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Abstract

A popular hypothesis is that the dorsal striatum generates discrete "traffic-light" signals that 

initiate, maintain and terminate the execution of learned actions. Alternatively, the striatum may 

continuously monitor the dynamics of movements associated with action execution by processing 

inputs from somatosensory and motor cortices. Here we recorded the activity of striatal neurons in 

mice performing a run-and-stop task and characterized the diversity of firing rate modulations 

relative to run performance (tuning curves) across neurons. We found that the tuning curves could 

not be statistically clustered in discrete functional groups (start or stop neurons). Rather, their 

shape varied continuously according to the movement dynamics of the task. Moreover, striatal 

spiking activity correlated with running speed on a run-by-run basis, and was modulated by task-

related non-locomotor movements such as licking. We hypothesize that such moment-to-moment 

movement monitoring by the dorsal striatum contributes to the learning of adaptive actions and/or 

updating their kinematics.
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Introduction

Locomotion allows animals to move around and interact with their environment, and the 

control of locomotion is one of the most fundamental functions of the nervous system. 

Generally, animals start, maintain and stop their locomotor activity according to external 

predictive cues or internal factors (appetite, fatigue, …). Locomotion depends primarily on 

neuronal circuits located in the spinal cord [1] which are under the direct influence of 

descending pathways from the motor cortex and brainstem [2]. Recordings of brainstem 

reticulospinal neurons revealed patterns of activity compatible with the presence of 

locomotion start, maintain and stop cells [3]. In addition, selective manipulation of 

brainstem V2a neurons demonstrated that this genetically defined neuronal group acts as 

locomotion stop neurons in freely moving mice [3,4]. Thus, it appears that the three main 

phases of locomotion may be controlled by traffic-light signals in the brainstem.

If the brainstem is equipped with locomotion start, maintain and stop cells, what are the 

descending mechanisms controlling the activity of these cells? The selective activation of 

striatal projection neurons forming the basal ganglia direct and indirect-pathways 

respectively promotes and inhibits, locomotion, through modulation of glutamatergic 

neurons in the brainstem mesencephalic reticular nucleus [5]. Interestingly, it has been 

proposed that action "start", "maintain" and "stop" signals emerged in the dorsal striatum 

during the learning of action sequences [6–9]. The hypothesis of discrete groups of striatal 

neurons that regulate learned actions like a traffic-light is appealing due to its simplicity and 

potential relevance for striatal disorders such as Parkinson's disease which is associated with 

difficulties in initiating movements [6,10]. However, it is unclear how this disembodied 

traffic-light hypothesis is consistent with anatomical and physiological data showing that 

neuronal activity in the striatum is modulated by movements of different body parts, and 

sensory stimulation associated with movements. Indeed, a large portion of the dorsal 

striatum receives somatotopically organized inputs from primary sensory and motor cortices 

that provide sensory feedback and motor efference signals associated with the movements of 

body parts, including trunk, forepaws and hindpaws, mouth, face and whiskers (in rodents) 

[11–17]. In addition, electrophysiological studies in rodents and non-human primates have 

shown that neurons in localized regions of the dorsal striatum responded to both passive and 

active movements of specific body parts [18–24]. Thus, the striatum may provide a moment-

by-moment representation of the ensemble of movements associated with the execution of a 

learned action rather than triggering action initiation or termination [25].

We tested the relative validity of these two alternative functions in a new locomotion-based 

task in which head-restrained mice were trained to start, maintain and stop running 

according to external cues. After training, we recorded the spiking activity of multiple well-

isolated neurons using silicon probes while mice performed this run-and-stop action and 

computed the average firing rate profile of the recorded neurons relative to the different run 

phases (referred to as tuning curve in the rest of the manuscript). If start, maintain and stop 

neurons exist, it should be possible to statistically separate them into groups based on the 

shape of their tuning curve or the time of their maximal firing rate modulations. The firing 

rate of start neurons should be transiently modulated before the beginning of the runs and 

such modulation should be distinguishable from the modulation of neurons associated with 
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the early phases of the runs. In addition, the spiking activity of putative start neurons should 

be the main source of accurate decoding of the run initiation phases by ensembles of striatal 

neurons. Alternatively, if striatal activity mainly follows the dynamics of movements (not 

only locomotion-related movements but also those associated with postural adjustments and 

orofacial activities occurring around run initiation and termination), a continuum of tuning 

curves is expected. Such continuum would reflect the overlapping nature of the sequential 

movements of different body parts during action execution, with a tendency for transient 

firing rate modulations occurring around run initiation and termination and more prolonged 

modulations between these events. In that case, it will be difficult to separate tuning curves 

in functional groups (start, stop, …), even if some neurons may display a prominent 

modulation of their firing rate before run initiation and/or termination. Finally, if neuronal 

activity in the striatum primarily represents the dynamics of movements on a moment-by-

moment basis, there should be a correlation with the running speed and/or others non-

locomotor movements associated with the task performance (such as licking or whisking 

activities).

Results

To investigate how the activity of dorsal striatum neurons is modulated during and around 

well-isolated epochs of locomotor activity, we developed a task in which mice, head-

restrained above a free spinning wheel, performed prolonged runs interleaved with running 

pauses to obtain a maximum of rewards (drops of a sucrose solution, Figure S1A). The 

behavioral sessions consisted of several trials, divided in "Run" and "No run" periods (RP 

and NRP, respectively) whose durations depended on the animals' locomotor activity. During 

RP (signaled by a continuous white noise), mice obtained a drop of sucrose as soon as they 

ran for 100 cm without stopping. At the time of reward delivery, the white noise was turned 

off and the task transitioned to the NRP, which lasted 15 s or more. Indeed, when mice 

stayed immobile for at least 2 s at the end of the NRP (e.g., between 13 and 15 s after the 

end of the RP, Figure S1A), a new trial started (sound on). However, when mice failed to 

respect this 2 s immobility period, the NRP was prolonged until animals paused their 

locomotor activity for 2 s. A trial was considered correct if the animal ran continuously for 

100 cm before the end of the RP (see illustrative trials 3-6, Figure S1B). When the mice 

failed to run continuously for 100 cm after 60 s in the RP, either because they did not run 

enough (illustrative trial 1, Figure S1B), or because multiple short runs interleaved with 

pauses were performed (illustrative trial 2, Figure S1B), the trials were considered as 

incorrect and the task transitioned from RP to NRP without reward delivery. When the mice 

started to run toward the end of the RP (illustrative trial 3, Figure S1B) or ran during the 

immobility period of the NRP (illustrative trials 4-5, Figure S1B), trials were labeled as 

correct even if they resulted in a low rate of reward delivery. Indeed, efficient performance 

consisted of short RP (the mice performed 100 cm-long runs as soon as the RP started) and 

15 s-long NRP (the mice did not run at the end of the NRP, illustrative trial 6, Figure S1B). 

Early during training, mice ran very little and/or performed few long runs that exceeded the 

RP (Figure 1A, left panels). Still, mice licked consistently after reward delivery (i.e., at the 

beginning of the NRP) but not after non-rewarded RP (Figure 1A, lower left/middle panels). 

