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Abstract

Aging is the single greatest risk factor for the development of disease. Understanding the 

biological molecules and mechanisms that modulate aging is therefore critical for the development 

of health-maximizing interventions for older people. The effect of fats on longevity has 

traditionally been disregarded as purely detrimental. However, new studies are starting to uncover 

the possible beneficial effects of lipids working as signaling molecules on health and longevity. 

These studies highlight the complex links between aging and lipid signaling. In this review we 

summarize accumulating evidence that points to changes in lipid metabolism, and in particular 

lipid signaling, as an underlying mechanism for healthy aging.
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Aging can be modulated

The discovery that environmental and genetic interventions can increase lifespan in diverse 

model organisms inspired a revolution in the search for the biological bases of aging [1]. By 

understanding how aging acts as the major risk factor for age-associated conditions such as 

cancer, neurodegenerative and metabolic diseases [2], we may learn how to prevent these 

conditions. Recently, nine different hallmarks of aging were proposed [3], providing a 

reference framework that allows a better understanding of the mechanisms underlying 

longevity and healthy aging. These hallmarks interact with each other, especially at the 

metabolic level [4], but the mechanisms that govern these interactions remain largely 

unclear. Interestingly, multiple studies have started to pinpoint a pivotal role for diverse 

lipids in lifespan-extending interventions, suggesting that lipid metabolism may be a key 

component in healthy aging [5,6]. This review focuses on recent data uncovering how lipid-

signaling molecules modulate life-extending interventions, particularly in the nematode 

worm Caenorhabditis elegans. Most of these lipid signals induce their pro-longevity 

transcriptional changes through nuclear receptor (NR) transcription factors, while others 
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seem to re-balance lipid homeostasis. Finally, we discuss conservation of these lipids and 

their effectors, and how they might affect other organisms, including humans.

Nuclear receptors and dauer formation in C. elegans

The ability of organisms to respond to different environmental conditions is fundamental for 

development and longevity-assurance. Organisms integrate these responses by, for example, 

the production of hormones and the regulation of NRs. NRs work as molecular switches 

whose transactivation activity is controlled by the presence of lipophilic hormones produced 

in response to diverse stimuli [7,8].

Due to its short lifespan and ease for genetic manipulation, C. elegans has been a key model 

organism in the study of lifespan-extending interventions and the role therein of multiple 

NRs [9]. The best-studied NR in C. elegans is DAF-12 (dauer formation related gene). 

daf-12 and around 30 other daf genes control the developmental transition of L1 larvae into 

either a stress-resistant diapause state, called dauer, or reproductive development (Box 1) 

[10]. DAF-12 transactivation activity is regulated by its ligands, dafrachronic acids (DA), 

which are cholesterol-derived molecules whose production is tightly controlled by 

environmental conditions [11]. In addition to dauer formation, DAF-12 modulates lipid 

metabolism, developmental timing and lifespan [7]. Lifespan modulation by DAF-12 is 

complex, since it can promote or repress longevity under low or high temperatures, 

respectively. Interestingly, modulation of lifespan in response to temperature is independent 

of DA [12].

Cholesterol and insulin signaling mediated longevity

Other lifespan-extending interventions also require DAF-12 and its ligand DA. A prominent 

example is the insulin / insulin-like growth factor signaling (IIS) pathway, an evolutionarily 

conserved, nutrient-sensing network that modulates a plethora of biological processes, 

including development and lifespan [13]. IIS reduction extends lifespan in multiple model 

organisms, and this effect is, in part, mediated by regulating the conserved FOXO 

transcription factors [14,15]. In C. elegans, mutation of daf-2, the homolog of mammalian 

insulin-like growth factor (IGF) and insulin receptors, yields long-lived worms, and this 

longevity requires the presence of DAF-16, the worm FOXO homolog [14]. Interestingly, 

daf-2 genetically interacts with daf-12 to modulate lifespan [16]. This interaction is intricate, 

as DAF-12 acts as an anti- or pro-aging factor in daf-2 mutant worms in the presence or 

absence of DA, respectively [12]. This observation indicates that both DAF-12 and DA are 

fundamental for reduced IIS induced longevity (Figure 1).

