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The life cycle of malaria parasites in both their mammalian
host and mosquito vector consists of multiple developmental
stages that ensure proper replication and progeny survival. The
transition between these stages is fueled by nutrients scavenged
from the host and fed into specialized metabolic pathways of the
parasite. One such pathway is used by Plasmodium falciparum,
which causes the most severe form of human malaria, to synthe-
size its major phospholipids, phosphatidylcholine, phosphati-
dylethanolamine, and phosphatidylserine. Much is known
about the enzymes involved in the synthesis of these phospho-
lipids, and recent advances in genetic engineering, single-cell
RNA-Seq analyses, and drug screening have provided new per-
spectives on the importance of some of these enzymes in para-
site development and sexual differentiation and have identified
targets for the development of new antimalarial drugs. This
Minireview focuses on two phospholipid biosynthesis enzymes
of P. falciparum that catalyze phosphoethanolamine transmeth-
ylation (PfPMT) and phosphatidylserine decarboxylation
(PfPSD) during the blood stages of the parasite. We also discuss
our current understanding of the biochemical, structural, and
biological functions of these enzymes and highlight efforts to
use them as antimalarial drug targets.

Malaria and the challenging search for effective
antimalarial chemotherapy

Malaria is a mosquito-borne parasitic disease caused by pro-
tozoan parasites of the genus Plasmodium and is one of the
leading causes of death throughout human history. The disease
is endemic in 91 countries with the World Health Organization
African Region carrying the biggest burden of morbidity and
mortality (1). Of the Plasmodium species that infect humans,
Plasmodium falciparum and Plasmodium vivax account for the
overall majority of malaria clinical cases, hospital stays, and
death (1, 2). In 2016, these parasites were responsible for �216
million clinical cases and �445,000 deaths (1). Thanks to major

international efforts aimed at implementing improved policies
for control of mosquito populations, the wide use of bed nets,
and the application of new therapeutic strategies, this mortality
rate represents a drop of more than 50% from the �839,000
deaths recorded in 2000 (1, 3). However, despite this success,
the death toll is still unacceptably high. Emerging drug resis-
tance to first line therapies and the high cost of drugs continue
to add more health and economic burden on the affected pop-
ulations (1, 4, 5). The development of an effective vaccine con-
tinues to be both scientifically and technically challenging.
Among multiple candidates currently in development, RTS,S/
AS01 (or MosquirixTM), a recombinant protein-based vaccine
that targets the major circumsporozoite protein of P. falcipa-
rum, has shown the most promise so far (6). In the absence of a
vaccine with high effectiveness among the overall population,
there continues to be a need for new and affordable therapies
and novel therapeutic strategies to treat the disease.

Plasmodium parasites have a complex life cycle in the mos-
quito vector and humans, involving multiple developmental
stages, different morphological, biochemical, and metabolic
requirements, and well-controlled and highly coordinated gene
expression and regulatory mechanisms (7, 8). Following injec-
tion of the parasite into the skin of the human host by an
infected female Anopheles mosquito, the parasite undergoes
rapid multiplication within liver hepatocytes to produce thou-
sands of merozoites, which are packed into host cell mem-
brane-derived vesicles (merosomes) and safely transported past
the resident macrophages (Kupffer cells) into the liver sinusoids
where their invasion of the erythrocytes begins (9 –12).

Within the erythrocytes, each merozoite grows to several
times its original size before dividing asexually via schizogony
to produce 16 –32 new blood merozoites (13, 14). The intra-
erythrocytic life cycle ends with the rupture of the host cell. The
repeated cycles of invasion and destruction of host erythrocytes
are directly linked to the pathology and symptoms of the dis-
ease, which include fever, chills, and fatigue (15, 16).