Progressively, mice became more efficient and regularly alternated between run and 
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immobility epochs (Figure 1A, middle/right panels). To quantify the progress of the mice on 

a session-by-session basis, we used three complementary measures: the average rate of 

correct trials (i.e., the reward rate), the average duration of the RP and a Run-and-Stop index 

(difference between average running speeds at the end of the RP versus during the NRP, 

Figures 1B-1D). We extracted the 20th, 50th and 80th percentiles of all values obtained across 

sessions (n = 2060) and animals (n = 28), for each metric. We then plotted, for each metric, 

how many animals had reached these performance thresholds across sessions. About half of 

the animals learned the task quickly and reached a high level of performance in less than 20 

sessions while other animals took much longer to become proficient.

In the first training sessions, animals either rarely moved or performed runs with variable 

durations (Figure 1A, upper left and middle panels), precluding the isolation of a sufficient 

number of runs with similar durations. Thus, we focused our analysis on 

electrophysiological recordings performed once mice reached good proficiency in the task 

(see STAR Methods). To examine how the activity of individual striatal neurons were 

modulated relative to the different phases of the run, runs were isolated and their durations 

were normalized (Figure 2A and see STAR Methods). A 32-channel silicon probe targeting 

a region overlapping the dorsocentral and dorsolateral striatum was used to acutely record 

multiple single units while mice performed the task (Figure 2B and see STAR Methods). 

Visual inspection of the spike rasters during task performance from a few representative 

neurons (Figure 2C, top) and their average firing rates relative to the run phases (Figure 2C, 

bottom and Figure 2D; from now on average firing rates relative to the run phases are 

referred to as tuning curves) revealed strong modulations at different phases of the runs. A 

majority of neurons displayed a significant increase in their firing rate (72%, Figure 2D, top, 

see STAR Methods) while a minority displayed a decrease in firing rate during the runs 

(14%, Figure 2D, middle). Positively and negatively-modulated neuronal populations 

displayed a sustained increase and decrease in firing rate throughout the runs, respectively 

(Figure 2D, bottom). Previous studies reported prominent increases in firing rate around the 

beginning and end of motor sequences [6,9,26,27]. Thus, we first focused our analysis on 

neurons that increased their firing rate during or just around the runs (positively modulated 

neurons). The distribution of all the run phases associated with significant modulation of the 

tuning curves was uniform during the run (Kolmogorov Smirnov test for uniform 

distribution's statistic = 0.032, p = 0.12, Figure 2E). Still, the firing rate peaks were stronger 

and more numerous close to the beginning and end of the runs (Kolmogorov Smirnov test's 

statistic = 0.17, p = 0.0024, Figures 2F and 2G). Finally, across neurons, the durations of the 

modulations (normalized relative to the average run duration), were quite variable (Figure 

2H). Similar results were obtained when the analysis was restricted to runs with more 

homogeneous durations (Figure S2, see STAR Methods). Altogether, this set of descriptive 

analyses revealed a trend toward stronger increases in firing rates close to the beginning and 

end of the runs, even if the population average firing rate increased in step-like manner 

throughout the runs.

To examine if discrete groups of neurons signaled specific run phases, as predicted from the 

traffic-light hypothesis, we first applied Principle Components Analysis (PCA) on the tuning 

curves of positively modulated neurons (see STAR Methods). This analysis revealed that a 

combination of a quadratic function with zero linear term (first principal component) and a 
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linear function (second principal component) comprised most (~ 70%) of the variance of 

these tuning curves (Figure 3A, [28]). Each tuning curve could then be fitted with a second-

order polynomial function (see STAR Methods). Accordingly, tuning curves could be 

arbitrarily divided into 6 groups according to the sign of the curvature and the slope of the 

linear component of the fitting function (Figures 3B and 3C, see Table 1 in STAR Methods). 

Tuning curves belonging to some of these groups resembled the firing rate profile of start, 

stop and boundary neurons previously described (e.g., Onset+, Offset+ and On/Off neurons 

in Figure 3B, [6,7]). Still, separating tuning curves according to these arbitrary criteria 

revealed heterogeneity inside each group and similarity between certain members of 

different groups (Figure 3C). In order to statistically separate neurons on the basis of the 

most variable features of their tuning curves, we plotted the quadratic and linear coefficients 

of the fit functions of the tuning curves against each other. This did not reveal obvious 

clusters (Figure 3D). We used the Silhouette method to quantify the cohesion inside the 

aforementioned arbitrary groups and the separation between groups (see STAR Methods, 

[29]). The distribution of the silhouette coefficients of all the positively modulated neurons 

was centered around zero (mean Silhouette score = 0.08) and never exceeded 0.5, indicating 

strong overlaps between the arbitrarily defined groups (Figure 3E). Finally, we used an 

unsupervised approach to try to cluster the tuning curves. A k-means algorithm generated 

the best partitioning of the tuning curves (using their first and second principal components, 

Figure 3F) in k groups, with k ranging from 2 to 10 (see STAR Methods). The Silhouette 

score and distortion (see STAR Methods) provided a metric of the tightness and separation 

of the clusters generated by the algorithm. Both measures continuously decreased with k, 

which indicates an absence of optimal number of clusters (Figure 3G). Similar results were 

obtained when more principal components were used to partition the tuning curves (Figure 

S3). The Silhouette scores and distortion profiles for k between 2 and 10 generated from our 

data set, fell inside the intervals of confidence defined by the Silhouette scores and 

distortions generated from surrogate data sets (Figure 3G, see STAR Methods). Altogether, 

these results showed that, at a population level, the striatal neurons we recorded could not be 

divided in discrete groups according to the shape of their tuning curve (see also Figure 3H).

It is possible that the heterogeneity of the tuning curves stems from the fact that we did not 

separate neurons according to their putative cell-type (projection neurons, PN vs 

interneurons). Previous studies have shown that it is possible to separate projection neurons 

(PN) and fast spiking interneurons (FSI) based on the shape of their spike waveform [30]. 

We could not observe a clear separation between narrow and broad spike waveforms in our 

dataset (Figure S4A). Still, we used typical waveform criteria to separate putative PN and 

FSI (Figures S4A and S4B). As expected, putative FSI fired at higher rates than putative PN 

(Figure S4C). Still, many putative FSI fired at low frequencies (< 5Hz) perhaps due to 

constant firing rate modulations during the task (i.e, these putative FSI might fire at higher 

frequencies during home cage or sleep recordings, which could not be tested as we 

performed acute recordings). We found that putative PN displayed a significant increase of 

their firing rate before, during and after the run (Figure S4D) and their tuning curves were 

highly heterogeneous and did not cluster according to the linear and quadratic coefficients of 

their polynomial fits (Figures S4E and S4F).

Sales-Carbonell et al. Page 5

Curr Biol. Author manuscript; available in PMC 2019 April 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



We further examined the possibility that a dedicated discrete group of neurons had its 

spiking activity selectively modulated before the initiation of the run and could act as "start" 

neurons. For all the recorded neurons, we generated a peristimulus time histogram (PSTH) 

of their spiking activity aligned with the time at which runs started (Figure 4A, bottom). We 

identified bins with significant firing rate modulations (Figure 4A, bottom, see STAR 

Methods). Sorting these modulations with respect to the beginning of the run revealed a 

continuum of modulations rather than the presence of a discrete population that fires 

selectively before the runs (Figure 4B).