The association between reduced IIS and longevity is regulated not only by DAF-16 but also 

by multiple other proteins. Among these, the nematode sterol-binding protein 1 (NSBP-1) is 

especially interesting due to its ability to bind cholesterol, and therefore work as a 

cholesterol sensor [17]. NSBP-1, much like DAF-16, is phosphorylated under high insulin 

signaling by AKT, and thereby excluded from the nucleus. Conversely, under reduced IIS, 

both DAF-16 and NSBP-1 migrate into the nucleus and interact, but only under low 

cholesterol concentrations (Figure 1). Both proteins regulate the transcription of a small set 
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of genes involved in lipid metabolism and aging [17]. However, it is unclear whether 

NSBP-1 can regulate additional DAF-16-target genes and whether this mechanism of FOXO 

regulation is conserved in mammals. Moreover, DAF-12 and DAF-16 induce a negative 

feedback on DA synthesis upon dauer formation [18], suggesting that cholesterol levels are 

affected by their interaction, which could have implications for aging modulation, perhaps 

through NSBP-1. These studies thus show a link between cholesterol metabolism and 

lifespan.

The Drosophila melanogaster homolog of DAF-12, DHR96, binds cholesterol and 

modulates lipid metabolism by regulating diverse target genes [19,20]. DHR96 is required 

for the enhanced xenobiotic detoxification induced by lowered IIS, but not for the lifespan 

extension, which is unaffected by removal of this gene [21]. The mammalian homolog of 

daf-12, farnesoid X receptor (FXR), is also involved in cholesterol and lipid metabolism 

[22]. FXR expression decreases with age-associated endoplasmic reticulum (ER) stress and, 

as a consequence, plays a prominent role in the development of fatty liver [23]. However, 

whether FXR plays a role in mammalian lifespan regulation is unknown. In addition to 

regulating activity of diverse NRs, IIS can also modulate the mevalonate pathway, which in 

turn produces sterols and isoprenoids [24], adding an extra layer of complexity between IIS 

and its interaction with cholesterol.

Does dietary restriction promote longevity through lipid signals?

Activity of the IIS network is linked to dietary restriction (DR), which is the most robust 

lifespan-extending and health-promoting intervention. DR, broadly defined as a reduction in 

food intake that avoids malnutrition, was first reported over 80 years ago to extend the 

lifespan of rats [25]. DR has since been shown to increase health and lifespan in a plethora 

of organisms, including yeast, worms, flies, mice and even primates [25–29]. In addition, 

DR improves health and has a beneficial effect on risk factors for age-related disorders such 

as cancer, diabetes and cardiovascular disease in humans [30]. In C. elegans, at least nine 

different DR regimes exist, with differences in the way that they modulate lifespan [31,32]. 

However, these regimes can be broadly classified in the three categories discussed below.

Dietary restriction through eat-2 mutation

Genetic mutation of eat-2, disturbs an acetylcholine receptor subunit in the pharynx of the 

worm and reduces pumping and therefore food intake, thereby mimicking DR and extending 

lifespan by up to 40% [33]. Interestingly, an RNAi screen with eat-2 mutant worms 

identified nhr-62, a hepatic nuclear factor 4α (HNF4α)-like NR homolog, as a critical factor 

in DR-induced lifespan-extension (Figure 2) [34]. Other hallmarks of DR, such as the 

decreased triglycerides and enhanced autophagy also rely, at least partially, on NHR-62-

dependent transcriptional regulation. Moreover, NHR-62 controls the expression of genes 

involved in lipolysis and fatty acid desaturation, thereby implicating lipid metabolism in this 

form of DR-mediated lifespan extension [34].

In addition to NHR-62, another HNF4α-like homolog, NHR-49, regulates lipid metabolism 

and lifespan in C. elegans, [35]. This NR is also required for eat-2 lifespan extension, which 

is reversed by depletion of nhr-49 by RNAi. eat-2 longevity is dependent on regulation of 
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genes associated with β-oxidation by NHR-49 [36]. However, whether any lipid acts as a 

ligand for either NHR-49 or NHR-62 is still unknown (Figure 2). In mice and flies, HNF-4 

regulates lipid metabolism in response to starvation and its ligands are free fatty acids [37–

40]. Hence, it is possible that HNF-4 proteins control a gene network that regulates the 

production of “starvation signals”. These signals would in turn act as ligands for these NRs 

and be fundamental for lifespan modulation under DR.

