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Abstract

More than one decade after the introduction of compressed sensing (CS) in MRI, researchers are 

still working on ways to translate it into different research and clinical applications. The greatest 

advantage of CS in MRI is the reduced amount of k-space data needed to reconstruct images, 

which can be exploited to reduce scan time or to improve spatial resolution and volumetric 

coverage. Efficient data acquisition using CS is extremely important for compositional mapping of 

the musculoskeletal system in general and knee cartilage mapping techniques in particular. High-

resolution quantitative information about tissue biochemical composition could be obtained in just 

a few minutes using CS MRI. However, in order to make this goal a reality, some issues still need 

to be addressed. In this paper, we review the current state of the art of CS methods for rapid 

compositional mapping of knee cartilage. Specifically, data acquisition strategies, image 

reconstruction algorithms, and data fitting models are discussed. Different CS studies for T2 and 

T1ρ mapping of knee cartilage are reviewed, with illustrative results. Future directions, 

opportunities, and challenges of rapid compositional mapping techniques are also discussed.

Summary:

Compressed sensing MRI is a leap forward for rapid compositional mapping techniques, 

especially for knee cartilage. There are still several points to be refined for effective practical use, 

but there is no doubt that it will transform compositional mapping of knee cartilage into a rapid 

and reliable source of quantitative information for clinicians and researchers, without degrading 

the quality of relaxation maps, and providing a more comfortable experience for patients.

INTRODUCTION:

MRI systems are extremely versatile, being able to provide anatomical, functional and 

biochemical images of the human body (1). Quantitative mapping reveals parameter values 

of the MR signal relaxation process, providing important information to assess tissue 
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biochemical composition (2, 3). Relaxation times, such as spin-lattice relaxation time (T1), 

spin-spin relaxation time (T2), spin-lattice relaxation time in the rotating frame (T1ρ), or 

even a combination of them can provide more quantitative information about tissue 

structural and biochemical composition. For human knee cartilage, quantitative relaxation 

mapping is able to reveal biochemical changes in cartilage composition before 

morphological changes occur (4, 5).

For osteoarthritis (OA), a recent meta-analysis has validated the reliability (compiling 58 

studies) and discriminative ability (compiling 26 studies) of cartilage compositional MRI 

mapping in knee (6, 7), where T2 and T1ρ relaxometry demonstrated discrimination validity 

in mild OA. This can help us to detect early stages of OA (8, 9).

In order to obtain precise relaxation parameters for voxels in a region of interest with high 

spatial resolution, long scanning time is usually required (10–12). This may include a large 

number of samples in k-space and several time points of a particular relaxation process of 

interest. However, long acquisition time is expensive and leads to patient discomfort. 

Captured data are more susceptible to be corrupted by patient motion and the overall 

experience is stressful.

Conventional reduction of scan time generally leads to some kind of degradation in image 

quality, such as reduced spatial resolution and/or aliasing artifacts (1). For quantitative 

imaging, a reduction in the number of time points decreases the precision of the estimated 

relaxation parameters (10), especially for more complex models such as biexponential 

relaxation (11). Initial approaches to acquire fewer k-space samples, such as partial k-space 

and key-hole (13), have halved acquisition time compared to fully sampled acquisitions, 

which is a modest reduction for quantitative relaxation mapping. Parallel imaging using 

multiple receive coils can be used to reduce the number of k-space samples required for 

reconstruction, due to different spatial sensitivities of the coil elements. Also, the SNR is 

usually higher than the one obtained from a volume (body) coil. With these methods, each 

receive coil is able to capture a different sensitivity-weighted signal from the object. 

Aliasing from regular undersampling can be solved with methods such as simultaneous 

acquisition of spatial harmonics (SMASH) (14), sensitivity encoding (SENSE) (15), 

generalized autocalibrating partially parallel acquisitions (GRAPPA) (16), and others (17). 

Some of the multi-coil reconstruction methods, such as SENSE, require the coil sensitivities 

to be known or estimated by an auxiliary method, such as (18), usually using a fully sampled 

central area of k-space, which is fast to acquire. Parallel imaging has been used for knee 

cartilage (19, 20) with up to 3 and 4 (21) fold acceleration factors (AF), taking nearly 5 min 

for data acquisition.

