diversity at high densities [34]. These results

are largely in line with large herbivore impact on arthropod

diversity in non-rewilding areas [35]. In wetlands, Eurasian

beavers (Castor fiber) strongly affect wetland plants and

wetland ecosystem functioning [13]. Beavers are increasingly

being introduced in the context of rewilding projects [36], but

empirical evidence of their effects is often lacking. Willby

et al. [37] show that by creating within-habitat heterogeneity

beavers increase plants diversity, whereas they increase the

abundance, but not the diversity of aquatic beetles. By creat-

ing heterogeneity within ponds, beavers likely contribute to

increased biodiversity across scales [38].

A concern of trophic rewilding is the impact on invasive

species. Derham et al. [39] show three cases in which rewilding

native carnivores helps suppressing invasive smaller carnivores

and releasing native prey species; in contrast rewilding a meso-

herbivore (Tule elk Cervus canadensis nannodes) sometimes

slows down grassland plant invasions, sometimes not. Trophic

rewilding can work to prevent biological invasions, mitigate

their impacts and promote the coexistence of newcomer species
with long-time residents. However, the conditions for success

will vary from case to case and will be hard to predict. In

this respect trophic rewilding shows parallels with invasion

biology itself [39].
5. Can trophic rewilding serve as a climate
change mitigation strategy?

Large herbivores can interact with climate change in a

number of direct and indirect ways [40,41]. In the Arctic, car-

ibou or reindeer (Rangifer tarandus) and muskoxen (Ovibos
moschatus) are the only large herbivores. With rising tempera-

ture, thermophilic plant species are invading the tundra and

these are preferred by the herbivores. Therefore, reindeer and

muskoxen are able to maintain the present vegetation compo-

sition even in a warmer climate [42]. Furthermore, they

prevent woody plant encroachment with increasing tempera-

tures, which in turn leads to a higher albedo [43], with a

cooling effect. Large herbivores may increase soil carbon

sequestration, when they consolidate the persistence of the

permafrost [44]; however, this is at present uncertain [41].

Andriuzzi & Wall [45] also indicate uncertainty and major

knowledge gaps about the impact of large herbivores on

soil responses and feedbacks. Despite this uncertainty,

rewilding the Arctic with a larger density and diversity of

large herbivores may mitigate the impact of temperature

rise in this region [40,41]. In tropical rainforest, defaunation

leads to lower dispersal of tree species with megafaunal

fruits, which have a higher wood density and, therefore, con-

tribute strongly to carbon storage in tropical forests [16,46].

Rewilding with large herbivores could thus increase the

carbon storage potential of the forest [40]. In rangelands,

greenhouse gas emissions could be strongly reduced when

ruminant livestock are replaced by non-ruminant wildlife

[40,47]. Cromsigt et al. [40] argue that trophic rewilding as

a climate change mitigation strategy should focus on restor-

ing populations of large (greater than 100 kg) non-ruminant

herbivores. Furthermore, trophic rewilding should be inte-

grated into intergovernmental climate change mitigation

funding schemes to allow wide enough implementation of

rewilding to make a difference.

Trophic rewilding can mitigate the incidence of wildfires

which may be increasing in areas which are more prone to

droughts as a result of climate change [48]. Especially large

grazers are suitable for this purpose, as they consume large

amounts of potential fuel, whereas browsers increase the fuel

load by consuming woody plants, not herbaceous plants.

The frequency and intensity of fires, in turn, has a myriad of

effects on climate, but the net effect remains uncertain [40].
6. Which animals to introduce where in
trophic rewilding

To introduce species into systems to restore extinct top-down

interactions requires knowledge of their former distribution

as well as their diet. As historic and pre-historic human-

driven extinctions have reshaped global patterns of mammal

diversity [49], it is unsure where these animals may be able

to live under current climate conditions, and thus which sites

are suitable for trophic rewilding. Furthermore, these anthro-

pogenic range contractions bias species climate change
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Figure 1. Examples of how to collect data in trophic rewilding research. (a,b) Using exclosures to study the impact of the presence of large herbivores in rewilding
projects. (a) Exclosure in the Lauwersmeer, The Netherlands, where Konik horses and bovids are used as proxies for extinct native horses and bovids and maintain
short lawn grasses, whereas upon exclusion of the large herbivores inside the exclosure a tall wetland reed (Phragmites australis) vegetation emerges. (b) Exclosure
on the island of Tiengemeten, The Netherlands, where Scottish highland cattle prevent the encroachment of woody plants; inside the exclosure willow species have
established. (c,d ) Using collars to track animal movement and quantify areas used with high and low intensity. (c) Eurasian elk (Alces alces) in a rewilding project in
the largest raised bog area in Denmark, Lille Vildmose (Little Wild Bog). (d ) Tapir (Tapirus terrestris) with young from the Iberá Rewilding Program, Argentina [64].
Photo credits: (a,b) E.S.B and (c,d ) J.-C.S. (Online version in colour.)
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forecasts [50]. Using species distribution modelling Jarvie &

