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Rewilding is a novel approach to ecological restoration. Trophic rewilding in

particular aims to reinstate ecological functions, especially trophic inter-

actions, through the introduction of animals. We consider the potential for

trophic rewilding to address biological invasions. In this broad review, we

note some of the important conceptual and ethical foundations of rewilding,

including a focus on ecosystem function rather than composition, reliance on

animal agency, and an appeal to an ethic of coexistence. Second, we use

theory from invasion biology to highlight pathways by which rewilding

might prevent or mitigate the impacts of an invasion, including increasing

biotic resistance. Third, we use a series of case studies to illustrate how rein-

troductions can mitigate the impacts of invasions. These include

reintroductions and positive management of carnivores and herbivores

including European pine martens (Martes martes), Eurasian otters (Lutra
lutra), dingoes (Canis dingo), Tasmanian devils (Sarcophilus harrisii) and

tule elk (Cervus canadensis nannodes). Fourth, we consider the risk that

rewilding may enable a biological invasion or aggravate its impacts.

Lastly, we highlight lessons that rewilding science might take from invasion

biology.

This article is part of the theme issue ‘Trophic rewilding: consequences

for ecosystems under global change’.
1. Introduction
Various versions of rewilding have been described since the term was

first coined in the 1990s [1]. Recently, Svenning et al. ([2], p. 898) defined

trophic rewilding as ‘species introductions to restore top-down trophic

interactions and associated trophic cascades to promote self-regulating

biodiverse ecosystems’. This and similar approaches to rewilding focus on

the introduction of vertebrate populations or their functional analogues to

landscapes from which they have been extirpated. The primary aim is often

to restore top-down trophic interactions, although this does not preclude

restoration of other functions such as physical disturbance of substrate or

dispersal of seeds. In contrast to much current environmental policy [3],

rewilding is focussed on ecosystem functions rather than species and

assemblages. Autonomy is a guiding principle—reintroduced populations

should be self-sustaining—and the restorative effects are expected to be long

term and large scale.

Rewilding typically involves reintroducing species to ecosystems that have

been modified from their original state. In addition to habitat modifications,

species loss and climate change, many ecosystems across the globe have been

severely impacted by biological invasions [4]. Invasions have been a major

cause of extinctions and, in synergy with other factors, continue to threaten

many species [5–7]. While rewilding has been undertaken or proposed with
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various goals in mind, few studies have considered rewilding

in the context of biological invasions.

Our aim here is to review the potential for trophic rewild-

ing to prevent, mitigate or enhance the impacts of biological

invasions. We restrict our review to the effects of reintrodu-

cing large carnivores and herbivores, although rewilding

programs could involve the introduction of other agents of

change, such as pollinators, seed dispersers or ecosystem

engineers. First, we note some of the important conceptual

and ethical foundations of rewilding; second, we use theory

from invasion biology to highlight two pathways by which

rewilding might prevent or mitigate the impacts of an inva-

sion; third, we illustrate these points through a series of

case studies; and fourth, we consider the risk that rewilding

could enable invasions or aggravate their impacts.
Soc.B
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2. Ethical and conceptual considerations
Conservation is arguably becoming more interventionist.

Corlett [8] has identified three current paradigms that reflect

this in different ways: conservation translocations, novel eco-

systems and rewilding. The latter interventions focus on

ecosystem function, as opposed to composition [9], which is

also reflected in recent calls for a ‘new conservation’ [10].

These paradigms sometimes distance themselves from tra-

ditional, preservationist conservation approaches, which are

described, perhaps unfairly, as reactive and pessimistic [11,12].

Two key concepts that support trophic rewilding are

non-human agency and coexistence. A presumption of

non-human agency is evident in the rewilding literature

(e.g. [11–14]), especially in the preference for autonomy in

the restored ecosystem, the deployment of animals to do

restoration, calls for ‘open-ended’ conservation, tolerance

for unexpected outcomes and the adaptation of the word

‘wild’, which denotes, among other things, self-willed

nature [15]. Various theorists have promoted non-human

agency as a necessary feature of an adequate environmental

ethic (e.g. [16,17]). Having regard for agency may also help

reconcile conflicting obligations to environmental integrity

and the welfare of other creatures. This is a key problem for

environmental ethics [18] and a particularly difficult problem

when managing biological invasions [19].