Compressed sensing (CS) aims to reduce the number of k-space samples by exploiting 

compressibility or sparsity in an appropriate transform domain. In order to exploit sparsity, 

the undersampling process is designed in such a way that the introduced aliasing artifacts 

look like random noise (22–24), which can be effectively removed with a nonlinear 

operation that enforces for example sparsity on a vector, low rankness on a matrix and 

combinations of sparse and low-rank models (24–26). The AF using CS for knee cartilage 
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varies in the literature, however, it can reach between an 8 to 10 fold when combined with 

parallel imaging (27, 28), taking around 3 min for data acquisition.

While this is theoretically sound, there are many details, such as the optimal k-space 

sampling scheme, the regularization function, and the reconstruction algorithm, that need to 

be set correctly for efficient and widespread applications. In this paper, we will review the 

currently existing state-of-the-art compressed sensing approaches for rapid quantitative, 

compositional mapping of the knee cartilage.

The next section provides an overview of CS background including image data acquisition, 

image reconstruction from undersampled data, fitting models and parameters recovery. The 

following section briefly reviews the different CS studies for compositional T2 and T1ρ 
mapping of knee cartilage with illustrative examples. In the final section, future directions, 

opportunities, and challenges of rapid compositional mapping techniques are discussed.

REVIEW OF COMPRESSED SENSING MRI FOR COMPOSITIONAL 

MAPPING:

Theoretical Background:

Over the last decade, compressed sensing (24, 29), also known as compressive sampling (30, 

31) was consolidated as an important breakthrough in sampling theory. It requires three 

specific ingredients: 1) sparse image representation (32), which states an image could be 

sparsely represented in a transformed domain, such as wavelet domain (33); 2) incoherent 
sampling (29, 30), which states any element in the sparse representation domain spreads 

almost uniformly (like a random noise) in the sampling domain, i.e. k-space; and 3) 

nonlinear image reconstruction (34), that exploits sparsity and incoherence to stably recover 

the exact image.

The field of MRI rapidly adopted compressed sensing (24) as shown in Figure 1, since k-

space, is largely incoherent with the spatial domain (34) and with the domain defined by 

typical sparsifying transforms (22). In other words, when k-space is undersampled 

incoherently, the resulting aliasing artifacts look like noise in the sparse domain, rather than 

a structured artifact. This is exactly why sparse reconstruction works well, the sparse peaks 

are easily distinguishable and the noise-like artifact can be removed, as illustrated in Figure 

2.

From the practical point of view, it is not clear what the ideal sparse representation, i.e. 

sparsifying transform, for a sequence of relaxation-weighted images involving the knee 

cartilage area would be. In addition, the ideal sampling pattern should have minimum 

coherence between k-space and the sparse representation, which means these choices are 

connected. Next, we review the choices that have been found in the literature for knee 

cartilage mapping.

Data Acquisition:

In general, quantitative mapping of knee cartilage requires capturing multiple weighted 

images of a particular relaxation process of interest. The more the number of weighted 
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images, the better the precision of the estimated parameter (35) with the penalty of long 

acquisition time.

Most current MRI sequences use contrast-preparation RF pulses followed by the imaging 

readout (36). The contrast-preparation pulses manipulate the spins in order to control the 

object with the appropriate magnetization that leads to the desired relaxation-weighted 

image. The imaging readout pulses generate phase and frequency encoding at the relaxation-

weighted object in such a way its captured data lies in appropriate k-space position for 

further reconstruction (1). Usually, only a small portion of the k-space is captured after 

contrast-preparation, then the process is repeated until enough k-space samples are collected. 

Special attention is given to components located in the central area of the k-space (low-

frequency components). They are usually captured first after magnetization preparation 

when the signal is strong and less deteriorated by imperfections of main magnetic field or 

gradient system (36).