The orchestration of the intraerythrocytic schizogony requires
a complete parasitic reorganization of the metabolically
reduced and terminally differentiated host erythrocyte to
ensure protection against immune attacks and to facilitate
nutrient supply to fuel parasite development and replication (1,
17–20). While long recognized as critical structural compo-
nents for parasite development and attractive therapeutic tar-
gets, phospholipids and their by-products have also emerged
(21) as major signaling molecules that control development and
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differentiation processes during Plasmodium intraerythrocytic
cycle (21–26). The rapid generation of abundant parasitic prog-
eny requires the appropriate amount of suitable lipid species at
the proper compartment and at the right time to establish an
active membrane biogenesis, which leads to a dramatically ele-
vated lipid metabolism during the intraerythrocytic schizogony
(22, 27). To acquire the necessary lipid species for different
compartments, the parasite either synthesizes them de novo
from previously produced metabolites or uses exogenous
sources such as the erythrocyte membrane or the human
plasma. This results in a 6-fold increase in the relative levels of
phospholipidsintheinfectederythrocyte(24,27,28).Thedepen-
dence on phospholipids for rapid parasite multiplication and
the uniqueness of some of the steps in the pathways of Plasmo-
dium lipid metabolism create significant opportunities for the
identification of antimalarial drug targets (22, 24, 27).

Structural, developmental, and signaling functions of
phospholipid biosynthesis in P. falciparum

Asexual blood stages and gametocytes of Plasmodium para-
sites are able to scavenge or synthesize up to 300 different lipid
species to facilitate growth, proliferation, transmission, and
sexual reproduction (24). The phospholipid classes, phosphati-
dylcholine (PC),3 phosphatidylethanolamine (PE), and phos-
phatidylserine (PS), are the major lipid components that define
Plasmodium membranes (21–23, 25, 29 –32). In the uninfected
erythrocytes, PC, PE, and PS constitute 30 – 40, 25–35, and
10 –20% of the total phospholipids, respectively, whereas in
P. falciparum-infected erythrocytes and in purified parasites,
these major phospholipids constitute 20 –55, 15– 40, and
4 –15% of the total phospholipids, respectively (Table 1) (25,
33). The reported higher levels of PE in P. falciparum mem-
branes compared with the membranes of other eukaryotes
(Table 1) have been proposed to be largely due to the inability of
the parasite to directly convert PE to PC (22, 23). However,
P. falciparum is able to generate phosphocholine, a precursor
for the synthesis of PC, from phosphoethanolamine via the
PMT pathway (see below). With the exception of a few path-
ways, which have been identified through metabolic and

genetic analyses, most components of the PC, PE, and PS bio-
synthetic machineries have been identified by searching for ho-
mologs in the Plasmodium genome databases of well-charac-
terized enzymes from yeast, plants, and other eukaryotes (22,
30). These pathways are outlined in Fig. 1.

Phosphatidylcholine

In most eukaryotic membranes (see Table 1), PC accounts for
more than 50% of phospholipids and spontaneously self-orga-
nizes to a planar bilayer (38, 39). In addition to its structural
role, PC can also modulate cellular signaling functions because
its hydrolysis by phospholipases leads to the formation of the
second messenger diacylglycerol (DAG), which is critical for
activation of specific classes of protein kinases (40, 41). Changes
in cellular PC levels have been shown to alter cell proliferation,
differentiation, as well as membrane movement (42). Studies in
malaria parasites have shown that PC is the major phospholipid
in Plasmodium membranes during both liver stage and intra-
erythrocytic schizogony (22, 30, 43, 44).

One of the two routes used to synthesize PC in Plasmodium
parasites is the cytidine diphosphate- or CDP-choline branch of
the Kennedy pathway (25, 28, 33, 38, 45). Metabolomic analyses
showed that 89% of PC is generated by the parasite from choline
via this particular pathway (33). To enter the Kennedy pathway,
choline is first transported into the parasite by an as yet uniden-
tified transporter and then phosphorylated by choline kinase to
form phosphocholine, which is subsequently used as a precur-
sor to form CDP-choline and finally PC, by the 1,2-diacylglyc-
erol cholinephosphotransferase (45). PC can also be synthe-
sized by the PMT pathway, which uses three sequential
methylations of phosphoethanolamine (via S-adenosylmethio-
nine donors) to form phosphocholine, catalyzed by the par-
asite phosphoethanolamine methyltransferase (PfPMT) (22,
46 – 48). Metabolomic analyses indicate that 11% of total PC in
P. falciparum is generated from the PMT pathway (33). Analy-
sis of available genome databases showed that among proto-
zoan parasites, PfPMT homologs are found primarily among
Plasmodium species that infect humans (P. vivax and
P. knowlesi), primates (P. knowlesi and Plasmodium reichen-
owi), and birds (P. gallinaceum) (49 –51). Orthologs of PfPMT
have also been found in proteobacteria (Burkholderia pseu-
domallei and Burkholderia oklahomensis), many species of
plants, two species of African clawed frogs (Xenopus laevis and
Xenopus tropicalis), nematodes (Caenorhabditis elegans and
Caenorhabditis briggsae), zebrafish (Danio rerio), the Florida
lancelet (Brachiostoma floridae), and the protozoan fungus
Phytophthora infestans (49). Interestingly, no PMT orthologs