Finally, we examined how the different phases of the run (including pre and post-run phases) 

could be decoded from the spiking activity of the recorded striatal neurons. We used a 

Bayesian decoding approach (see STAR Methods) and observed that the different phases of 

the runs were not accurately decoded from the activity of single neurons (Figure 4C, gray 

lines). Decoding accuracy increased sharply around the run start and stop phases when 

neuronal ensembles of increasing size were considered (Figure 4C, green lines), which is 

expected, as the most prominent variations in firing rate occurred around these phases of the 

run [31]. Next, we arbitrarily defined a group of pre-Run neurons that displayed a prominent 

modulation of their firing rate before the start of the runs (gray area in Figure 4B). We found 

that the decoding accuracy was similar for same-size ensembles that either contained or 

lacked pre-Run neurons (Figure 4D). Finally, we compared decoding accuracy of same-size 

ensembles composed of transiently modulated neurons (On/Off, Onset+, Offset+, see Figure 

3BC) versus ensembles composed of neurons that displayed more sustained firing rate 

modulations (Onset-, Duration, Offset-, see Figures 3B and 3C). Both types of ensemble 

similarly decoded the run start and stop phases (Figure 4E, left). This was expected as firing 

rate variations occurred mainly around run start and run stop phases in both cases (Figure 

4E, right). Altogether this set of results demonstrates that the decoding of the initiation 

(termination) of the run does not uniquely rely on the activity of specialized neurons that 

display transient firing rate modulation locked to the initiation (termination) of the runs.

During recording sessions, mice often performed both unrewarded and rewarded runs 

(Figure 5A). If the main function of the striatum is to signal discrete run phases (start, 

maintenance and stop), firing rate modulation should be similar for both types of trials. 

Alternatively, if the striatum monitors the movement dynamics on a moment-to-moment 

basis, a differential modulation of striatal neurons activity would be expected in these types 

of run, as the end of rewarded runs are associated with distinct motor activities (such as 

licking). At a population level, fewer neurons were positively modulated toward the end of 

the run in unrewarded runs compared to rewarded runs (Figures 5B and 5C). This effect was 

not associated with a clear difference in striatal population firing rates (Figures 5D and 5E) 

or in the magnitude of peak firing rates modulations occurring during runs (Figure 5F) but 

was visible in the distribution of the significantly positively modulated phases (Figure 5G, p 

< 1.10-5, two sided Kolmogorov-Smirnov). Figures 6A and 6B show an example of a neuron 

whose activity was stronger at the end of rewarded runs compared to unrewarded runs. This 

neuron's waveform was characteristic of PN (Figure 6C). Its spike timings autocorrelogram 

displayed prominent rhythmicity around 8Hz (Figure 6D), which is the typical licking 

frequency of mice. Finally, cross-correlating spiking and licking activities confirmed that 

this neuron fired spikes mostly when the mouse was licking (Figure 6E).
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Finally, we examined if the firing rate of positively-modulated neurons correlated with the 

running speed, on a trial-by-trial basis [32–34]. We first determined the running phases 

during which the tuning curves were significantly modulated (see STAR Methods, red 

shaded areas Figures 7A and 7B). We then measured the correlation between firing rates and 

running speeds taken in the modulated run phases, on a trial-by-trial basis. We found that the 

firing rate of more than a third of the positively-modulated neurons was significantly 

correlated with the running speed (Figure 7C). Some neurons displayed prolonged 

modulations of their firing rate and strong correlation with running speed (Figure 7A) while 

others displayed more transient modulations and weaker (but still highly significant) 

correlations (Figure 7B). At a population level, running speed-correlated neurons displayed 

a wide range of tuning curves with modulations covering the whole run durations (Figure 

7D). Altogether these data show that a significant fraction of striatal neurons displayed 

robust sensitivity to running speed across the different run phases.

Discussion

Here we developed a task in which mice performed prolonged runs interleaved with running 

pauses to maximize reward consumption. We examined how striatal neurons fired with 

respect to the different phases of the runs. The firing rate of the majority of neurons 

increased significantly around the initiation, maintenance and termination phases of the runs. 

Some of these modulations strikingly resembled those of start, stop or boundary-related 

neurons previously reported during self-paced motor sequences. However, at a population 

level, the shapes of single neuron average firing rates (the run-related tuning curves) varied 

continuously according to the task dynamics: transient modulations tended to occur around 

the initiation and termination of runs while more prolonged modulation occurred during the 

run. Consequently, it was not possible to statistically separate the recorded neurons in 

groups, using the shape of their tuning curve or the time of the peak firing rate modulations. 

In addition, a significant fraction of the run-modulated neurons showed robust trial-by-trial 

correlation between firing rates and running speed. We propose that, collectively, these types 

of modulations are not compatible with a role of the striatum in action gating or limited to 

action initiation. Rather the striatum may monitor on a moment-to-moment basis the 

dynamics of movements of the animal. Such function could be required for learning and 

updating the kinematics content of adaptive actions.

Early in vivo single-unit recording experiments revealed outstanding modulations of spiking 

activity in sensory (e.g. visual cortex) and associative (e.g., hippocampus) brain areas by 

specific features of the stimuli or behavior [35,36]. These studies provided powerful 

intuitions on the functions of these areas (e.g., in vision processing and spatial navigation). 

Similar efforts have been applied to understand the contribution of the striatum in the control 

of actions. Single-units recordings performed in the putamen of non-human primates 

performing overlearned short actions, such as saccades or arm reaching, revealed neuronal 

modulations that 1) were movement-related and covered a wide range of timings, mostly 

after but also before movements' initiation, 2) showed context-dependent modulations to 

movement and 3) were sensitive to task-relevant cues or sensory stimulation [37,38]. In 

contrast to this complexity of striatal responses to short actions, recordings in the dorsal 

striatum of rodents have revealed a predominance of modulation around the beginning and 
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the end of learned prolonged actions such as lever press sequences or T-maze run bouts 

[6,7,9,26,27,39] as well as more sustained modulations during faster actions [7]. It has been 

proposed that these distinct forms of modulation are critical for initiating and terminating 

learned actions [7]. Such a "traffic-light" coding mechanism [10] supposes that start, 

maintain and stop signals can be unambiguously distinguished. In the example of the traffic 

light, if highly similar colors were used to signal start and stop, drivers might be confused 

and cross a road intersection while they should have stopped. Thus, a basic requirement of 

the traffic-light hypothesis for striatal function is that the firing rate modulations of two 

"start" neurons should be more similar than the firing rate modulations of a "start" and a 

"maintain" neuron. The classification of neurons in distinct functional groups based on their 

firing rate modulations requires unbiased methods to capture their variability and to quantify 

the degree of separability/overlap of the putative groups. Here, using principal component 

analysis, we found that the tuning curves' variability was well explained by a polynomial 

function [28]. The most informative aspects of the run-related tuning curves can thus be 

represented in a lower two-dimensional space defined by the curvature and linear 

components of the fitting functions. When considered individually, many of the tuning 

curves resembled previously described “start”, “stop” or “boundary-related” neurons (see 

Figure 3B). However, at a population level, tuning curves changed continuously and separate 

groups could not be isolated using either the coefficients of the fit functions or their first two 

principal components (Figures 3C-3G). Such a continuum of neuronal modulations was also 

observed when we analyzed and sorted the times of peak firing rate modulation around run 

initiation across neurons (Figures 4A and 4B). It is still possible to arbitrarily define groups 

of neurons based on the time of their peak firing modulations or the value of fit functions 

(Figures 3B and 3C and gray area in Figure 4B). We found that the decoding accuracy of the 

different run phases (including pre and post-run phases) by striatal ensembles was not 

compromised when we excluded neurons that exhibited prominent firing rate modulation 

just before the runs (Figure 4D). We also found similar encoding accuracy of the run start 

and stop phases by neuronal ensembles composed of neurons either displaying transient 

firing rate modulation around run start and stop, or prolonged modulations during the runs 

(Figure 4E). These result shows that, contrary to what might have been expected, neurons 

with firing rate modulations that peak or plateau during the runs also contribute significantly 

to the decoding of the initiation and termination of the runs.