T2 mapping sequences can be based on both two-dimensional (2D) or on three-dimensional 

(3D) pulse sequences. In general, 2D sequences have limited volume coverage and often 

have poor through plane resolution compared to 3D sequences. However, 3D sequences 

usually come at the cost of a significant increase in scan time. MRI sequences such as 2D-

multi-echo spin-echo (MESE) (37) has been utilized for CS studies in (38, 39) for T2 

weighting. Recently, however, 3D sequences such as double-echo steady-state (DESS) (40), 

triple-echo steady-state (TESS) (41), and a modified Turbo-FLASH or spoiled gradient echo 

(SPGR) sequences with T2 preparation module have been used in (11, 42), respectively. The 

3D sequences are preferred over 2D-MESE sequences due to stimulated echoes, 

magnetization transfer and diffusion effects (37, 43, 44). For T1ρ weighting, relaxation 

preparation pulses (45) are applied before a sequence of gradient echo pulses for phase and 

frequency encoding. The sequence Magnetization-Prepared Angle-Modulated Partitioned k-

Space Spoiled Gradient Echo Snapshots (MAPSS) (46) was used in some CS studies (47, 

48), while in other CS studies (27, 49) a T1ρ preparation module has been combined with a 

modified Turbo-FLASH sequence (12).

Compressed sensing exploits the concept of k-space undersampling, this is, encoding fewer 

points than required by the Nyquist sampling rate. In multislice 2D Cartesian acquisitions, 

2D k-space from each slice is randomly undersampled along the phase-encoding (ky) 

dimension only, since undersampling the frequency encoding direction (kx) does not save 

scan time. In this case, phase encoding direction is undersampled in a random fashion, as 

shown in Figure 3(a). This sampling pattern is used in (39, 48, 50, 51). Since many 

relaxation-weighted images have to be captured to reconstruct relaxation maps, the 

acquisition process is repeated several times. CS works more efficiently in higher 

dimensional spaces, which are inherently more compressible, therefore the time of the 

relaxation process is treated as a third dimension (denoted by p) and random sampling 

pattern in the resulting ky × p space (50) is considered jointly. The most commonly used 

undersampling pattern for this ky × p space is the 2D Poisson disk, with some small fully 

sampled area in the central part of the k-space (52), as shown in Figure 3(a). When 3D k-

space acquisitions are performed, one of the encoding directions is chosen as a readout (kx), 

and it is fully sampled. The other two encoding directions, say ky and kz, which are phase 
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encoded, are undersampled. In most of the cases, we preserve a central area of k-space, such 

as used in (27), and undersampling the remaining outer k-space area, either using 2D 

Poisson disk sampling (53), as shown in Figure 3(b), or Gaussian random sampling 

combined with regular undersampling (47), or even radially variable density (54), as shown 

in Figure 3(d). The 2D ky × kz undersampling pattern is usually different if looked at the p 
direction, as shown in Figure 3(c) for a 3D Poisson disk. The visual effect of noise-like 

aliasing artifacts of variable density and Poisson disk patterns are seen in Figures 4(b) and 

4(c).

Radial k-space acquisition is usually more robust to motion artifacts, and acquisition signal 

to noise ratio (SNR) are a little higher due to sampling of the central k-space position at 

every readout (55), as seen in Figure 3(e). Radial acquisitions do not fall onto the Cartesian 

grid and requires gridding for reconstruction (56). For iterative reconstructions, the non-

uniform fast Fourier transform (NUFFT) (57) is usually employed (58, 59), which increases 

computation time. So far, radial sampling had only been applied to T2 mapping (60) and 

sodium MRI (61) for knee cartilage. The visual effects of noise-like aliasing artifacts of 

radial sampling are seen in Figure 4(d).

The number of temporal points in the p direction (echo time (TE) for T2 mapping or length 

of spin-lock time (TSL) for T1ρ mapping) and their distribution chosen to measure the 

relaxation process are extremely relevant, especially if the expected behavior of the 

relaxation process is not monoexponential (62). Optimal time spacing has been discussed in 

(35) for T2, while efficient sampling in (10) for T1ρ. However, it has never been discussed 

how CS affects the choice of temporal sampling points.