3 The abbreviations used are: PC, phosphatidylcholine; PE, phosphatidyletha-
nolamine; CDP, cytidine diphosphate; DAG, diacylglycerol; lyso-PC, lyso-
phosphatidylcholine; PSD, PS decarboxylase; PfNSM, lyso-PC– dependent
phospholipase C (SM/LCPL-phospholipase C or PLC); PfPSD, P. falciparum
phosphatidylserine decarboxylase; PfPSS, P. falciparum phosphatidylser-
ine synthase; PfPMT, P. falciparum phosphoethanolamine methyltransferase;
PS, phosphatidylserine; PvPMT, P. vivax phosphoethanolamine methyltrans-
ferase; PMT, phosphoethanolamine methyltransferase; TM, transmembrane
domain; 7CPQA, 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine.

Table 1
Phospholipid composition of different eukaryotic cells
The comparison of lipid composition of different eukaryotic cells and uninfected erythrocytes is shown.

Organism/cell PC PE PS Refs.

Uninfected erythrocytes 30–40% 25–35% 10–20% 33
P. falciparum-infected erythrocytes and free parasites 20–55% 15–40% 4–15% 25, 33, 37
Trypanosoma brucei 45–60% 10–20% �4% 36
Toxoplasma gondii (free parasites) 75% 10% 6% 34
Aspergillus niger 51% 28.5% 5% 35
Candida albicans 40% 25.3% 12% 35
Cryptococcus neoformans 49% 28% 8% 35
Microsporum gypseum 23.1% 29.8% 19.4% 35
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are found in mammals, making them attractive targets for
selective therapies (49). The 3D structure of PfPMT and subse-
quently that of PvPMT (P. vivax phosphoethanolamine meth-
yltransferase) and PkPMT (P. knowlesi phosphoethanolamine
methyltransferase) showed high conservation, functional activ-
ity, and inhibition by the same drugs (29, 52, 53). Like other
methyltransferases known to be inhibited by the 4-amino-
quinoline, amodiaquine, PfPMT was also inhibited by this com-
pound (Table 2) (54). The specificity of interaction of amodi-
aquine with the enzyme was further demonstrated using NMR
spectroscopy (54). The compound was found to induce major
conformational changes, whereas its analog chloroquine had
no effect on the enzyme (54). Structural analyses of PvPMT
with amodiaquine further showed that the drug is an allosteric
inhibitor targeting a cleft located distal to the active site (43).

P. falciparum pfpmt� parasites lacking the PfPMT gene were
found to be viable even in the absence of exogenous choline,
although their growth was severely reduced (Table 2) (23). TLC
analyses showed that these parasites produce PC in the absence
of choline, suggesting that an alternative source of choline or a
choline-containing precursor is also available to the parasite
(23). Accordingly, a recent study by Brancucci et al. (55) showed
that P. falciparum actively transports lysophosphatidylcholine
(lyso-PC) from host plasma to generate PC (Fig. 1). Although
the mechanism of uptake and mode of utilization of lyso-PC by
the parasite remain to be determined, it is possible that lyso-PC
is either hydrolyzed to form a precursor that then enters the
CDP-choline pathway to form PC or is directly acylated to form
PC (Fig. 1). In yeast, lyso-PC is transported by the phospholipid
flippases, Dnf1p and Dnf2p, which are P4 ATPases (56, 57). A
second protein, Lem3p, also plays a role in the transport of
lyso-PC as a noncatalytic subunit of Dnf1p–Lem3p and Dnf2p–