Dietary restriction through dilution of bacterial food

Dilution of bacterial food (BDR) was first reported to extend lifespan of C. elegans lifespan 

almost 40 years ago [41]. BDR worms have increased expression of DAF-9, a critical 

enzyme in DA biosynthesis, and therefore increased levels of this hormone. Surprisingly, 

under these conditions, DA, but not its receptor DAF-12, is required for lifespan extension. 

Instead, DA relies on another NR, NHR-8, which controls cholesterol homeostasis to exert 

its beneficial effects on lifespan [42,43] (Figure 2). Further, NHR-8 acts upstream of let-363, 

the worm homolog of mTOR, a prominent metabolic regulator that responds to nutritional 

inputs [27], which in turn affects germline plasticity. This observation is intriguing, because 

DR is generally associated with a decrease in fertility, even though longevity and fecundity 

can be uncoupled in flies [44]. While it is still unclear whether DA binds directly to NHR-8, 

these results provide a novel link between steroid signaling, mTOR and lifespan under DR 

[42]. It is important to highlight that BDR modulates lifespan in a cell non-autonomous 

manner, by regulating the function of the SKN-1 transcription factor, suggesting the 

existence of one or more “starvation signals” [45]. Furthermore, NHR-62 seems to partially 

regulate the response to BDR [34], suggesting that this transcription factor is involved in at 

least two different kinds of DR, eat-2 mutation and BDR.

Dietary restriction through intermittent fasting

An additional DR regime, called intermittent fasting (IF), requires cycles of ad libitum food 

availability and complete food deprivation. Like the previously described regimes, IF also 

extends lifespan in diverse organisms such as worms and mice. Intriguingly, mice on IF can 

consume the same or even more calories than ad libitum fed mice and still reap the 

beneficial effects of DR [46]. This observation suggests that IF induces some form of 

“starvation signals” that are more important than the amount of calories eaten. In C. elegans, 

an IF regime of 2 days on/2 days off food increases lifespan and this depends on at least two 

transcription factors, DAF-16 and AP-1 [32,47]. The regulation of IF-induced longevity by 

these two transcription factors seems to be partially explained by expression of E3 ubiquitin 

ligases, which in turn modulate proteostasis (the regulation of protein synthesis and 

degradation) in response to “starvation signals” (Figure 2) [47].

Worms are unable to synthesize cholesterol, and its removal from the food medium prevents 

lifespan-extension induced by IF [48]. This is not a developmental effect, because 

withdrawal of cholesterol only during adulthood has similar effects. Furthermore, 

cholesterol deprivation suppresses daf-2-induced longevity, suggesting that cholesterol is 

required for both reduced IIS and IF-induced longevity [48]. As daf-2 longevity is dependent 

on DAF-16 regulation by NSBP-1, and NSBP-1 is regulated by cholesterol [17], it is 

possible that IF-induced lifespan extension is also dependent on the ability of NSBP-1 to 
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bind to cholesterol and DAF-16. Consistent with this, RNAi against daf-16 or nsbp-1 
partially suppresses the lifespan extension achieved by IF [32,47,48]. However, it is 

currently unclear whether cholesterol regulates only DAF-16 subcellular localization, or also 

its transactivation activity.

Dietary restriction affects lipid metabolism in mammals

In mammals, IF and DR also extend lifespan and have profound effects on energy 

metabolism, altering fat stores and the production of various hormones such as growth 

hormone (GH), leptin and adiponectin [49–52]. These hormones are in turn regulated by 

growth-hormone releasing-hormone (GHRH), a hypothalamic-derived hormone. Mice that 

lack GHRH are long-lived and have reduced levels of leptin and increased levels of 

adiponectin. However, the lifespan of this already long-lived GHRH-KO mouse can be 

further extended by DR, suggesting that DR does not rely on this particular hormone to 

modulate aging [53].