Agency, in particular autonomous agency, can entail an

ethic of respect (e.g. [20]). Something similar is at play in

rewilding: Rewilding advocacy often includes an assumption

that coexistence of disparate groups is possible and even pre-

ferable to exclusion, for example, coexistence between

humans and large predators [21–23]. An ethic based on coex-

istence may be a viable alternative to exclusion-based

approaches to conservation such as the separation of large

animals and humans [21], a focus on protected areas [24] or

a wilderness-focussed ethic [25]. However, coexistence in

this context requires more detailed explanation.

What implications does this new paradigm have for bio-

logical invasions? First, there may be moral implications. If

coexistence were broadly accepted then managers would

have greater warrant to reintroduce large animals. It could

lead to wider acceptance that preservation is not a default

conservation aim, releasing managers from an a priori obli-

gation to return the system to some pristine state. Similarly,

the mere presence of a non-native species need not be con-

sidered a failure of management. Practically speaking,
managers often have insufficient resources to eradicate non-

native species anyway [26] so this might seem to make little

practical difference. However, thinking about ecosystems

and animals in terms of function, agency and coexistence

might inspire novel solutions.

Biological control programs are founded on a similar

approach and involve the introduction of organisms with

the purpose of altering invasive populations. Conceptually

at least, trophic rewilding differs from classical biological

control in several ways [27]. It focusses on large vertebrates

rather than including invertebrates; values reintroduced

populations for their own sake rather than as means to an

end; concentrates on non-commercial ecosystems; aims for

influence on many species rather than a single species; and

preferences species assumed to have coevolved with the com-

munity, reducing the risk of negative influences (but see

below). Beyond biological control, examples of agent- and

function-oriented approaches include recent proposals to

introduce Tasmanian devils to mainland Australia to regulate

cat and fox impacts on small mammals (described below); be-

havioural and evolutionary modifications to ‘train’ species to

avoid novel predators; and targeting individual predators

that cause the most damage to vulnerable populations [28–30].

The discipline of invasion biology is now well established

[7]. It is predicated on the fact that some populations that are

new to a place cause problems, including undermining

important ecological functions and threatening species with

extinction. However, some concepts and language commonly

associated with invasion biology have been recently criti-

cised, notably the militaristic and xenophobic framing of

problems, the seeming incommensurability with animal wel-

fare concerns and the assumption that any influence of a new

population is negative [31–33]. It is increasingly recognized

that introduced or newly arrived populations can be valuable

additions to an ecosystem, a view which has obvious overlap

with rewilding advocacy [33,34]. Recognizing the above

issues, we apply the term ‘invasive’ only to those new

arrivals that cause significant negative impacts.
3. Invasion processes
Invasion biology has generated several prominent hypoth-

eses to explain invasion processes [35]. However, theoretical

generalities explain far less variation than we would like,

and outcomes are strongly affected by local context, unpre-

dictable ecological dynamics and a multiplicity of processes

[36]. This precludes general statements about whether

rewilding will work to prevent or mitigate biological invasions.

On the other hand, rewilding might work against inva-

sions in specific circumstances. There are several biotic

processes that constrain invasions [37]. Rewilding can

increase biotic resistance, i.e. reduce the probability of suc-

cessful establishment or spread of an invasive population.

Invasions are often described in terms of stages, e.g. arrival,

establishment and spread, and the barriers between them

[38]. Biotic interactions play an important role in strengthen-

ing barriers at each stage [35,37], though it is doubtful

whether communities can completely repel newcomers [37].