The existence of start, maintain and stop signals in the striatum has been proposed from the 

predominance of modulations of firing rates at the beginning and ending of learned actions 

[6–9,26,27]. This trend is also apparent in our data (Figures 2F and 2G). In addition, we also 

observed that transient modulations occurred preferentially around the start and stop phases 

of the run while more sustained modulations occurred during the run (Figure 3C). This 

suggests that the impossibility to cluster neurons using the shape of their tuning curves is 

unlikely to stem from a difference in task design or learning level between our study and the 

aforementioned related works. Still, it would be interesting to examine, using large-scale 

chronic recording techniques, wether the separability of the tuning curves of a given 

neuronal ensemble evolves during task learning and automatization of the motor routine. We 

believe that the continuum of modulations we observed is congruent on the one hand with 

the movement dynamics of prolonged stereotyped actions, and on the other hand the 
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somatotopic organization of somatosensory and motor inputs reaching the dorsal striatum 

(reviewed in Robbe et al. 2018). In our task, somatosensory stimuli and motor commands 

occurring around run initiation and termination will overlap with more sustained and stable 

movement dynamics associated with running. For instance, we reported a clear case in 

which a "run stop" neuron was primarily driven by the licking activity that occurred toward 

the end of rewarded runs. Here we only recorded licking activity and running wheel 

movements. Thus, it is possible that some of the transient modulations occurring around the 

beginning and the end of the runs can be triggered by brief movements, such as changes in 

posture or bouts of whisking activity. This possibility is supported by a recent study 

performed in head-fixed mice in which phasic dopaminergic signals in the dorsal striatum 

preceding run bouts were primarily correlated with brief whisker movements that 

systematically occurred prior to locomotor activity [40]. In addition, a tendency for a 

representation of movement-rich parts of tasks by striatal ensembles has been suggested 

before, in the context of spatial navigation [31]. The detection of movement-related signals 

around the beginning or end of learned actions will be facilitated if these actions are 

integrated in a larger stereotyped motor routine (e.g., whisk-run-lick, run-press-run, …). 

Consequently, experimental conditions associated with low level of behavioral stereotypy 

(such as early during training or following neuronal perturbation) are bound to be associated 

with weak or undetectable firing rate modulations around start/stop action phases [6,26]. A 

role of the dorsal striatum in providing moment-to-moment movements representation can 

not be overlooked, as the dorsocentral/lateral striatal regions in which we (and others) 

recorded neuronal activity receive massive cortical input from motor and sensory regions 

related to movements and stimulation of different body parts, mainly the trunk, limbs and, to 

a lesser extent, oro-facial regions [13,14]. Moreover, it has been shown that the spiking 

activity of dorsal striatal putative FSI and direct and indirect-pathway PN is strongly 

modulated by passive manipulations of body parts in mice and rats [23,41]. Finally, large-

scale calcium imaging of both direct and indirect-pathway PN activity has revealed that 

distinct behavioral patterns associated with openfield exploration are fully mapped in the 

dorsal striatum [42]. These anatomical and physiological considerations are sufficient to 

explain the predominance of transient modulations during early and late phases of the runs 

and more sustained modulations during run, without invoking discrete start, maintain or stop 

signals. Such monitoring capacity is compatible with the dynamics of a network model of 

striatal projection neurons responding to a sequence of excitatory inputs [43].We propose 

that the main function of the dorsal striatum is not to gate action by sending disembodied 

"traffic-light" signals, but is more likely to continuously monitor the movement dynamics of 

different body parts during action execution.

What could be the behavioral function(s) of such movement monitoring by the dorsal striatal 

network? A first possibility is that it is not directly related to the control of ongoing actions 

but could be useful for de novo motor learning. For instance if the action-reward 

contingency of our task was suddenly changed, the movements dynamics representation 

combined with dopaminergic modulations triggered by the updated-reward contingency [44] 

could contribute to an exploration of different movements dynamics [45]. The continuous 

movements monitoring by striatal neurons could also contribute to keep track of time in an 

embodied manner, in agreement with previous studies reporting that the striatum multiplexes 
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time and task-related information [32,46,47]. A given somatosensory state would 

automatically trigger a specific movement pattern and stereotyped task performance would 

result from the succession of somatosensory-motor couplings. The design of our task, in 

which distinct running patterns can lead to reward delivery, does not allow to examine if 

altered movement dynamics representation can cause variations in running behavior. 

However, in line with such possibility, it has been shown, in mice trained to lick in response 

to whisker stimulation, that an absence of whisker-evoked response in striatal neurons 

occurred selectively in trials in which mice failed to lick in response to the whisker 

stimulation [48]. Finally, because the monitoring of movement dynamics was accompanied 

by high correlations between firing rate and running speed on trial-by-trial basis, our results 

also support a role of the striatum in controlling the speed of action or vigor [28,32,49–51]. 

While future studies will surely delineate the exact (and possibly multiple) contribution(s) of 

the striatum to motor control and learning, our results add to a significant body of work 

suggesting that the classical view of the striatum as a key element of action selection and/or 

initiation must be revisited.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for reagents may be directed to and will be fulfilled by the 

Lead Contact, Dr. David Robbe (david.robbe@inserm.fr).