A meta-analysis of transcriptional changes associated with DR in mice and rats, found that 

genes associated with hormone signaling and lipid metabolism are highly perturbed [54]. 

Moreover, recent studies in mice demonstrated that DR affects saturation and elongation of 

several fatty acids [55,56]. Interestingly, the adiposity changes associated with DR are 

different from those observed in normal aging, as aging seems to particularly affect 

phospholipid composition [55]. It is therefore possible that one of the underlying 

mechanisms modulating lifespan, at least under DR, is the regulation of lipid metabolism, 

although causality remains to be established.

In humans, multiple studies have established a clear connection between cholesterol levels 

and mortality [57]. Interestingly, population studies have shown that the offspring of long-

lived individuals have healthier cholesterol markers [58], indicating that at least some forms 

of familial longevity may exert control over cholesterol homeostasis. In addition, short 

dietary interventions (with 12.5% - 25% caloric restriction) are sufficient to bring cholesterol 

makers to a healthier state [30,59,60]. These observations further highlight a prominent link 

between cholesterol homeostasis in longevity. Yet, the possible beneficial effects of 

cholesterol as a signaling molecule in mammalian aging remain unknown.

Germline ablation signals and longevity

Like DR and reduced IIS, germline ablation is a robust intervention that extends lifespan in a 

plethora of organisms including worms, flies, mice, rats and even humans [61–65]. Multiple 

studies suggest that the germline is able to produce signals that partially coordinate 

reproduction and aging, with lipid metabolism playing a prominent role [5,6]. In C. elegans, 

germline removal induces fat accumulation, longevity and stress resistance [61,66]. These 

phenotypes are associated with the regulation of multiple transcription factors, including 

SKN-1, TCER-1, DAF-16, and NRs DAF-12, NHR-80 and NHR-49 (Figure 3) [61,66–68].

As with reduced IIS, lifespan extension by germline removal is abolished upon daf-12 
mutation and is dependent on the presence of DA [12,61]. Consistently, mutation of daf-9 or 

daf-36, both of which encode enzymes involved in DA biosynthesis, reduces lifespan in 
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germline-less worms. DA supplementation of daf-9 or daf-36 mutant worms is in turn 

sufficient to restore germline ablation longevity [69]. This observation suggests that the 

interaction between DAF-12 and DA is fundamental for lifespan extension by germline 

removal.

In addition to DAF-12, germline removal longevity also relies on DAF-16 and on the ability 

of both transcription factors to regulate target genes such as triglyceride lipase and acyl-CoA 

reductase [70]. These genes are involved in lipid metabolism and are proposed to generate 

putative lipid signals that would allow lifespan-extension under germline removal [70]. 

Furthermore, germline-less worms require DAF-12 in the gut for the production of a 

lipophilic signal, which in turn promotes DAF-16 nuclear localization through a protein 

called KRI-1[71].

NHR-80, another NR, is a key player in germline removal mediated longevity [67]. NHR-80 

modulates the transcription of FAT-6, a desaturase that produces oleic acid, a 

monounsaturated fatty acid, and this underpins the longevity phenotype [67,72]. However, it 

is unclear how oleic acid exerts its beneficial effects. Moreover, as NHR-49 and NHR-80 

play key roles in DR and germline removal longevity, it is possible that these interventions 

share at least part of the mechanisms involved in aging modulation.

It was previously shown that germline ablation promotes lipolysis by up-regulating multiple 

lipases, such as LIPL-4, a homolog of the mammalian lysosome associated lipase (LIPA) 

[73]. LIPL-4 over-expression in the gut, the organ where C. elegans stores fat, is sufficient to 

induce longevity [73]. However, germline-less worms have increased fat accumulation, 

despite the increase in lipid catabolism [74]. This extra accumulated fat appears to come 

from unconsumed yolk, and from here a signal is produced that activates SKN-1 [75]. 