More specifically, once an invasive population is estab-

lished, a rewilding introduction might contain, prevent or

reduce impacts, for example via top-down trophic processes

that suppress the invasive species and promote its
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competitors. Carnivores can suppress invasive populations

directly by predation. Herbivores might selectively feed on

exotic species, reducing their abundance; or by feeding

more broadly prevent any one species (including an invasive

species) from dominating. We present several case studies

below, focussed on rewilding with carnivores and herbivores.
 ypublishing.org
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4. Rewilding with carnivores
Trophic rewilding proposals have focussed on large mam-

mals [2]. The ecological influence of large predators and

their disproportionate vulnerability to extinction have heigh-

tened their importance in conservation [39,40]. However, we

are aware of no cases where a large terrestrial predator has

been introduced to its former historic range to control a

biological invasion and to persist as a valued part of the

assemblage.

Top predators can have strong influences on ecosystems

[39,40], primarily mediated through trophic cascades and

resource facilitation [40]. For example, large body size in

mammalian predators is associated with a narrower prey

base. Owing to energy and intake constraints, most species

larger than 21.5 kg feed on vertebrate prey only, typically

species similar to their own body mass or larger [41]. For

most taxonomic groups there are fewer large-bodied species

[42]. Thus, large predators targeting large prey tend to

directly impact few species.

Despite this specificity, cascading impacts can be dra-

matic. For example, the reintroduction of wolves (Canis
lupus) into Yellowstone National Park in 1995–6, following

an absence of more than seven decades, resulted in changes

to Rocky Mountain elk (Cervus elaphus) abundance and

spatial habitat use. This in turn may have influenced

woody vegetation recruitment, species composition and bio-

mass, along with riparian songbird and beaver populations

[43], although there is uncertainty about the strength of the

influence of wolves in this landscape relative to other factors,

such as drought and the human hunting of elk [44–46].

Predators can dampen variability in prey abundance and

may increase community resilience to climate change [47]. Pre-

dators can provide carcasses for scavengers. They are often

also scavengers themselves and influence other species via

resource-mediated competition [48]. These processes point to

the potential for top predators, especially large carnivores, to

keep invasions in check via top-down trophic pressure.

Carnivores can also prevent the establishment and spread

of invasive populations. Carnivore guilds are often character-

ised by strong, aggressive intraguild interactions, including

harassment, kleptoparasitism and intra-guild killing without

consumption [49–51]. Like prey species, other predators

often respond to the presence of a predator with spatial

and temporal avoidance [51]. When the disrupted population

is invasive, these processes represent modes of biotic resist-

ance, i.e. preventing the establishment of new populations

or their spread into new areas.
5. Case 1: Martens and squirrels in the British Isles
Following introductions around the turn of the twentieth cen-

tury, grey squirrels (Sciurus carolinensis) have displaced red

squirrels (Sciurus vulgaris) in Britain and elsewhere, through

exploitative competition. This process has been aggravated
by squirrelpox virus, a novel pathogen possibly introduced

with the grey squirrels, which is lethal to red squirrels but

asymptomatic in grey squirrels, resulting in disease-mediated

apparent competition [52].

European pine martens (Martes martes) are generalist pre-

dators native to most of Europe [53,54]. Because of

persecution and habitat loss, they are now rare in the British

Isles and functionally extinct in some areas [55]. Populations

in Scotland have recently increased following new legal

protections, reforestation and conservation introductions [54].

Sheehy et al. [56] have shown that the recovery of the pine

marten in Britain has favoured red squirrels over grey squir-

rels where pine marten density is sufficiently high. Predation

by pine martens probably benefits red squirrels via predator-

mediated apparent competition and pathogen dynamics.

Predatory impacts of pine martens are much greater on

grey than red squirrels [57], reducing pathogen spillover of

squirrelpox from its reservoir in grey squirrels. Modelling

by Sheehy et al. [56] predicted near-zero probability of grey

squirrel presence in landscapes with high pine marten con-

nectivity, indicating that predation by pine martens may be

able to severely suppress grey squirrel populations and

promote coexistence with red squirrels.
6. Case 2: Mink and otters in Europe and
South America

American mink (Neovison vison) were introduced to Europe,

the former USSR and Tierra del Fuego for fur farming, begin-

ning in the 1920s. Subsequently, escaped animals established

wild populations [58–60], which are now widely distributed

across much of the European continent and continue to

spread across the Tierra del Fuego archipelago [61]. American

mink threaten a wide range of predator and prey species in

Europe, including the critically endangered European mink

(Mustela lutreola), the European polecat (Mustela putorius),

voles, shrews, birds, frogs and fish [59,62–67]. In Patagonia,

they prey particularly on native rodents but also on a wide

variety of ground-nesting birds and fish [68,69].