Image Reconstruction from Undersampled Data:

Compressed sensing reconstruction is an inverse problem that aims to recover an image that 

is sparse in some transformed domain using undersampled data only. The reconstruction 

problem can be formulated as:

x = argminx y − Ex 2
2 + λR x , [1]

where x is a vector that represents the reconstructed set of relaxation-weighted images, with 

its original size of Ny × Nz × p, y is a vector that represents the captured k-space data for all 

relaxation-weighted images, its original size is ky × kz × c × p, where c is the number of 

receive coils, and the matrix E represents the encoding matrix mapping x to y, containing 

coil sensitivities (when parallel imaging and CS is jointly used (64)), Fourier transforms, and 

sampling pattern (27). Many CS methods for knee cartilage use the joint parallel imaging 

and CS approach to achieve higher undersampling rates, as shown in (27, 28, 47, 48, 65). 

The use of squared l2-norm, or Euclidean norm, e 2
2

= ∑i = 1
N ei

2, is quite common either 

because it is related to the usual assumption of Gaussian noise (63), or because it leads to a 

more tractable mathematical problem. Also, in [1], λ is the regularization parameter and 

R(x) is the regularization function.
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Sparsity is a key assumption for CS image recovery. In [1], sparsity is induced by the 

regularization function R(x). Typically, R x = Tx 1 is utilized, where the l1-norm, 

u 1 = ∑i = 1
M ui , is small for sparse, or nearly sparse u vectors, and u = Tx, where T is a 

sparsifying transform. The size of u depends on the chosen T. Wavelet transforms or finite 

differences are commonly used as spatial sparsifying transforms. However, as the set of 

relaxation-weighted images are jointly reconstructed, as x, more sophisticated temporal or 

spatiotemporal models can be used. In order to deal with the higher correlation between 

relaxation-weighted images, temporal model-based learned dictionaries from Principal 

Component Analysis (PCA) or K-means Singular Value Decomposition (K-SVD), or even 

3D wavelet (2D+time) and spatiotemporal finite differences (60, 65, 66) are used. Figure 5 

illustrates an example when only the top 15% coefficients are used to recover the images 

with 3D wavelet.

When a dictionary is learned simultaneously with the reconstructed image, the regularization 

R x = Du − Px 2
2,    s . t . u 0 ≤ T is usually used, as in (66). In this case, D is the 

dictionary, P is a patch selector, and ‖u‖0 is the l0-pseudonorm which defines the number of 

non-zero elements of u. One of the issues with this kind of regularization is that it is non-

convex (due to l0-pseudonorm) and may not produce stable solutions (34). If reference data 

or signal model is available, the dictionary can be learned before the reconstruction, using 

tools as K-SVD (50). Figure 6 illustrates as an example when K-SVD is used to learn an 

overcomplete temporal dictionary. Since the voxel representation over time is redundant 

(67), only some small number of coefficients can be used to reconstruct the image with very 

little difference.

Another kind of sparsity is produced by low rank models (38). One example is R(x) = ‖x‖*, 

or the nuclear-norm (68) of x. Low rank models reshape the reconstructed image sequence in 

to a Casorati matrix, say X, with spatial position of the voxels oriented in one dimension and 

time position in the other. This matrix is usually of low rank.

The singular values decomposition (SVD), such as X = VSUT, where matrices V and U 
represents principal components in its columns, ordered by importance from left to right, 

where V contains spatial information and U relaxation (or time) signal information. The 

diagonal matrix S contains the singular values, which weights the components by its 

importance. If X is low rank, then only the first elements of the diagonal of S are significant 

(non-zero). Columns of V and U related to small elements of S can be removed without 

significant changes in X. In some sense, low rank model represents sparsity of the SVD 

structure of the matrix X, so the requirement of sparsity still holds true. Figure 7 illustrates 

low rank representation for knee cartilage images.

Many recent studies (26, 27) observed that low rank models can be combined with some 

typical sparse representation in such a way that both could be used to represent the 

reconstructed signal. This gave rise to low rank plus sparse (L+S) models where 

λR x = λl l
*

+ λs Ts 1, being x = l + s, were s is the sparse part, using the l1-norm to 

induce sparsity, and when l is the low rank part, based on the nuclear-norm. This is also an 
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overcomplete representation of the image, as illustrated in Figure 8. Having so many options 

for regularization functions may be confusing. In (27), twelve different variations were 

compared for T1ρ mapping, concluding that 3D finite difference for T, or exponential 

dictionary for D, or 2D finite difference for T in the L+S model were among the best for the 

problem.