Lemp3p complex. Because the crystal structure of the P4
ATPase is not yet available, the structural basis of lyso-PC
uptake remains unknown. However, several models have been
proposed based on extensive mutagenesis and computer simu-
lation analyses using crystal structures of cation-transporting
P-type ATPases (58 –61). Among them, the two-gate model has
been proposed for phospholipid translocation by Dnf1p (58).
First, the phospholipid headgroups slide through the entry gate
formed by the transmembrane domains (TMs) on the extracel-
lular side and then reach the exit gate formed through the other
TMs toward the cytosol. Once inside the cell, acylation of
lyso-PC is catalyzed by Ale1p (acyltransferase for lysophospha-
tidylethanolamine) (57, 62). A BLAST search for homologs of
these proteins in the P. falciparum genome database ( http://
plasmodb.org/plasmo/)4 identified several homologs of Lem3p
and Dnf1/2p, but no homologs of Ale1p could be found.

Phosphatidylethanolamine

PE can be found in the membranes of all eukaryotic and pro-
karyotic cells and is a key factor in several processes such as
membrane fusion or cytokinesis and can further serve as a
donor of the ethanolamine moiety that covalently modifies var-
ious proteins (63, 64). PE also increases the membrane curva-
ture, which is crucial for membrane budding, as well as fusion
and fission processes (29, 65). PE metabolism has been impli-
cated in important cellular processes such as autophagy, signal-
ing, and viral replication (66 –70) and in human diseases such as
Alzheimer’s disease, Parkinson’s disease, and nonalcoholic liver
disease (71).The biosynthesis of PE in Plasmodium parasites

4 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.

Figure 1. Lipid synthetic pathways in the asexual stages of Plasmodium. The following abbreviations are used: RBCM, red blood cell membrane; RBCC, red
blood cell cytosol; PPM, parasite plasma membrane; DV, digestive vacuole; HZ, hemozoin; P/AA, peptides and amino acids; PfPSS, P. falciparum PS synthase;
PfSD, P. falciparum serine decarboxylase (asterisk indicates that enzyme activity has been reported but no corresponding gene has been identified); PfPLC,
P. falciparum phospholipase C; PfPSD, P. falciparum PS decarboxylase; PfCT, P. falciparum choline transporter; PfCK, P. falciparum choline kinase; PfCCT, P. fal-
ciparum CTP:phosphocholine cytidylyltransferase; PfCEPT, P. falciparum choline/ethanolamine-phosphotransferase; PfPMT, P. falciparum phosphoethanol-
amine methyltransferase; LD-PLC, lyso-PC– dependent phospholipase C; PfNSM, P. falciparum neutral sphingomyelinase; LD-PLD, lyso-PC– dependent phos-
pholipase D. Dashed arrows represent putative routes of transport and metabolism. The “?” indicates pathways and enzymes that might exist or catalyze certain
reactions respectively but that have not been identified yet.
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can occur either from ethanolamine via the cytidine diphos-
phate- or CDP-ethanolamine (Kennedy) pathway or from PS
via decarboxylation (Fig. 1) (29, 31, 33). The PE branch of the
Kennedy pathway uses three sequential steps catalyzed by par-
asite enzymes to generate PE de novo from ethanolamine (72).
The ethanolamine kinase of the Kennedy pathway uses ATP to
phosphorylate ethanolamine, whereas the phosphoethanol-
amine cytidylyltransferase uses CTP to generate the high-en-
ergy intermediate CDP-ethanolamine (45). This high-energy
intermediate is then used in conjunction with DAG, by the 1,2-
diacylglycerol ethanolaminephosphotransferase, to generate
PE (45). PE synthesis from PS is catalyzed by parasite-encoded
PS decarboxylase (PSD). PSD genes of both P. falciparum
(PfPSD) and P. knowlesi (PkPSD) have been shown to comple-
ment the ethanolamine auxotrophy of a yeast mutant lacking
the PSD activity (29, 73). Biochemical characterization of
PkPSD showed that the enzyme is less hydrophobic than other
PSD enzymes and is recovered in both soluble and membrane-
associated compartments when expressed in yeast (73). Dele-
tion of the N-terminal membrane domain of the protein greatly
improved its solubility while preserving catalytic activity (73).
Recent studies have shown that the enzyme belongs to the DHS
(Asp–His–Ser) protease family (74) and undergoes auto-endo-
proteolytic cleavage into a large �-subunit and a smaller �-sub-
unit with a pyruvoyl prosthetic group (73, 75, 76).