Abundance of Eurasian otters (Lutra lutra) declined sharply

in Britain in the middle of the twentieth century due to hunt-

ing and insecticide pollution [70]. Eurasian otters are larger

than American mink, they are better swimmers, and there is

evidence that they outcompete American mink for food [71].

Following the experimental release of otters into an area

only occupied by mink, Bonesi and Macdonald [72] observed

a reduction in the proportion of sites occupied by mink and a

reduction in mink abundance, range and range integrity com-

pared with control sites with no otter release. The authors

attributed the effect to aggressive exclusion and predation

by otters, i.e. interference competition. This pattern is

reflected in Patagonia, where southern river otters (Lontra
provocax) are unaffected by the presence of mink, can sup-

press their abundance and temporal activity, force dietary

and habitat shifts, and potentially prevent their occupancy

in sympatric areas [60,73].
7. Case 3: Top predators in Australia
Australia has lost 29 endemic land mammal species since

European colonisation, the highest rate of extinction of mam-

mals of any continent over the last 200 years [74]. A primary
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Figure 1. In Tasmania, the strength of top-down control by the apex predator was found to be mediated by productivity and climate: devils suppressed cat activity
and/or abundance in wet, forested areas (a). In drier, agricultural areas with more human settlements (b), bottom-up effects, including prey availability, were more
important. High cat abundance, driven by rabbit abundance, may be preventing the recovery of the threatened eastern quoll [94,95]. (Online version in colour.)
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cause has been predation by two introduced mesopredators:

red foxes (Vulpes vulpes) and feral cats (Felis catus) [74,75].

Predation pressure has been enabled and enhanced by factors

such as habitat destruction, the loss of traditional burning

regimes and widespread suppression of the apex predator:

the dingo (Canis dingo) [76,77].

Persecution of dingoes, intended to prevent attacks on

livestock, accounts for their low abundance or absence

across much of their former range [78]. There is evidence

that dingoes regulate mesopredators, benefitting small ver-

tebrates threatened by cats and foxes [79,80]. Dingoes also

prey on macropods and other large herbivores. Predator-

control of these herbivores can result in more vegetation of

greater structural complexity [50,80,81] which can, in turn,

help small mammals to avoid predation [82].

The strengths of these effects may be dependent on

assemblage and bioclimatic region [83] and productivity

may play a significant role [84]. Several authors have pro-

posed positive management—relaxation of lethal control of

dingoes and even reintroduction——to reduce extinction

risk for native fauna through suppression of cats and foxes

[85]. This is unlikely to gain community support in the

sheep rangelands of Australia without significant shifts in

attitudes towards predators.

More speculative is the suggestion that the Tasmanian

devil (‘devil’, Sarcophilus harrisii) could be introduced to the

mainland of Australia to reduce the impacts of cats and

foxes on threatened vertebrates [86]. Dingoes arrived in Aus-

tralia at least 3500 years before present [87]. Both the

thylacine (Thylacinus cynocephalus) and the devil were wide-

spread on the mainland of Australia at the time, and

persisted until about 3200 years before present [88]. Several

factors have been implicated in the mainland extinction of

the devil and the thylacine. These include climate, humans
and dingoes, although recent modelling suggests that the

influence of dingoes was not strong [89,90]. Dingoes never

reached Tasmania and the thylacine was hunted to extinction

there in the twentieth century, leaving the devil as the largest

predator [91].

There is evidence that devils can influence the abundance

and activity of cats, with positive effects on small and

medium-sized mammal populations ([92–96], cf. [97]). In a

long term, wide-ranging study, Hollings et al. [94] found

that the strength of top-down suppression of cats varied by

region. Devils appeared able to suppress cat activity and/or

abundance in forested areas with few human settlements

and higher rainfall. However, in drier agricultural areas this

top-down effect was weaker. Factors related to food resources

were more important for predicting cat occurrence. These fac-

tors included rainfall and the availability of prey, particularly

the European rabbit (Oryctolagus cuniculus), a key prey

species for cats in agricultural areas. Rabbit abundance was

probably influenced by rainfall and outbreaks of rabbit

haemorrhagic disease. Cats in Tasmania may be suppressing

populations of the endangered eastern quoll (Dasyurus
viverrinus), preventing their recovery by preying upon

juveniles (figure 1) [95].