Experimental Model and Subject Details

All experimental procedures were conducted in accordance with the standard ethical 

guidelines (European Communities Directive 86/60 - EEC) and were approved by the 

relevant national ethics committee (Ministère de l’enseignement supérieur et de la recherche, 

France, Ref 00172.01). 3 types of mice were used in this study: wild-type (WT) C57BL/6J 

(n = 18, Charles River), Drd2-Cre (n = 10, C57BL/6J background, founder ER44, donated 

by Dr Valjent), and eNpHR-ChAT (n = 6, donated by Dr Beurrier, Ai39 mice were crossed 

with ChATcre/cre to induce eNpHR3.0 expression in cholinergic neurons). Drd2-Cre mice 

were included in the task learning figure (Figures 1B-1D, n = 5) and/or in the 

neurophysiological data analysis (n = 7). eNpHR-ChAT mice were included in the task 

learning figure (Figures 1B-1D, n = 6). There was no difference in the number of sessions 

necessary to reach proficiency in the task (Figures 1B-1D) between WT, Drd2-Cre and 

eNpHR-ChAT mice (correct trial rate: p = 0.09; median trial duration, p = 0.31, Run-and-

stop index: p = 0.25, Kruskal-Wallis test), thus all the behavioral data of all animals, 

regardless of genotype were pooled together (Figure 1). Some of the Drd2-Cre and eNpHR-

ChAT mice were used in yet unpublished optogenetic-based experiments that took place 

after training or electrophysiological recordings presented in this manuscript. Two days 

before fixation of head plates, mice (~ 3 months old, male) were housed individually in 

transparent cages located in the experimental room, with controlled temperature (22 °C) and 

humidity levels (60%) and maintained on a 12:12 h dark-light reverse cycle to allow 

experimentation during dark phase. Before training, mice were housed with ad libitum 

access to food and water.
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Method Details

Surgical Procedures—All surgical procedures were performed under stereotaxic control 

and deep isoflurane anesthesia. In anticipation of head-fixed behavioral and acute 

electrophysiological experiments, a custom-designed head-plate was cemented on the 

exposed and cleaned skull of all animals (Superbond Kit, Frapident). For mice intended for 

electrophysiological recordings, two miniature stainless steel screws (Small Parts, size 

000-120) were epidurally implanted above the cerebellum, to serve as ground and reference. 

A bilateral craniotomy was performed at the following coordinates relative to Bregma: 0 mm 

AnteroPosterior and ± 2 mm MedioLateral. The dura was not removed but protected with a 

layer of Kwik-Cast (WPI). Animals were given at least 1 week of recovery after the surgery 

before behavioral training started.

Behavioral apparatus—The behavioral apparatus consisted of a custom-made enclosure 

made of Mini T-slot profile beams (MakerBeam) that maintained in its center a free spinning 

wheel (12 cm diameter and 8 cm wide, 3D printed in la Plateforme Technologique du Pays 

d’Aix, Plateforme Technologique, IUT d’Aix en Provence). The enclosure design allowed to 

position the mice on top of the wheel via the head-plate. The wheel was covered with a layer 

of washable velvet and rotated around a ball-bearing shaft, allowing the mice to walk easily 

on the wheel (Figure S1A). Movements of the wheel were measured using a photodetector 

that detected the passing of the wheel spokes (Figure S1A). The number of spokes allowed 

the detection of rotations of the wheel, which was equivalent to 2.36 cm of linear travel. A 

liquid well was positioned near the mouth of the mice. The delivery of rewards (10 µl of 

10% sucrose solution) was ensured through a solenoid valve, which generated an audible 

click at the time of opening. Mice simply collected the reward by licking. In some 

experiments, the licking activity was recorded using a custom-made photodetector (Figure 

S1A). A white noise was played through a mini loudspeaker to signal the RP (Figure S1B). 

The movements of the wheel, sound, lick detections and openings of the solenoid valve for 

reward delivery, were recorded/controlled through a custom-designed electronic board 

interface connected to a multifunction data acquisition device (USB-6353, National 

Instruments) and managed by a custom made software (LabVIEW, National Instruments).

Behavioral task and training—After recovery from the surgery (2 to 5 days), mice were 

handled by the experimenter every day for at least 5 days. Then, the mice were familiarized 

with the head-fixation/wheel apparatus during 20 min-long sessions. In these sessions, 

rewards were delivered manually by the experimenter as soon as the mice ran/walked for 

about 10 cm. Once mice performed several runs of at least 10 cm, training in the run-and-

stop task started. Mice were placed on a water restriction schedule (1 ml/day, weight >= 

85% of pre-training weight). Training sessions lasted 40 min, during which the experimenter 

was not physically present in the room. The behavioral sessions were composed of several 

trials, divided into "Run" and "No run" periods (RP and NRP, respectively), whose durations 

depended on the locomotor activity of the animals. During RP, which were signaled by a 

continuous white noise, mice obtained a drop of sucrose as soon as they ran for 100 cm 

without stopping. Operationally, stops were defined as moments during which no wheel 

movements were detected for more than 1 s. At the time of reward delivery, the white noise 

was turned off and the task transitioned to the NRP, which, depending on the locomotor 
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activity of the animal in that period, lasted 15 s or more. Indeed, when the mice did not run 

(i.e., no wheel detection) for at least 2 s at the end of the NRP (between 13 and 15 s, after 

the end of the RP, Figures S1A and S1B), a new trial started. However, if the mice failed to 

respect this 2 s immobility period, the NRP was prolonged until animals paused their 

locomotor activity for 2 s. A trial was considered correct if the animal ran continuously for 

100 cm before the end of the RP (see illustrative trials 3-6, Figure S1B). If, after 60 s in the 

RP, the animal failed to reach this objective, either because the run was too short (illustrative 

trial 1, Figure S1B), or because multiple short runs interleaved with stops were performed 

(illustrative trial 2, Figure S1B), the trial was considered as incorrect and the task 

transitioned from RP to NRP without reward delivery. The transitions between the different 

trials and periods of the tasks and the recording of the behavioral performance were ensured 

by a LabVIEW custom made software. At the end of each session, we measured the total 

amount of liquid delivered during the session. One hour after the training session, mice 

received a complementary amount of tap water to ensure they consumed at least 1 ml of 

liquid per day.

Acute in vivo electrophysiological recordings—Acute extracellular recordings of 

spiking activity were performed in the dorsal striatum while mice performed the run-and-

stop task. On the recording day, mice were briefly anesthetized with isoflurane, the 

craniotomy was cleaned (by removing the Kwik-Cast) and the dura was removed. Mice were 

head-fixed above the wheel and while they woke up from the anesthesia a 32-channel silicon 

probe (Buzsaki32A, NeuroNexus) was slowly lowered into the brain with a precision 

stereotaxic arm. After reaching the dorsal striatum (DV: − 2.0 mm, relative to bregma), 

liquid agar (1.5%) at near body temperature was applied around the probe to seal the 

craniotomy and to improve the stability of the recordings. To visualize the silicon probe 

track in the brain, DiI Lipophilic carbocyanine dye (DiI, 42364, Sigma-Aldrich) (1-2% 

diluted in ethanol) was applied to the back of the tip of the probe before penetration. 

Recording sessions for all mice typically lasted 40 min, during which the animal performed 

the task. Many sessions had to be removed due to excessive drift or lack of proper behavior 

performance on the day of the electrophysiological recording. In this manuscript, we 

consider the activity of 167 neurons recorded during 30 different sessions (1 to 3 recording 

sessions per animals in one or two brain hemispheres) in 13 well-trained animals. Animals 

were considered well-trained if they performed at least 3 consecutive sessions with an 

average rate of correct trial > 10 correct trials/5 min).

Electrophysiological data acquisition and processing—Wide-band (0.1–8 KHz) 

neurophysiological signals were amplified 1.000 times via a Plexon VLSI headstage and a 

PBX2 amplifier and digitized at 20 kHz on two synchronized National Instruments A/D 

cards (PCI 6254, 16 bit resolution). Raw local field potential signals were processed off line 

and spike sorting was performed using a semi-automatic method, as described previously 

[32,52] except that we used an updated version of the klustakwik algorithm (http://klusta-

team.github.io/, [53])

Histology—At the end of the experiments, mice were deeply anesthetized and 

transcardiacly perfused with PBS (Phosphate Buffer Solution) followed by 4% 
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paraformaldehyde. Cresyl violet staining of coronal and sagittal sections (60 μm) was 

performed to confirm the position of the silicon probe during recordings through 

visualization of the DiI stain traces.