Metabolic studies in P. knowlesi suggested that besides etha-
nolamine uptake, a parasite-encoded serine decarboxylase
might exist which could produce ethanolamine from serine
(31). This reaction has previously been shown to occur exclu-
sively in plants (77). However, no homologs of plant serine de-
carboxylases could be found in the P. falciparum genome, and
attempts to isolate this enzyme from parasite extracts or to
identify the malarial gene by functional complementation in
yeast have not been successful (73). Biochemical assays further
excluded the PfPSD enzyme as a possible decarboxylase of ser-
ine (29). One possible explanation of the available data is that
Plasmodium lacks the ability for direct decarboxylation of ser-
ine and that the formation of ethanolamine from serine as
shown by metabolic analyses in P. knowlesi is a result of PE
turnover. In this case, serine is first incorporated into PS, and
the resulting PS is then converted into PE, which is subse-
quently hydrolyzed to produce ethanolamine.

Genetic studies in P. falciparum and rodent parasites suggest
that the PSD function might be essential for parasite develop-
ment in the absence of exogenous ethanolamine (Table 2) (29).
This has so far been supported by pharmacological studies with
inhibitors that target this enzyme (Table 2) (29). However, fur-
ther studies using gene editing technologies, conditional
knockouts, or more specific inhibitors are needed to evaluate
the importance of this step in parasite development and
differentiation.

Phosphatidylserine

PS is usually found in the inner leaflet of the lipid bilayer of
the plasma membrane of healthy mammalian cells and plays a
crucial role in apoptosis, erythrocyte senescence, blood coagu-
lation, as well as targeting and function of various intracellular
signaling proteins (64, 87– 89). In malaria parasites, PS has been
shown to play a role in P. falciparum-established erythrocyte
cytoadhesion (32). Interestingly, PS is also particularly enriched
in microvesicles that can be found in elevated levels within
the blood of P. falciparum-infected patients (24). These
microvesicles have been implicated in intercellular communi-
cation as well as gametocytogenesis (24). A recent study has
further shown that the parasite actively hampers the presenta-
tion of PS on the outer membrane leaflet of the plasma mem-
brane of liver cells during merosome formation to avoid the
phagocytic clearance of the parasitic progeny (90).

The synthesis of PS by Plasmodium parasites requires serine
that is either directly imported from the host plasma or
obtained from hemoglobin degradation in the digestive vacuole
by parasite proteases (Fig. 1) (22, 23, 31, 33). PfPSS (P. falcipa-
rum phosphatidylserine synthase) then uses the scavenged ser-
ine to generate PS. PS further serves as a precursor for the
synthesis of PE.

Role of phospholipid synthesis in Plasmodium
development and sexual differentiation

The first evidence that phospholipids play more than just a
housekeeping function in P. falciparum came from studies by
Witola et al. (23) on the characterization of knockout parasites
lacking the PfPMT gene. These mutant parasites had severe
growth defects, even in the presence of high concentrations of
choline (23). Furthermore, mature schizonts isolated from

Table 2
Overview of inhibitors and genetic knockouts of lipid synthetic enzymes
The following abbreviations are used: PfECT, P. falciparum CTP:phosphoethanolamine cytidylyltransferase; PfEK, P. falciparum ethanolamine kinase; PfCT, P. falciparum
choline transporter; PfCCT, P. falciparum CTP:phosphocholine cytidylyltransferase; PfCEPT, P. falciparum choline/ethanolamine-phosphotransferase; PfPMT, P. falcip-
arum phosphoethanolamine methyltransferase; LD-PLC, lyso-PC– dependent phospholipase C; PfNSM, lyso-PC– dependent phospholipase C (SM/LCPL-phospholipase
C); PfPSS, P. falciparum PS synthase; PfPLC, P. falciparum phospholipase C; PfPSD, P. falciparum PS decarboxylase; PfCK, P. falciparum choline kinase; NA, not applicable.

