Skip to main content
. 2018 Oct 29;2018:2376317. doi: 10.1155/2018/2376317

Table 3.

Comparison of the proposed method with related work.

Author Year Method Dataset # Automation Precision (%) Run time (s)
Oliveira et al. [7] 2011 RG Sliver07 20 Auto
Luu et al. [4] 2015 RG Clinical CTA 51 Auto ACC = 86.2; SEN = 85.1; SPE = 92.3
Esneault et al. [10] 2010 GC Clinical CTA 1 Auto 10–100
Zeng et al. [12] 2017 GC Clinical CTA 6 Auto ACC = 97.7; SEN = 79.8; SPE = 98.6 390
Sangsefidi et al. [11] 2018 GC 3Dircadb/Clinical CTA 7 Auto DICE = 74.0 560
Shang et al. [9] 2011 LS Clinical CTA 20 Auto SEN = 91.0 480
Ahmadi et al. [28] 2016 FCC Sliver07 20 Auto ACC = 91.0; SEN = 94.1; SPE = 83.6 27.1
Zeng et al. [13] 2016 ML Clinical CTA 6 Auto ACC = 98.1; SEN = 74.2; SPE = 99.3 0.05–0.1
Guo et al. [15] 2015 FC Clinical CTA 4 Semi 112.5
Wang et al. [16] 2016 FC Clinical CTA 3 Semi 22
Huang et al. [14] 2018 DL 3Dircadb 20 Auto ACC = 97.1; SEN = 74.3; SPE = 98.3; DICE = 67.5 230
Ours 2018 IFC 3Dircadb
Sliver07
20
20
Auto
Auto
ACC = 96.4; SEN = 73.7; SPE = 97.4; DICE = 67.3
ACC = 96.8; SEN = 84.4; SPE = 97.6; DICE = 71.4
200
210

Evaluation by the number of vascular nodes; CTA = computed tomography angiography; RG = region growing; GC = graph cuts; LS = level set; FCC = fuzzy C-means clustering; ML = machine learning; FC = fuzzy connectedness; DL = deep learning; IFC = improved fuzzy connectedness; ACC = accuracy; SEN = sensitivity; SPE = specificity; DICE = Dice coefficient; Auto = automatic; Semi = semiautomatic.