SKN-1, homolog to mammalian Nrf2 and member of the cap’n’collar transcription factor 

family, plays a critical role in regulating genes involved in processes such as proteasome 

activity and lipid homeostasis [75]. Interestingly, a more recent report suggests that, upon 

germline ablation, not only lipid catabolism but also lipid anabolism is activated. Enhanced 

lipid turnover is achieved through DAF-16 and TCER-1, and both proteins are required for 

germline ablation longevity [76]. This mode of lifespan modulation could be evolutionarily 

conserved, because enhanced lipid turnover appears to be fundamental for DR-mediated 

lifespan extension in Drosophila [77,78], and DR also increases lipid turnover in mice [79]. 

It is therefore possible that both germline ablation and DR have, at least partially, 

overlapping roles enhancing lipid homeostasis.

Use of lipids in disease treatment and lifespan extension

In C. elegans LIPL-4 appears to also induce lifespan extension by generating the fatty acid 

oleoylethanolamide (OEA), a monounsaturated fatty acid. OEA works as a novel lysosomal 

signaling molecule by binding to the lysosomal lipid chaperone LBP-8, inducing its nuclear 

localization and activating NHR-80 and NHR-49 [80]. The additional observation that OEA 

supplementation is sufficient to extend lifespan in worms [80] further highlights the critical 

role lipid signaling may play in extension of lifespan. However, it is currently unknown 

whether this lipid signal works in a cell-autonomous manner, whether OEA regulates 
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lifespan by modulating gene transcription downstream of NHR-80 and NHR-49. Since these 

NRs have already been associated with longevity under DR and germline ablation [34,67], it 

is not farfetched to expect that this mode of longevity control will turn out to be 

evolutionarily conserved.

In addition to OEA, supplementation of other monounsaturated fatty acids (MUFAs), such 

as oleic acid and palmitoleic acid, can also extend worm lifespan [81], although not all oleic 

acid supplementation protocols seem to do so [67,68]. These MUFAs, but not their derived 

polyunsaturated fatty acids (PUFAs), underpin the long life of histone 3 lysine 4 

trimethylation (H3K4me3) deficient worms [81]. Moreover, diets that are rich in MUFAs 

seem to protect against diabetes and cardiovascular disease in humans [82] Nevertheless, it 

is currently unclear how these MUFAs exert their beneficial effects. In contrast, ω-6 PUFAs 

supplementation extends worm lifespan by activating autophagy (Box 2) [83]. This 

mechanism might also be evolutionarily conserved, because ω-6 and other PUFAs induce 

autophagy in human cell lines [83,84]. Hence, the relationship between MUFAs, PUFAs and 

longevity is complex. Higher MUFA:PUFA ratios have been observed in long-lived worms 

and in the daughters of long lived humans, suggesting higher PUFA levels could be 

detrimental [85,86]. PUFAs are more prone to oxidation and are thought to increase 

oxidative damage by further producing free radicals [86]. It is therefore possible that only 

specific PUFAs have beneficial effects on the organism, and only as long as they do not 

reach a critical threshold. With a better understanding of the role of lipid metabolism in 

health during aging comes the opportunity to use this knowledge in the treatment of disease. 

For example, a recent genetic screen revealed that inhibition of cholesterol biosynthesis by 

genetic or pharmacological means is sufficient to improve motor performance and lifespan 

of a mouse model of Rett syndrome [87]. Similarly, a mouse model of Cockayne syndrome 

was shown to improve its associated phenotypes upon supplementation of beta-

hydroxybutirate, a ketone body [88]. These studies underscore the important role that 

modulation of lipid metabolism may have in the treatment of diverse diseases. Concordantly, 

medium chain triglyceride (MCT) supplementation is widely used in children as a treatment 

of drug resistant epilepsy [89]. MCT supplementation induces the body to switch into a 

ketogenic state, where lipids become the preferred source of energy. Similarly, ketone body 

supplementation was recently shown to shift the energy source in muscles from glycolysis to 

a lipid oxidation state [90]. The consequence of this switch was enhanced performance of 

athletic activity. However, it remains to be determined whether this translates into increased 

health and lifespan. These observations open the exciting possibility that lipid 

supplementation can be used not only in the treatment of disease, but also in its prevention 

and promotion of healthy aging.