Quantification and Statistical Analysis

Data and Software Availability—All the analyses were performed using the Python 

language taking advantage of the Jupyter Notebook web interface which allowed 

regeneration (or modification) of the manuscript figures. A first pre-analysis step was 

performed to synchronize the timings of spikes of well-isolated units (see above for 

processing), wheel and lick events. These timings were aligned relative to the structure of 

the task (trial numbers, beginnings and ends of RP and NRP). The notebooks supporting 

these pre-analysis processing steps are available at https://bitbucket.org/davidrobbe/sales-

cabonell_manuscript. All the figures of this manuscript were generated through a series of 

python codes, which analyze, quantify and visualize specific aspects of the behavioral and 

neuronal data and their relationship. These codes are entirely described in notebooks 

available at https://bitbucket.org/davidrobbe/sales-cabonell_manuscript. Raw 

electrophysiological data (unfiltered 32-channel LFPs, sampled at 20 kHz) are conserved at 

INMED and can be shared to any reader upon reasonable request. Processed 

electrophysiological data (spike times, features and IDs, behavioral data) used by the Jupyter 

Notebooks to generate the figures can be directly uploaded from Mendeley data (http://

dx.doi.org/10.17632/rtmr3scw8j.2).

Firing rate relative to run phases (tuning curves, TCs)—Runs were detected as 

series of consecutive wheel movement detection times occurring in intervals < 1 s. We 

restricted our analysis to runs that lasted at least 2 s and shorter than 15 s (i.e., the time 

difference between the first and last wheel detections in a detected series was >= 2 and <= 

15 s). Similar patterns of firing rate modulation were obtained if our criteria for run 

detection was more stringent (Figure S2). We then normalized the duration of all the runs 

detected during a recording session. For each session, we computed the median run duration 

across all the detected runs. We then divided all the runs in an equal number of bins (nbin): 

nbin = mrd x 4 where mrd is the median run duration in a session (for example, if the mrd 

was 6.5 s in a given session, all the runs of this session were divided in 26 (6.5 x 4) bins). 

For each bin, we computed the instantaneous firing rate (spike count / bin duration). We also 

included 3 s before and after the detected runs. These pre- and post-run epochs were divided 

in bins of 250 ms (i.e., 12 bins). By definition, the 1st second before and after the detected 

run epochs corresponded to immobility (no detection of wheel movement) epochs. Finally, 

the binned firing rates of the normalized runs, and their flanking 3 s-long epochs, were 

averaged across all runs in a given session. TCs (such as seen in Figure 2C) were obtained 

by convolution of the resulting averaged/binned firing rate series with a Gaussian Kernel (σ 
= 1). For a single neuron, a TC could be computed for all the detected runs (Figures 2-4 and 

7), or separately for rewarded and non-rewarded runs (Figures 5 and 6). Because all the TCs 

have the same number of bins, we refer to the bins as phases of the run. Here, phases are not 

circular (the 1st phase is not equivalent to the last one). Rather, they must be understood as 

relative times versus the beginning and the end of the run. As a consequence, the first and 

last 12 phases of the TCs correspond to pre- and post-run phases.
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To detect the run phases during which the spiking activity of the neurons was significantly 

modulated, we randomly altered the relation between spike times and wheel detection 

events. We constructed 500 surrogate TCs as explained above, except that for each detected 

run, the spike times were jittered by a value randomly chosen between “– run duration” and 

“+ run duration”. A global band of confidence was defined as the 5 % highest and lowest 

values of the 500 surrogate TCs (i.e., 2 values). A pointwise band of confidence was defined 

as the 5 % highest and lowest values of the 500 surrogate TCs at each point. A TC was 

defined as significantly modulated if it crossed the global band of confidence. The 

significantly modulated phases were defined as the bins corresponding to the area between 

the TC and the pointwise band (see examples in Figures 7A and 7B, lower left panels, and 

supplementary methods in [54]). Some TCs crossed both superior and inferior limits of the 

global band of confidence. In these cases, we transformed the TC in Z-score and the sign of 

the maximum absolute deviation was used to determine if the TC was positively or 

negatively modulated.

For all the neurons that displayed a positive significant modulation of their TC, we 

quantified the trial-by-trial correlation between firing rate and running speed during the 

modulated phases (Figure 7). In each trial, we only considered the phases corresponding to a 

continuous modulated part of the TC, between run start and stop. If the TC was modulated 

in more than one region, we only considered the phases showing the strongest modulation. 

In each run, we computed the average running speed (rs) in the modulated run phases: rs= 

(nwheel-event-1)*2.356/(nbin*binduration), where nwheel-event is the number of wheel detection 

events in the modulated portion, nbin is the number of modulated bins and binduration is the 

bin duration in this run. The relation between the running speed and firing rate was 

statistically assessed using the Spearman's rank correlation coefficient.

Functional classification of neurons—The positively modulated TCs displayed a wide 

range of shapes (Figures 2-4). We used PCA to capture the main determinants of this 

variability. The majority of the variance (70%) was contained in the first two principal 

components, that were well approximated by a quadratic function with or without a linear 

function, respectively (Figures 3A and 3B). Each neuron’s TC was approximated with a 

second order polynomial function g: g(x) = ax2 + bx + c, where x is the normalized trial 

duration (0 ≤ x 0 ≤ 1), a is the quadratic coefficient, b is the linear coefficient and c is the 

origin value. The coefficients a and b were considered significant if their p values (pa and 

pb, respectively) were lower than 0.05. The TCs (i.e., the neurons) were divided into 7 

putative groups according to the significance and sign of the quadratic and linear coefficients 

(Table 1). In brief, onset positive/negative neurons were mostly active/inactive at the 

beginning of the trials, offset positive/negative neurons were mostly active/inactive at the 

end of the trials, on/off neurons were mostly active at the beginning and end of the trials, and 

the duration neurons showed sustained activity. The seventh pseudo-class contained neurons 

with non-significant quadratic and linear coefficients.

To evaluate if the different groups could be considered as segregated entities, we considered 

the polynomial fit function of each TC and plotted its linear coefficient versus its quadratic 

coefficient (as approximations of their 1st and 2nd principal component value). Given that 

each TC was assigned to one of the 7 putative groups, we computed the Silhouette 
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Coefficient score (SC) of all the neurons to measure the inter-dependency of the groups as: 

SC = (d' - d) / max (d, d') with d being the mean intra-cluster distance and d' the mean 

nearest-cluster distance to the considered neuron (Rousseeuw, 1987). For each TC, the SC 

could take a value between 1 (perfect assignment) and -1 (perfect assignment to the nearest 

cluster). A value near zero indicated that the TC was equally likely to belong to its assigned 

group/cluster or to the closest neighbor. A negative value indicated that a TC was assigned to 

the wrong cluster.