Svenning [51] demonstrate that for 17 large-bodied mamma-

lian taxa near-future climate change should not generally

prohibit the implementation of megafauna-based trophic

rewilding, reflecting the broad environmental tolerances of

many megafauna species. However, this may be different for

ectotherms, which in contrast to mammalian megafauna,

need to be able to thermoregulate efficiently. Extant giant tor-

toises are used as substitutes for their extinct relatives in trophic

rewilding projects on oceanic islands to restore their role of eco-

system engineers [52]. In these seasonally dry environments,

mitigation measures may be needed to allow the tortoises to

successfully maintain their water balance and execute their

role in seed dispersal, nutrient cycling and herbivory at

the landscape scale [53]. In the boreal forest, moose (Alces
americanus) fulfil an important role in fertilizing the forest

with nitrogen, the limiting plant nutrient, by transporting

nitrogen across the aquatic-terrestrial ecotone [54]. If moose

were to follow the boreal-deciduous forest ecotone, which

moves north with increasing temperatures [55], deer would

replace moose, but these are much less effective as nutrient

transporters [54].

Then, when the climate is suitable, how to identify areas

that would profit most from restoration of trophic inter-

actions? Marjakangas et al. [56] use species distribution
modelling in combination with occurrence data and species

interaction records to quantify the potential to restore seed-

dispersal interactions through rewilding in the Brazilian

Atlantic forest, a biodiversity hotspot strongly impoverished

in large animals [16]. By ranking bird and mammal species

based on their seed-dispersal potential they identify which

species can best be used. More species-rich and larger

forest fragments have many more interactions to cash in on

than the deteriorated ones, hence could be prioritized for

re-introductions of missing seed dispersers [56].

The traits of the animals and plants involved in the inter-

action that should be restored are central to these types of

analyses, as well as the pre-human distribution of the

plants and animals. However, when it comes to grassland

conservation Fuhlendorf et al. [57] argue that an essential

component is missing, namely the role of humans. As evi-

denced by the degradation that included the loss of large

native herbivores and replacement with domestic livestock

[58], a focus on restoring an appropriate herbivore for a res-

toration context is important for both the conservation of

the herbivore species, as well as their recognized role in

conserving biodiversity broadly [59]. Future grassland con-

servation efforts including the decision which herbivores to

use, must depend on the development of a model that

better integrates societal, economic and policy objectives



changing land-use:
a. urbanisation

b. intensification of agriculture

c. large-scale abandonment of
marginal farmland

wildlife comebacks in some
places

global trends

a. people increasingly separated
from nature and wildness 

b. biodiversity crisis

c. lost income in rural areas

problems
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b. opens opportunities for new
societal partners  

c. new ‘nature-based economies’
(a.o. wildlife tourism) 

biodiversity decline

climate change more flooding, droughts, fires,
shrub or woody encroachment

nature management increasingly
more intensive and expensive

and not always effective

potential of large-scale trophic rewilding

focus on natural processes lowers
costs and increases biodiversity

increases connectivity among and
within nature reserves

mitigation of climate change; even
more so when combined with adaptive

water and land management;
increasing ecosystem resilience

human-wildlife conflicts in
fragmented habitats 

defaunation loss of species and ecosystem
functions

conserving species; restoring
ecosystem functions 

Figure 2. Scheme with outlook of potential of trophic rewilding under global change for nature and society. The potential of large-scale trophic rewilding in relation
to global trends and problems offers new research avenues for ecology, sociology and economy. (Online version in colour.)
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and recognizes climate change, fragmentation and humans as

an integral part of grassland ecosystems [57].
7. How to study rewilding impacts?
From the studies presented in this issue, a number of different

ways emerge to evaluate the impact of trophic rewilding. It is

essential to compare the state of the rewilding area with a non-

rewilding situation at a given time and as they develop [34].