The cost function showed in [1] still needs to be solved by a minimization algorithm. The 

first compressed sensing approaches in MRI (22, 24, 69) and some that followed them (64) 

used nonlinear conjugate gradient (NLCG) (70). This is the most commonly used algorithm 

for CS in cartilage applications (47, 60, 61). NLCG is not very effective for problems with 

l1-norm and definitely cannot handle low rank and low rank plus sparse models, requiring 

more sophisticated mathematical tools such as the proximal operator (71). Perhaps due to 

this, several customized CS algorithms had been used for knee cartilage, such as (28, 66). A 

negative point of customized algorithms is that convergence is not always mathematically 

analyzed, meaning it is not guaranty to work on different scanning configurations or initial 

values, for example. The use of well-studied algorithms such as alternating direction method 

of multipliers (ADMM) (72) or fast iterative shrinkage-thresholding algorithm (FISTA) (73, 

74), used in (39) and (27) respectively, are somewhat safer from this point of view.

One important point left unanswered in most CS studies is the choice of the regularization 

parameters λ, or λs and λl. For feasibility tests, choosing the regularization parameter in 

order to have results similar to the fully sampled reconstructions makes sense, either by 

comparing image reconstruction error (27, 65) or estimated relaxation parameter error (75). 

In these cases, the fully sampled data is available for comparison. Nevertheless, in practical 

applications, when prospective undersampling needs to be done, this is still an open 

problem. Classical criteria that does not make use of any reference, such as L-curve (76), 

generalized cross-validation, or Stein’s unbiased risk estimate (77) remain untested for 

quantitative mapping of knee cartilage using CS.

Fitting Models and Parameters Recovery:

In general, relaxation processes are assumed to be exponentially decaying. Models based on 

magnitude decay are expressed as:

x t, n = a n exp − t
τ n + b [2]

where x(t,n) is one particular voxel over time t at position n, a(n) is a positive real-valued 

measurement of the magnitude of the magnetization, and τ(n) is the relaxation decaying 

time at position n. The constant component b is included due to residual noise.

Multicomponent exponential models had also received more attention recently (78–80). 

Different exponential decaying time constants are observed in biological systems due to the 

presence of protons in different molecules. Biexponential model is usually the next step after 

monoexponential decaying (11, 12, 49, 81). But three components had already been reported 

in the literature (79, 82). It was also reported nonexponential decay in (83, 84) for knee 
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cartilage, but there is not much investigation on it. Generally, multiexponential models can 

be written as:

x t, n = a n ∑ j = 1
J f j n exp − t

τ j n + b, [3]

where τj(n) is the relaxation decaying time and fj(n) is the fraction of the component j of the 

multicomponent exponential. Figure 9 illustrates the decaying measured in one voxel of a 

3D-T1ρ mapping of the human knee cartilage. Clearly, the biexponential model better 

represents the observations.

Multiexponential evaluation can also be obtained by a dictionary with fixed exponentials 

with different relaxation times τj, also known as an inverse Laplace transform (85), which 

can be written as:

x t, n = ∑ j = 1
J c j n exp − t

τ j
+ b, [4]

In this case, only the coefficients cj(n), related to exponential functions with times τj, need 

to be estimated.

Model fitting can be efficiently done with nonlinear least squares (NLS) (86). This is usually 

executed by voxel-by-voxel, and one can use it with any model, from monoexponential to 

multiexponential. However, NLS defines only the cost function (and the term nonlinear is 

due to the use of exponential models), an optimization algorithm is still necessary. The 

Levenberg-Marquardt (86) algorithm is the most commonly used for the fitting part of the 

quantitative mapping. It has been used in (48) for T1ρ mapping and in (50) for T1 and T2 

mapping with monoexponential models. The conjugate gradient Steihaug’s trust-region 

algorithm (87) is used in (27) for monoexponential and in (49) for biexponential T1ρ 
mapping. In (39) the variable projection algorithm for NLS (88) is utilized for 

monoexponential T1 and T2 problems.

Spatial filtering before the fitting process is sometimes useful. This is typically done in non-

CS approaches to reduce noise, but it is actually useful in CS approaches as well (27). Figure 

10 illustrates some representative examples. When filtering is utilized, the error between the 

relaxation map obtained by a fully sampled reconstruction and CS reconstruction is much 

smaller. The price, however, is the lack of details in the obtained relaxation maps.