Enzyme
Knockout
lethality

Pharmacological
inhibition Putative compounds Refs.

PfEK NA � 2-Amino-1-butanol, bis-thiazolium T3 78
PfECT NA NA NA
PfCT NA � Amiodarone, bepridil, possibly pentamine, P16, and HC-3 86
PfCK NA � Hemicholinium-3, bis-thiazolium T3 78–80
PfCCT � � PG12 81
PfCEPT NA � T4 81, 82
PfPMT � � Amodiaquine, NSC-158011 21, 23, 54
PfPSS NA NA NA
PfPLC NA NA NA
PfPSD � � 7CPQA analog (MMV007285) 29, 85
PfNSM (LD-PLC) NA � Scyphostatin 84
PfSD NA NA NA
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these knockout parasites produced a smaller number of mero-
zoites and displayed an altered pattern of nuclear division com-
pared with WT parasites (23). Finally, these knockout parasites
were severely altered in their commitment to sexual differenti-
ation and could not be transmitted to mosquitoes (21). How-
ever, these defects could not be complemented by choline sup-
plementation, implying that either pools of PC derived from the
PMT pathway or intermediates of the methylation reactions
may play a critical role in these processes.

Recent studies in P. falciparum have shown that lyso-PC is a
major substrate of parasite phospholipid metabolism that fur-
ther acts as an environmental sensor (55). By degradative pro-
cesses, lyso-PC is also a major source of the Kennedy pathway
components choline and fatty acids, which are needed to fuel
the proper biosynthesis of PC (55). In case of lyso-PC limitation
between 34 and 38 h after red blood cell invasion, the parasite
responds with the production of less merozoites during the
development of the blood stages (55, 91). Low lyso-PC condi-
tions in the external medium further trigger the expression of
the transcriptional regulator of irreversible sexual commitment
and gametocytogenesis, Api2G, whereas the expression of
other key players such as PfPMT (especially in already commit-
ted cells) and other transcriptional factors are up-regulated (55,
92, 93). These recent findings suggest that lyso-PC controls the
fate of P. falciparum by facilitating the repression of sexual dif-
ferentiation. Interestingly, depletion of lyso-PC in the rodent
parasite Plasmodium berghei, which lacks PMT function and
other factors that are regulated by lyso-PC levels, had no effect
on the sexual differentiation of the parasite (50, 55).

Summary and future directions

Important milestones have been achieved over the past sev-
eral years in understanding lipid metabolism and its role in
P. falciparum development and differentiation. The recent
advances in metabolomic and genetic analyses will undoubt-
edly unravel more secrets about these processes and identify
ideal targets for the development of new antimalarials.

The unique enzyme PfPMT has already been identified as an
important key player in the lipid metabolism of P. falciparum
parasites by Witola et al. (23). The knockout of PMT had major
effects on growth and survival of the parasites, suggesting that
PfPMT could be a promising target for antimalarial chemother-
apy (23). Two studies showed that the antimalarial 4-amino-
quinoline, amodiaquine, and four additional compounds (NSC-
641296, NSC-668394, NSC-323241, and NSC-158011) were
able to inhibit PfPMT activity (Table 2) (21, 54). NSC-158011
appeared to be a particularly promising candidate because it
acts as a competitive inhibitor in the transmethylation reac-
tion and inhibits PfPMT activity as well as PC biosynthesis in
vivo (21).

Recent studies by Brancucci et al. (55) highlighted the impor-
tant role of lyso-PC in P. falciparum sexual differentiation.
However, the mechanism by which lyso-PC is transported from
the host serum into the parasite remains to be investigated. The
lyso-PC uptake might depend on the developmental stage of
the parasite or even the age of the infected erythrocyte (14, 94).
The parasite might also encounter different lyso-PC concentra-
tions within various tissues while traveling with the host eryth-

rocyte during its journey through the body as a juvenile ring or
during sequestration as a mature trophozoite or a schizont (18,
95). Mature P. falciparum blood stages secrete and present
cytoadhesins on the surface of the infected erythrocytes, ena-
bling these cells to become sequestered in the deep vascular bed
of inner organs to avoid splenic clearance (18). Brancucci et al.
(55) reported that parasite-induced sequestration in intra- and
extravascular spaces might cause variation in lyso-PC exposure.
They further observed dramatically reduced levels of lyso-PC in
bone marrow fluids, where high densities of gametocytes can be
found (96). However, gametocyte levels can also be high in the
brain, gut, heart, and spleen, and it needs to be determined
whether the localization of the sexual stages directly correlates
with the lyso-PC levels within those organs (96).