The reintroduction of devils to the mainland of Australia

may be a viable option to promote the coexistence of cats,

foxes and threatened prey species, complementing the influ-

ence of dingoes. Modelling based on body size and diet

suggests that devils could suppress the abundance and

activity of cats, foxes and wallabies, benefitting small and

medium-sized mammals and their habitat ([86,98], cf. [99]).

The same modelling suggests that dingoes and devils could

coexist. Species distribution modelling points to available

habitat in south-eastern Australia, including areas where

dingoes are scarce [86].
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8. Rewilding with herbivores
Large herbivores influence ecosystems by removing plant bio-

mass, changing vegetation structure, increasing light at ground

level, moving large amounts of soil, dispersing nutrients, redu-

cing fire-fuel loads and dispersing seeds over long distances

[100]. These influences are often strong for the largest-bodied

species (e.g. [101–103]). Some influences are species-specific,

for example, hundreds of plants have propagule dispersal syn-

dromes that reflect a strong mutualistic association with

megaherbivores [104]. Others are more generalized, for

example, larger bodied herbivores tend to consume a broader

range of structural plant material than smaller herbivores and

are generally less selective among different plant species on

offer [105,106] so they have large effects on plant biomass

and vegetation density. These processes are potential means

of increasing biotic resistance or applying top-down trophic

pressure and could inspire a range of imaginative rewilding

solutions to invasion problems. We focus on the most direct

means, the consumption of plant matter, and highlight two

mechanisms by which introduced herbivores could reduce

the abundance of invasive plant populations: by preferentially

grazing invasive plants relative to native plant species, and

by removing the most abundant species and preventing

dominance by any one species.

Herbivory can prevent the establishment of exotic plants

and reduce their performance under a range of conditions

[37]. This seems to be driven in part by the biogeographical

context of the plant and the consumer. A meta-analysis of

manipulative field studies of mainly vertebrate herbivory

found that the relative abundance of exotic plants tended to

be decreased by native herbivores but was increased by

exotic herbivores [107]. This pattern held for exotic plants

further classified as invasive.

The above suggests that the reintroduction of a vertebrate

herbivore, or the introduction of functional replacement of an

extinct species, could reduce the abundance of an invasive

population and mitigate its impacts through preferential

feeding, that is, promote its benign coexistence in a land-

scape. A well-studied example is the introduction of two

species of tortoise to Round Island, near Madagascar [108].

Following the eradication of goats and rabbits, the loss of

grazing pressure resulted in invasive exotic plants and

some fast-growing native plants dominating grasslands.

Mauritian giant tortoises (Cylindraspis inepta and C. triserrata)

were once grazers on the island but are extinct. Populations

of two species unknown from the island, Aldabran giant

(Aldabrachelys gigantea) and Madagascan radiated (Astrochelys
radiata) tortoises, were introduced. These species browsed pri-

marily on exotic plants, along with a few native species that

became abundant after the eradications. In this case, coevolu-

tion of the herbivores and plants was evidently crucial.

Species that coevolved with giant tortoises have traits that

reduce browsing pressure relative to fast growing yet more

palatable invasive plants on Round Island.

For some systems, a range of large generalist herbivores

might perform a similar function and biogeographic history

may be less important. In these systems, grazing by exotic

generalists might prevent exotic plants from dominating.

For example, grazing by cattle was found to be effective at

maintaining plant diversity on vernal pools in California,

substantially reducing the cover of exotic annual species

and increasing the cover and richness of native plant species
[109]. However, the influence of herbivory is not always so

straightforward.
9. Case 4: Tule elk and velvet grass in California
Tule elk (Cervus canadensis nannodes) is a subspecies endemic

to California. Hunting and land conversion in the nineteenth

century drove numbers from the hundreds of thousands to a

mere ten individuals. Legal protections allowed the herd to

recover into the thousands through the twentieth century.