This is a challenge in many cases, as rewilding projects are

commonly not designed as scientific experiments, but in

practice rather a certain site is selected where subsequently

animals are released, and/or other restoration actions are

implemented. Sometimes some additional land use is also con-

tinued or implemented. A classical before/after comparison

can be used in some cases to evaluate the change in state.

This has for instance been done to evaluate the impact of the

release of wolves in Yellowstone National Park and the sub-

sequent impact on elk and tree density in the landscape

[60,61]. However, a site may be subject to autonomous changes

over time, which may interfere with assessing the effects of

rewilding. Furthermore, certain measures may be necessary

to implement trophic rewilding, such as altering the fencing

around the site, changing the hydrology of the site to give

more room to natural water level dynamics, or taking it out

of former agricultural use, which may alter the site irrespective

of the (re-) introduction of animals [62]. Lastly, and most often,

before-rewilding data may simply not be available. In such

cases, one can attempt to find neighbouring similar sites,

which are not subject to rewilding, to allow a paired compari-

son. This can be challenging as well, as often sites differ in

more aspects then the rewilding management and the site sub-

ject to rewilding may be chosen because it was different from

other sites to begin with. Still, variations on this theme are
possible, as similar sites with different densities of introduced

animals may be suitable for comparison of the impact of the

animals. The more sites, the more robust the analysis (see for

instance [63]). Another way to evaluate the impact of trophic

rewilding is to use exclosures, e.g. fenced areas inside the

rewilding site where the animals have no access (figure 1a,b).

In this way, the impact of the animals can be deduced

from the differences in site characteristics in the presence of

the animals and inside the exclosures [13,14]. When no such

comparisons are possible, then animal movement within a

site, using GPS collars, can be used to identify low- and

high-impact areas (figure 1c,d).
8. How to evaluate rewilding progress?
Trophic rewilding can be seen as a form of open-ended man-

agement [65], as it focuses on promoting natural processes

rather than pre-determined targets [62]. However, this may

falsely suggest that rewilding is without ambition and

measurable output as a classical evaluation of targets is not

possible in open-ended management. To overcome this chal-

lenge Torres et al. [66] developed a rewilding scale, through

which rewilding progress can be measured. The rewilding

scale evaluates the recovery of processes and their natural

dynamics based on decreasing human influence on ecological

processes and increasing ecological integrity of the ecosystem

[66]. Instead of achieving the highest score per se, a gradual

increase in naturalness of the ecosystem over time could be

a suitable goal of local management.
9. Opportunities for trophic rewilding
Ecosystems worldwide are increasingly affected by human-

induced global change, including over-exploitation of living
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systems, temperature rise, eutrophication and exotic species

proliferation, resulting in a biodiversity crisis [6]. Further-

more, human societies increasingly experience disasters as

an increase in flooding events and wildfires, with further

increases likely in the near future [67,68]. Therefore, new

thinking is needed to address these pressing societal and

biodiversity conservation challenges. Rewilding could poten-

tially offer such a new way of thinking, as it is a future-

oriented process-oriented and non-static restoration strategy

[62] (figure 2). Through its focus on natural processes, rewild-

ing advocates new ways of land management, focused on

restoring diversity-maintaining autonomous mechanisms in

nature. By restoring more complete ecosystems, trophic

rewilding—if successful—could (i) confer greater robustness

(resistance or resilience) to the pressures from global change

and (ii) by restoring (more) self-managing ecosystems help

reduce needs for people and domestic animals for ongoing

management, which overall should release economic and

human resources for other uses. By combining functions

such as water storage capacity and giving room to natural

processes, rewilding could contribute to finding solutions

for flooding and drought problems as well as increase bio-

diversity. Such examples are now becoming available (e.g.

[62]). Furthermore, rewilding aims to pursue both
fundamental aims of restoration – biodiversity conservation

and wildness, which has a lot of value to many people

[25,69].

Trophic rewilding can potentially provide solutions to

problems which are the result of current global trends

(figure 2). This special issue is an overview of where we stand

at the moment. There are promising examples of climate

change mitigation, of mitigation of invasive species and mitiga-

tion of biodiversity decline. But all authors agree that we are in

strong need of more data, for which we hope this theme issue

will serve as an inspiration and motivation. Furthermore, it

becomes increasingly clear how trophic rewilding is a highly

interdisciplinary field, where scientists in ecology, sociology

and economy are all involved (see figure 2 and [40,57,62]).
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