Future studies are also needed to investigate why some of the
asexual parasites appear to be unaffected when lyso-PC is
removed from the medium, whereas others develop into game-
tocytes. There are certainly various additional factors involved
in the sexual commitment of the parasites that are expressed at
a certain time in the life cycle of the parasite or under certain
conditions that are exclusively determined by the host. For
example, the fact that the levels of some lyso-PC molecular
species significantly decrease during the pyrogenic peak is one
important host condition that needs to be examined in con-
junction with parasite development and gene expression (97,
98).

The finding that lyso-PC plays an important role in parasite
development, differentiation, and transmission makes the met-
abolic pathways and the involved enzymes very attractive tar-
gets for antimalarial drugs. A promising enzyme candidate
might be the PfNSM, a lyso-PC– dependent phospholipase C
(SM/LCPL-phospholipase C), which catalyzes the hydrolysis of
sphingomyelin and lysophospholipids (Fig. 1) (27, 84). Hanada
and co-workers (84) previously reported that the treatment
with scyphostatin, a mycelial extract of the fungus Trichopeziza
mollissima, inhibited enzyme activity (ID50 � 3–5 �M) as well
as the growth of P. falciparum (�7 �M) (99).

Targeting PE synthesis is another attractive avenue to fight
malaria. An in vivo screen of inhibitors against PkPSD has been
previously reported (29). The screen searched for compounds
that inhibit growth of a yeast mutant that relies on malarial PSD
activity for survival. 18 candidates were identified as PSD in-
hibitors, and 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine
(7CPQA analog) (MMV007285) was chosen for further anal-
ysis because of the ready availability of precursors, ease of syn-
thesis, and low toxicity toward mammalian cells. The drug has
been shown to be effective against P. falciparum with IC50 val-
ues ranging between 0.5 and 1 �M (85), and it has a selectivity
index of �8 in vitro. 7CPQA, an analog of MMV007285, has
been shown to prevent Plasmodium yoelii growth in mice at 30
mg kg�1 following a daily oral administration for 3 consecutive
days (29). 7CPQA further inhibits all stages of parasite intra-
erythrocytic development.

In vitro inhibitor screens amenable for high-throughput
screening for decarboxylase enzymes have been challenging
due to a lack of suitable enzyme assays. The conventional PSD
enzyme assay is based on measuring captured radioactive CO2,
which is released following decarboxylation of 14C-PS by a PSD
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enzyme (100). Recently, a fluorescence assay based on the inter-
action of PE with the water-soluble distyrylbenzene-bisalde-
hyde (DSB-3) has been developed to facilitate chemical screens
for inhibitors of PSD enzymes. The assay is amenable to high-
throughput screening and can measure PSD activity of recom-
binant enzymes as well as native activity from cell extracts and
membrane preparations from bacteria and yeast (83). Efforts
are underway to identify more potent inhibitors of the malarial
PSD enzyme using this assay. Finally, targeting PS biosynthesis
through inhibition of PfPSS is another opportunity to inhibit
parasite growth. However, no promising antimalarial candi-
dates have been reported so far.

In summary, the lipid metabolism of Plasmodium parasites is
both complex and fascinating. Not all of the puzzle pieces have
been identified, but the already emerging picture gives a very
promising outlook of the future of antimalarial chemotherapy
due to the uniqueness of some of the already identified factors.

Perspectives

Efforts needed to further advance knowledge about phos-
pholipid metabolism in development, differentiation, and
malaria therapy include the following.

• Genetic analysis and target validation of phospholipid bio-
synthesis genes using CRISPR-Cas9 knockout and condi-
tional knockout strategies.

• Biochemical and genetic characterization of the transport
and metabolism of lyso-PC and other phospholipid
precursors.

• Identification and development of new classes of inhibi-
tors that target essential steps in membrane biogenesis.
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