APPLICATIONS OF CS-MRI TO COMPOSITIONAL MAPPING OF KNEE 

CARTILAGE:

T2 Mapping:

T2 mapping is perhaps the most studied for knee cartilage due to the availability of imaging 

sequences on all major vendors. It is known that T2 is sensitive to water, collagen content 
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and tissue anisotropy (43). In (6) is shown that T2 is usually higher in knee OA patients, 

compared to healthy subjects, with significant differences between subjects (standardized 

mean difference of 0.49). The acceleration of T2 mapping using compressed sensing was 

among the first applications for knee cartilage, where radial acquisition and PCA sparsity 

were used to demonstrate the possibility of reducing acquisition time by 8 times, requiring 2 

min and 17 sec, with little loss compared to the gold standard (60).

In (28), Peng et al. shown similar acceleration results for knee cartilage, but with multi-coil 

Cartesian sampling and a mix of sparsity and low rank priors. Nevertheless, specific error 

bounds for T2 mapping of knee cartilage for different levels of acceleration are not precisely 

known yet. Figure 11 illustrates a comparison of T2 mapping using CS. A list of studies on 

T2 mapping of knee cartilage using CS is included in Table 1.

T1ρ Mapping:

T1ρ is sensitive to proteoglycan content (89). The previous studies (6, 8, 90) have shown the 

potential of using T1ρ to detect early biochemical changes in osteoarthritis. T1ρ is also 

increased in patients with knee OA, demonstrating the best discriminatory ability for 

subjects with disease (6) (with standardized mean difference of 0.73). Due to its importance, 

acceleration of T1ρ mapping using CS has been better studied than with T2 in knee cartilage. 

See Table 1 for a list of studies on CS for knee cartilage mapping.

Pandit et al. combined CS with autocalibrating reconstruction for Cartesian sampling (ARC) 

in (47). They reported acceleration factors of 3 compared to the fully sampled acquisition, 

but the resulting acquisition time of 3 min is what is typically observed in other CS studies. 

In (48), a combined reconstruction with locally adaptive iterative support detection (k-t 

LAISD) and joint image reconstruction and sensitivity estimation in SENSE (JSENSE) 

method was proposed for knee cartilage, with AF up to 3 and 3.5. In (27, 49), Zibetti et al. 

showed a detailed comparison of twelve different regularization functions, where some of 

them are able to achieve error below 6.5% compared with maps produced by fully sampled 

k-space, but with AF of 10, resulting in 3.2 minutes of acquisition. Figure 12 illustrates a 

comparison of T1ρ mapping using CS.

Other Types of Mapping:

Madelin et al. applied compressed sensing to map sodium concentration in (61) for knee 

cartilage using radial acquisitions and combined wavelet and total variation sparsity 

constraints, to obtain an AF of 4 and reduce the acquisition from 20 min to 5 min. The 

signal-to-noise ratio is still an issue with sodium MRI. In (91), Behl et al. showed that 

repeating the same radial spokes, in a radial acquisition with a reduced number of angles 

followed by CS reconstruction, is better than capturing more angular points and reconstruct 

with gridding methods.

The delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) (92) is sensitive to 

glycosaminoglycans (GAG), presenting different T1 relaxation time in knee cartilage, which 

can also be used to detect cartilage degradation. In (54), Wang et al. applied compressed 

sensing to accelerate GAG quantization with ex-vivo microscopic MRI, achieving AF up to 

16, reducing the scan time to ~8–30 min from fully sampled scans of ~2–8h.
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FUTURE DIRECTIONS OF RAPID COMPOSITIONAL MAPPING OF KNEE 

CARTILAGE:

Open Questions for CS of Knee Cartilage:

Even though compressed sensing MRI is currently mature and vendors are starting to 

introduce commercial products, clinical and basic researchers still need to address many 

questions in order to fully exploit its benefits.