Unsupervised clustering of neurons based on TC profiles—We performed PCA 

of the tuning curves of both positively and negatively modulated neurons. A k-means 

algorithm (fscikit-learn python package) was used to generate the best partitioning of the 

tuning curves on the basis of their first and second PC (Figure 3F). We then varied the 

number of partition (k) between 2 and 10. The number of runs of the algorithm was set to 20 

and the maximum number of iterations was 300. To quantify the quality of the clusters 

generated by the k-means algorithm, we used the Silhouette score as a measure of cohesion 

inside groups versus separation between groups (see above). We also used distortion (also 

referred to as inertia or within-cluster sum-of-squares), which is directly computed by the k-

means algorithm. Indeed, the k-means algorithm tries to minimize distortion, which is the 

sum of the squared distances between each observation (pairs of PC) and its dominating 

centroid. To demonstrate quantitatively the lack of clusterability of the PC scatter plot 

(Figure 3F), we generated one thousand surrogate data sets by independently sampling pairs 

of PC from the distributions of the first and second PC of our tuning curve data set (i.e., 

independent reverse sampling from the real data set). Each surrogate data set (n = 146 pairs 

of PCs) was clustered using the same k-means algorithm and Silhouette scores and 

distortions were computed.

Peristimulus time histograms of spiking activity—For all the recorded neurons, we 

generated a peristimulus time histogram (PSTH) of their spiking activity aligned with the 

time at which runs started. We used bins of 100 ms and examined the spiking activity from 2 

s before to 2 s after the beginning of all the detected runs (Figure 4A, bottom). We identified 

bins with significant firing rate modulations by comparing each original PSTH with one 

thousand surrogate PSTHs generated after randomizing the relationship between the spike 

trains of the neuron and the times of run start. Those surrogate PSTHs served to generate a 

global and a pointwise confidence intervals. The crossing of those intervals by the original 

PSTHs was used to isolate PSTH bins exhibiting significant modulation (same as TC 

analysis). From all the significantly modulated bins of a given neuron, we isolated those that 

surrounded the maximal firing rate modulation and that occurred from 2 s before to 2 s after 

the start of the runs (Figure 4A, bottom). For instance, in the case of the first illustrative 

neuron 1, we did not consider the significantly modulated bin around 2 s (Figure 4A, 

bottom).

Bayesian decoding—The decoding procedure consisted in computing the probability of 

the animal being in a given run phase (normalized time bin computed from run start and stop 

times and run duration) knowing the spiking response of a single neuron (or an ensemble of 

single neurons; [31]). We used the same normalization procedure of the run durations as the 
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one used to construct the TCs and used a leave-one-out cross-validation procedure [55]. For 

each time bin t before, during and after the detected run (12 bins before, 28 bins during and 

12 bins after the run, average bin duration = 250 ms), we first took the instantaneous firing 

rate xi of a neuron i in that bin at a random trial. Second, we computed the posterior 

probability function p (Bin = t | xi, t from 1 to 52) of the mice being at each of the 52 time 

bins given the tuning curve of the neuron computed from the remaining trials, assuming a 

uniform prior and a Poisson distribution of the spike count variability [55]. To perform 

decoding using an ensemble of neurons, we multiplied the individual probability functions 

to obtain the ensemble posterior probability, assuming independence between the ensemble 

members (low level of correlation between striatal neurons and pulling of neurons from 

different sessions). The accuracy of predicting the considered bin (run phase) t0 by an 

ensemble of k neurons (k>=1) was given by the mean ensemble probability of a correct 

estimate: p (Bin = t0 | [xi, i from 1 to k]) over 50 leave-one-out repetitions [55].

To compute the decoding accuracy of run phases, we used the trial-by-trial instantaneous 

firing rates relative to the normalized run phases (see above) of both positively and 

negatively modulated neurons (n =146 in total). For the decoding accuracy of striatal 

ensemble of increasing size (25, 50, 100, Figure 4C), we randomly selected 25, 50 or 100 

neurons out of the total data set (146 neurons). We repeated this operation 10 times and 

reported the average decoding accuracy. To compare the decoding accuracy between 

ensembles that included or excluded the 24 pre-Run neurons (Figure 4D), the size of the 

ensembles was 122 neurons, for each condition. We randomly selected 122 neurons from the 

entire data set to generate ensembles that included the pre-Run neurons and computed the 

decoding accuracy of each ensemble. We repeated the procedure 100 times and reported the 

median decoding accuracy and the 5th and 95th percentiles. This was compared to the 

decoding accuracy obtained when we used the 122 non-pre-Run neurons (i.e., same size 

comparison). To compare the decoding accuracy between ensembles composed of neurons 

that displayed either transient or prolonged neuronal modulation (Figure 4E), we assigned 

positively modulated neurons into two groups. The transient group was composed of 

neurons classified as On/Off, Onset+ and Offset+ (53 neurons in total, Figures 3B and 3C). 

The prolonged group was composed of neurons classified as Onset-, Duration and Offset- 

(63 neurons in total, Figures 3B and 3C). We compared the decoding accuracy of ensembles 

of 50 neurons randomly selected from each group and repeated the operation 100 times.

Statistical tests—To statistically compare task learning rates across mice genotypes we 

used the Kruskal-Wallis test. To test for uniformity of distributions we used the Kolmogorov 

Smirnov test (Figures 2E and 2F). To test for statistical difference between two distributions, 

we used the two sided Kolmogorov-Smirnov test (Figure 5G). P values were reported in the 

main text. To test for firing rate difference between putative projection neurons and fast 

spiking interneurons (Figure S4C), we used the non-parametric Wilcoxon test. In this case, 

the p value was directly reported on the figure. The relation between the running speed and 

firing rate was statistically assessed using the Spearman's rank correlation coefficient (see 

above). P values for all the units analyzed are reported graphically (Figure 7C). The method 

to identify significant modulations of firing rates has been explained in detail above. The 
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method to statistically test for the presence of functional groups, based on the shape of the 

neuronal tuning curves, has been described above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mice became progressively more proficient in the run-and-stop task.
A) 3 illustrative sessions of a given mouse showing, from left to right, progressive 

proficiency. Locomotor and lick activities are shown during the first 35 trials (top), along 

with session-average running speed (middle, all trials) and lick rate (bottom, continuous and 

dashed lines show correct and incorrect trials, respectively) relative to RP end. Green 

squares indicate that the mice was immobile during the last 2 s of the No run period. Red 

squares indicate that the mice was moving during the last 2 s of the No run period. Session-

averaged running speeds and lick rates (middle and bottom panels) took in account wheel 
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and lick detections from adjacent trials, not shown in the top rasters (white areas). B-D) 
Session-by-session learning curves (top) for the example mouse shown in A for 3 behavioral 

metrics. Empty circles correspond to the illustrative sessions shown in A. The 3 colored 

horizontal dashed lines correspond to 3 performance levels defined as the 20, 50, 80 

percentiles values for each metric across all animals. Cumulative number of animals passing 

the 3 performance levels (bottom, same color code and values as top panels). See also Figure 