Tule elk were introduced to several reserves, including at

Tomales Point in 1978, a coastal grassland north of

San Francisco. The site had been grazed by cattle for a cen-

tury beforehand but cattle were removed as the elk were

introduced. By 2003 the elk population in the 1030 ha

Tomales Point Elk Reserve was approximately 500 individ-

uals. Tule elk primarily consume herbaceous forbs and

grasses but feed on shrubs during winter months [110].

In a 5-year exclusion experiment, Johnson & Cushman

[110] showed that within functional groups, for the most

part, tule elk affected native and exotic plants similarly. Her-

bivory reduced the biomass of both exotic and native

perennials and increased the biomass and abundance of

both exotic and native annuals [110]. These effects are of

potential benefit to Californian grasslands that have been

invaded by perennial shrubs [111].

Velvet grass (Holcus lanatus) is widely invasive in Califor-

nian grasslands. In Tomales Point Elk Reserve, elk reduced

both the abundance and biomass of velvet grass, probably

through herbivory and trampling. However, velvet grass

escaped herbivory when associated with a native shrub,

Baccharis pilularis [110]. Subsequent work demonstrated that

tule elk were less effective in reducing velvet grass biomass in

Baccharis-dominated grasslands. Soil heterogeneity (in terms

of pH and moisture) was a stronger influence than herbivory

on velvet grass success. Elk did not prevent the spread of the

species to newareas [112]. This parallels outcomes in Californian

grasslands, many of which are highly invaded, under managed

livestock grazing. A meta-analysis of fifteen studies of Califor-

nian grasslands found that grazing consistently increased the

cover of exotic forbs but that other responses by native and

exotic species depended on factors such as precipitation, the

seasonality of grazing and community type [113].
10. Causes for concern: making invasions worse
A critical lesson from studies of biological invasions is that the

addition or removal of species from ecosystems can generate

trophic cascades with unanticipated and sometimes unwanted

consequences [114,115]. As outlined above, community

dynamics are notoriously unpredictable. Moreover, there are

several cases where intentionally introduced species have

become invasive, with widespread negative consequences

[116,117]. We highlight two important pathways by which

trophic rewilding could aggravate invasion problems.

First, reintroduced or replacement species could them-

selves become overabundant. Despite having an ecological

and evolutionary history in the recipient ecosystem, an intro-

duced population may display novel properties: regulatory

factors such as diseases or predators may no longer be oper-

ating; other novel species might support larger populations;

habitat or resources may have been altered to favour the
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introduced populations; or slight differences between an

extinct species and its analogue might interact with these fac-

tors to induce a large impact. For example, the koala

(Phascolarctos cinereus) is a tree-dwelling folivore with

narrow dietary preferences. Several introduced koala popu-

lations, on islands and in isolated habitats on the mainland,

have become so abundant that they have defoliated trees,

resulting in local koala population crashes [118]. In 1972 at

Sandy Point, Victoria, twenty individuals were introduced

to a reserve and began feeding on manna gums (Eucalyptus
viminalis). By the mid-1980s the koalas had severely defo-

liated many trees and 1100 koalas were removed from a

200 ha area. Removals proved inadequate and by 1988 most

of the remaining koalas had starved to death, having killed

almost all the manna gums in that area [119].

Second, introduced species can facilitate other invasive

populations [120]. For example, large populations of intro-

duced rabbits and house mice (Mus musculus) in Australia

can subsidise cat and fox populations, increasing predation

pressure on declining species (figure 1) [121]. Effects can be

indirect: Pigs (Sus scrofa) were introduced to the Channel

Islands, USA in the nineteenth century. In the 1990s golden

eagles (Aquila chrysaetos) colonized the islands, preying

on the pigs. The pigs constituted a resource subsidy for the

eagles and as a result, eagle predation almost caused extinc-

tion of an endemic fox (Urocyon littoralis). In addition, the

abundance of skunks (Spilogale gracilis) increased dramatically

because of release from competition with foxes [122].
11. Conclusion
Trophic rewilding can work to prevent biological invasions,

mitigate their impacts and promote the coexistence of newco-

mer species with long-time residents. However, the

conditions for success will vary from case to case. Several

processes may be at play, reflected in the multiple hypotheses

generated to explain invasions. Local conditions will deter-

mine which processes pertain and to what degree. This

carries two implications. Firstly, that general trends may

have limited application to local problems. Secondly, that

local conditions and proximate causes must be understood

in detail before predictions can be made about rewilding

and invasions.