There is no consensus on a method to choose the number of relaxation time points of the 

relaxation process. Most studies regarding relaxation time points use only fully sampled 

acquisitions (10, 35). The problem is different when CS reconstruction is used. Just to 

elucidate some differences: the noise in the reconstructed images is no longer Gaussian, as 

shown in (27), and depends on the kind of regularization function utilized, among other 

factors. Ideal sampling time points also depend on expected tissue time decay and may 

change depending on the clinical study. In other words, we may expect to see more studies 

in this direction in the near future.

Another unanswered question is regarding the ideal k-space undersampling pattern. Poisson 

disk seems to be the dominant approach for multi-slice 2D and 3D acquisitions, but other 

optimized approaches with variable density, such as (93), may be better. New comparative 

studies on this point should be done in the future.

Regularization functions with learned sparsifying transforms or dictionaries have been 

reported in the literature (94). Learning dictionaries are already a reality (66) with knee 

cartilage mapping. However, instability due to non-convexity still needs to be resolved. 

Methods like blind compressed sensing (95, 96) are important steps in terms of learning 

sparsifying basis within a more stable optimization. Blind CS has been applied for brain 

mapping in (94).

Other Emerging Rapid Imaging Methods:

Model-based reconstruction is an interesting approach that has already produced good 

results for brain mapping using monoexponential models with 4 to 6 fold AF (97, 98). 

Essentially, the system matrix E from [1] is combined with the exponential model, similar to 

[2]–[4], usually leading to a nonlinear operator. Instead of reconstructing the image and then 

proceed to model fitting, the model-based reconstruction finds the parameters directly. Note 

that if a multiexponential linear model, similar to the inverse Laplace transform in [4] is 

utilized, it can be straightforwardly combined with CS, as illustrated in (27) for knee 

cartilage for 10 fold AF.

Another promising approach for multiple quantitative parameters is magnetic resonance 

fingerprinting (MRF) (99, 100). MRF uses a different approach, instead of varying one 

parameter and keeping the others fixed as in most quantitative imaging, it changes all 

acquisition parameters in a pseudorandom fashion such that each tissue generates a unique 

evolution, or “fingerprinting”, detected by a pattern recognition algorithm. This technique 
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has been applied to rapid brain (99–101) and abdominal (102) mapping, but it can soon be 

applied to cartilage mapping as well.

Artificial intelligence methods that make use of deep learning (103), such as convolutional 

neural networks (104) and domain-transform manifold learning (105) are finding their way 

to imaging. These methods have been successfully applied to computed tomography (106) 

and MRI (107, 108), and recently used for compositional brain mapping (109). One 

challenge when using these methods is how to obtain the training data sets. Large fully 

sampled datasets may be required, but this is exactly what rapid acquisitions want to avoid. 

In (109) simulated signals were used to generate the training database with good results.

Challenges in prospective CS:

The quality of CS reconstruction depends on the right choice of the regularization 

parameters. In retrospective CS studies, the parameter is usually adjusted to provide an 

image as similar as possible to the fully sampled reference image. However, this is not 

possible in prospective studies. In this sense, methods for automatically choose the 

regularization parameters need to be studied.

Potential Advantages of CS MRI:

The most important advantage is the reduction of scan time. Considering the different 

studies presented here, on average, it is observed a reduction of acquisition time from ~20–

30 min, required by a fully sampled scan, to ~3–5min, taken by a CS undersampled scan. 

These scan times are similar to the time required by most anatomical routine clinical 

acquisitions.

The benefits of the reduced scan time are many, from the economical point-of-view more 

patients can be examined per period of time; from the comfort point-of-view, patients do not 

need to stay still inside the scanner for long periods of time. The chances of the scanned data 

are corrupted by patient motion are smaller, but if data are corrupted, then an eventual 

repetition of the scan can be done without seriously affect scanner schedule. High-resolution 

mapping is possible without increasing acquisition time to much. More time points can be 

acquired, making studies with multiexponential models and evaluation of multi-relaxation 

mapping a reality in clinical practice and revealing more information about the biology and 

pathobiology of cartilage tissue, as well the effects of cartilage preserving therapies.
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Figure 1: 
Publications per year in the PubMed database related to compressed sensing (CS) in general, 

compressed sensing and magnetic resonance imaging (CS-MRI), and CS of cartilage and 

mapping (CS cartilage + mapping). Less than 8% of CS MRI publications are related to 