S1.
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Figure 2. Spiking activity of dorsal striatal neurons is strongly modulated during and around the 
runs.
A) Behavioral performance during a recording session (same legend as Figure 1A, licks 

were not detected in this experiment, orange areas indicate detected run periods). B) 
Histological confirmation of silicon probe position in the dorso-central striatum. C) Top, 

spike rasters (red) of 3 task-modulated neurons superimposed on locomotor activity (black, 

same session as A) aligned to reward delivery. Bottom, mean firing rates relative to 

normalized run phases (tuning curves). D) Averaged firing rates during normalized runs 

(sorted according to the peak firing rate's phase) for neurons showing significant increase 

(top) or decrease (middle) in firing rate. Bottom, population averaged firing rate for all (thick 

line), positively modulated (continuous line) and negatively modulated (dashed line) 

neurons. E) Distribution of all the run phases with significant positive modulation of firing 

rate. F) Distribution of the run phases corresponding to the peak firing rates. G) Z-scored 

peak firing rates versus run phases. H) Distribution of the durations (normalized relative to 

run duration) of the significant increases in firing rate. See also Figure S2.
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Figure 3. Continuous, not discrete, representation of the run phases at the population level.
A) Projections of the normalized firing rate population activity onto the first 2 principal 

components (PC1: blue, PC2: green) computed from the tuning curves matrix shown in C. 

B) Example neurons with significant linear and positive quadratic components (onset+ and 

offset+, top), significant linear and negative quadratic components (onset- and offset-, 

middle) and significant quadratic and non-significant linear components (on/off and 

duration, bottom). Continuous and dashed lines show the tuning curve and its corresponding 

fit, respectively. C) Tuning curves (sorted according to linear and quadratic coefficients, 

same colors as B, for positively modulated neurons. D) Scatter plot of the linear and 

quadratic coefficients of the tuning curve fit functions, for all positively modulated neurons 

(same color code as B, non-classified neurons in gray). E) Distribution of the Silhouette 

Sales-Carbonell et al. Page 23

Curr Biol. Author manuscript; available in PMC 2019 April 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



coefficients for data points in D. Red dashed line indicates overall Silhouette score. F) 
Scatter plot of the 1st and 2nd PC of each tuning curve with significant modulation (same 

data as in top and middle panels, Figure 2D). G) Silhouette score (top) and distortion 

(bottom) when data in F are partitioned in 2 to 10 groups, using a k-means algorithm. 

Confidence intervals (CIs) were generated by randomly sampling pairs of PC values from 

the distribution of the real data (PC1 and PC2 shown in F). H) Data in F partitioned in 2, 3, 

4 or 5 groups using a k-means algorithm. See also Figure S3 and S4.
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Figure 4. Continuous representation of run initiation and decoding accuracy by striatal 
ensembles.
A) Top, tuning curves of 3 illustrative neurons with a peak firing rate modulation around run 

start. Bottom, PSTHs (same neurons as top) aligned relative to run start. Dark and light gray 

bands indicate pointwise and global CIs. Black dots indicate contiguous significant bins that 

surrounded the maximal modulation. B) Detected modulated portions of the PSTHs around 

run start for all the neurons, sorted in time. Modulated portions of illustrative neurons in A 

are shown in blue. C) Bayesian decoding accuracy of the run phases from the spiking 

activity of individual neurons (light gray lines, dark gray line indicates averaged individual 

decoding) and ensembles of increasing size (light to dark green lines indicate ensemble 

decoding when number of neuron is 25, 50, 100 or 146). Dashed horizontal red line indicate 

chance level. D) Decoding accuracy of the run phases by ensembles of neurons (size = 122 

neurons) in which pre-Run neurons (shaded area in B) were excluded (red) or included 

(black; in this condition, the thick black line indicates median decoding accuracy over 100 

ensembles and gray area shows data comprised between 5th and 95th percentiles). E) Left, 

run phases decoding accuracy by ensembles of neurons (size = 50 neurons) composed of 

neurons that either displayed transient (black) or prolonged (red) modulations of their firing 

rate (arbitrary classification based on Figure 3C, see main text). Thick lines indicate median 

decoding accuracy and areas show data comprised between 5th and 95th percentiles. Right, 
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mean normalized firing rate for the two groups of neurons partitioned based on transient vs 

prolonged modulation of firing rate.
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Figure 5. Population activity in rewarded and unrewarded runs.
A) Detection of rewarded (green) and unrewarded (orange) runs, in a few trials of an 

illustrative session. B,C) Mean firing rate for all modulated cells during rewarded (B) and 

unrewarded (C) runs. In B and C upper panels, continuous running lines represent the peak 

firing rates of all modulated neurons in unrewarded and rewarded runs, respectively. D,E) 
Population mean firing rates of positively-modulated (continuous line), negatively-

modulated (dashed line) and all (thick line) neurons during rewarded (D) and unrewarded 

(E) runs. F) Z-scored peak firing rates versus run phases (circles) and population average 

Sales-Carbonell et al. Page 27

Curr Biol. Author manuscript; available in PMC 2019 April 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(continuous line) for rewarded (green) and unrewarded (brown) runs. G) Distribution of all 

the run phases with significant positive modulation of firing rate, for rewarded (green) and 

unrewarded (brown) runs.

Sales-Carbonell et al. Page 28

Curr Biol. Author manuscript; available in PMC 2019 April 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 6. Licking rewards modulate spiking activity at the end of runs.
A) Behavioral activity during a few trials of a recording session and spiking activity of a 

neuron showing increased firing rate at the end of the runs. B) Mean firing rate during 

unrewarded (left) and rewarded (right). Same neuron as A. C) Mean spike waveform and 

waveform features of neuron in A (right, blue cross), superimposed on all recorded neurons 

waveform features (black dots, dashed squares indicate classical limits used to distinguish 

putative FSI (teal) and PN (salmon)). D) Auto-correlogram of spiking activity. E) Cross-

correlogram between spiking and licking activities. Data in A-E are from the same neuron.
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Figure 7. A large fraction of striatal neurons displayed trial-by-trial correlation between firing 
rate and running speed.
A,B) 2 illustrative neurons with significant running speed-firing rate correlation. Top panels 

show rasters of spike times superimposed on wheel movement detections for a few 

consecutive trials. Lower-left panels show the mean firing rate (red thick line) relative to run 

phases, superimposed on the average running speed (black). Red area indicates phases with 

significant modulation of the firing rate. Dashed red lines and gray shaded area indicate, 

respectively, the global and pointwise CIs used to detect significant modulations (see STAR 
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Methods). Lower-right panels show a scatter plot of speed versus firing rate taken in the 

modulated run epochs, across all runs. C) Distribution of Spearman correlation coefficients 

between firing rate and running speed, for all positively modulated neurons. D) Tuning 

curves for all the neurons with a significant correlation coefficient between firing rate and 

running speed, ordered by the phase of the peak firing rate (left), or according to the 

coefficients of the quadratic and linear polynomial fit functions (right).
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Table 1
Functional classification criteria.

pb <= 0.05 pb > 0.05

a > 0 a <= 0 pa <= 0.05 pa > 0.05

g[0] <= g[1] g[0] > g[1] g[0] < g[1] g[0] >= g[1] a <= 0 a > 0 Non classified

Positive offset Positive onset Negative offset Negative onset Duration On/off
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