Predicting the outcomes of biological invasions has

proven difficult [123]. Predicting the outcomes of rewilding

introductions is likely to be just as demanding [124]. If scien-

tists engaged in rewilding are to avoid criticism on this point

then quantitative methods of prediction are sorely needed.

Related conservation practices such as ex situ conservation

and managed relocations will also need these tools. Develop-

ing predictive methods will require a multidisciplinary

approach, encompassing modelling [125], life history studies

[126], long-term and landscape-scale ecological experiments
[127,128], palaeoecological investigation [129], climate and

species distribution forecasting [128] and field trials [130] as

well as input from invasion biologists.

Good predictive ability will not be enough to support

decisions about rewilding. Rewilding carries risks and oppor-

tunities that range across social, legal, ethical, ecological and

other domains. Many of these risks and opportunities are

shared with conservation strategies such as conservation

translocation and ex situ conservation [131]. Decisions about

rewilding, and the development of policy and law to accom-

modate it, will require reflective discussion between

stakeholders. It will also require the clear articulation of

ethical principles [132,133].

The concepts of agency, autonomy and coexistence hold

potential for guiding both rewilding and invasion biology.

However, they will not generate clear and agreed rules for

conduct without further theoretical work and discussion. In

the meantime, they represent starting points for conversation,

reflection and research, and new ground from which to view

environmental problems.

Finally, there are several lessons that scientists working

on rewilding problems might take from invasion biology.

Some research in invasion biology is directly applicable to

rewilding, for example, work on the likelihood of newly

arrived species to replace the functions of missing residents,

or the importance of mutualisms for establishment success

[134]. Aslan et al. [130] point out that risk management pro-

cedures for the use of biological control agents could be

brought to bear on rewilding proposals. More broadly,

there have been several recent attempts to create a unified

theoretical framework for invasion biology [38], a difficult

task considering the variety of phenomena described as bio-

logical invasions. Likewise for rewilding, the plurality of

rewilding practices will probably preclude a simple and uni-

fied research framework. On the other hand, rewilding will

continue to encourage reflection, discussion and imaginative

solutions to biological invasion problems.
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61. Schüttler E, Ibarra JT, Gruber B, Rozzi R, Jax K. 2010
Abundance and habitat preferences of the
southernmost population of mink: implications for
managing a recent island invasion. Biodivers
Conserv. 19, 725 – 743. (doi:10.1007/s10531-009-
9730-3)

62. Barrientos R. 2015 Adult sex-ratio distortion in the
native European polecat is related to the expansion
of the invasive American mink. Biol. Conserv. 186,
28 – 34. (doi:10.1016/j.biocon.2015.02.030)

63. Richards DR, Maltby L, Moggridge HL, Warren PH.
2014 European water voles in a reconnected
lowland river floodplain: habitat preferences and
distribution patterns following the restoration of
flooding. Wetlands Ecol. Manage. 22, 539 – 549.
(doi:10.1007/s11273-014-9350-x)

64. Garcı́a-Dı́az P, Arévalo V, Vicente R, Lizana M. 2013
The impact of the American mink (Neovison vison)
on native vertebrates in mountainous streams in
Central Spain. Eur. J. Wildlife Res. 59, 823 – 831.
(doi:10.1007/s10344-013-0736-5)
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mediated impact of alien mink predation on
common frog densities in the outer archipelago of
the Baltic Sea. Oecolog 163, 405 – 413. (doi:10.
1007/s00442-010-1573-9)

67. Melero Y, Plaza M, Santulli G, Saavedra D,
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