quantitative mapping or cartilage imaging.
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Figure 2: 
General concept used in CS. The original signal x should be sparse, and the system matrix E 
should be incoherent. The effect of this is that ETy, where y is the k-space data and ET is the 

adjoint of E, should be basically sparse peaks mixed with noise-like artifacts, which are 

easily recovered by a nonlinear CS reconstruction. Most significant peaks are usually 

recovered at the initial iteration x1. However, remaining sparse elements can be seen when 
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the residual is mapped back to image domain, via ET y − Ex1 , and they are recovered in the 

following iterations, such as x2.
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Figure 3: 
Typical k-space sampling patterns utilized in compressed sensing for mapping of the knee 

cartilage. (a) 2D acquisitions for one slice, p is the relaxation parameter direction and kx is 

the readout direction, where ky × p is randomly undersampled with Poisson disk in the mid-

high frequencies. (b) 3D acquisition for one relaxation-weighted volume and (c) for one 

slice in the x direction (after FFT in kx direction) the ky × kz × p sampled points follow a 3D 

Poisson disk pattern. (d) The sample points follow a radially variable density pattern, and (e) 

radial sampling with golden angle increments and different initial angle for each p.
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Figure 4: 
Visual effect of the sampling pattern compared to (a) fully sampled knee images when FFT 

is used for reconstruction: (b) variable density pattern, with 45% of k-space sampled, (c) 

Poisson disk pattern, also with 45% of k-space sampled, and (d) radial pattern with 40% of 

k-space sampled.
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Figure 5: 
Example of the sparsity or compressibility of the knee images in the 3D wavelet (2D+time) 

transformed domain. The original images x are sparse when transformed via Tx, such as 

wavelet transform. If only the top 15% of the coefficients are preserved, and the rest nulled, 

we can still recover a very similar image x using inverse transform T−1. The difference x − x
is usually very small and has a noise-like aspect.
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Figure 6: 
Example of the sparsity or compressibility of the knee images using a learned overcomplete 

temporal dictionary D. The dictionary atoms dk can be learned from a model or the data 

itself using K-SVD, for example. The dictionary is usually redundant and x = Du is non-

unique, but a sparse version u can be found such that the difference x − x is small.
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Figure 7: 
Example of the low rank model for relaxation-weighted images. The “sparsity” of this model 

is in the singular values of the Casorati matrix of the images, as X = VSUT. A reduced 

structure given by the principal components of the SVD, using only the first and most 

significant components of U = [u1,.., uNt], V = [v1,..,vNt], and S = diag(s1,…,sNt), 

reconstructs X which yields a signal x  with very small difference x − x.
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Figure 8: 
Illustration of the low rank (L) plus sparse (S) decomposition, which combines two models: 

the low rank and sparse, as x = s + l. Note the sparse component s can, actually, be sparse in 

a domain given by a sparsifying transform T, 2D wavelet in this case. If only the top 10% of 

the sparse coefficients are preserved to generate s and the top 10% principal components are 

preserved to generate l , then a compressed x = s + l  can still represent x with very small 

difference x − x.
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Figure 9: 
Measured T1ρ decaying signal from the knee cartilage. Different TSL Points were fitted with 

monoexponential and biexponential models. Biexponential provided a better fit with lower 

residual error than monoexponential model.
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Figure 10: 
Effect of pre-filtering the reconstructed knee joint images before the fitting process on T1ρ 
mapping. In this example, CS method using Poisson disk pattern for sampling and 

spatiotemporal finite differences for regularization is utilized, according to (27).
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Figure 11: 
A visual example of the acceleration provided by CS for T2 mapping of knee cartilage. CS 

method used Poisson disk pattern for sampling and sparsity on exponential dictionaries. The 

use of filtering before fitting is also illustrated. Note that T2 maps of knee cartilage after 

filtering is much smoother.
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Figure 12: 
A visual example of the acceleration provided by CS for T1ρ mapping of knee cartilage. CS 

method used Poisson disk pattern for sampling and L+S with sparsity in the spatial finite 

difference, as shown in (27). The use of filtering before fitting is also illustrated. Similarly, 

T1ρ maps of knee cartilage after filtering is much smoother.
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