Lipidomics leads the way

In order to identify and quantify the lipid species relevant for many of the interventions 

described above [81,85], researchers are taking advantage of the recent developments in the 

area of lipidomics, i.e. the analysis of lipid metabolites by mass spectrometry techniques 

[91]. Lipidomics is rapidly opening the doors to a new world of information that points at 

diverse lipid species with key roles in the regulation of diverse biological processes. For 

example, a recent and compelling meta-analysis of lipid composition looked at the 
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correlation between diverse lipids within multiple tissues and maximum lifespan in as many 

as 35 different species including mice, bats and humans [92]. This analysis showed, for 

example, that structural lipids are more likely to be found in a saturated state in the long-

lived species. Although not directly analyzed, this observation also implies a higher 

MUFA:PUFA ratio. In contrast, energy-related lipids, such as triacyglycerols (TG), were 

more likely to be in an unsaturated state in the long lived species [92]. Although preliminary, 

this study highlights the power lipidomic studies could have in the identification of lipid 

species and their association with longevity.

Concluding remarks and future directions

Recent studies are starting to uncover the prominent link between different lipids, 

particularly signaling molecules, and aging modulation. Intriguingly, many of the life-

promoting interventions discussed here share underlying proteins and lipids critical for 

lifespan extension. For example, both DAF-12 and DAF-16 are involved in lifespan 

modulation during reduced IIS and germline ablation [14,61,66–68]. Similarly, NHR-49 and 

NHR-80 are fundamental for DR and germline ablation induced longevity [34,67]. 

Moreover, lipid turnover and the accumulation of specific lipid molecules, such as oleic 

acid, are important for intervention-induced longevity or even normal aging [80,81,85,92]. 

All these results suggest that lipid metabolism can be affected by multiple life-promoting 

interventions, albeit at different levels, and this underpins the longevity effects. However, 

these pioneering studies leave many new questions to be answered (see Outstanding 

questions). Future studies should address the link between lipid signals, the transcription 

factors they regulate, and the effects on lipid homeostasis these may have by regulating the 

expression of enzymes involved in lipid metabolism.
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Box 1

Life cycle of C. elegans

The life cycle of the nematode worm has been widely described (Figure I). Briefly, after 

embryonic development of the fertilized egg, the worm undergoes four different larval 

stages (L1-L4), to finally reach adulthood and sexual maturity [93]. At the end of L1, 

stressful conditions such as overcrowding, high temperatures or starvation, trigger the 

worm to adopt an alternative developmental pathway called dauer. The dauer worm is 

able to survive long periods of time under stressful conditions. Once conditions improve, 

dauer worms resume development at L4 stage to then reach adulthood and reproduce 

[93].
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Figure I. Worm life cycle.
Representation of C. elegans life cycle at 22ºC. Numbers along the arrows represent the 

hours (hrs) necessary to transition from one stage to the next.
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Box 2

Autophagy and lipid metabolism

Autophagy, a highly regulated process that degrades cellular components in response to 

diverse cues, such as starvation, is highly associated with health and longevity [94]. 

Autophagy is initiated with the formation of a membrane structure called the 

autophagosome (AP), which then engulfs molecules and/or organelles to later fuse with 

lysosomes and degrade the cargo. AP formation is in part regulated by diverse membrane 

components as it requires specific lipids for its formation [95]. For example, studies in 

yeast demonstrate that lipids such as phosphatidylinositol 3-phosphate are enriched in 

endoplasmic reticulum regions that then allow recruitment of proteins involved in AP 

formation [96–99]. Moreover, lipid homeostasis is fundamental for proper autophagy, 

since deletion of enzymes responsible for TG and sterol esters completely blocks 

starvation-induced autophagy [100]. These studies highlight the fundamental role of lipid 

homeostasis in regulation of autophagy, not only at the level of lipid signals/transcription 

factors that regulate autophagy-related genes (see text), but also at the level of membrane 

components.
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Outstanding Questions

- Can we use specific lipids as health-promoting and lifespan-extending 

interventions?

- Are there fasting signals that extend lifespan? And, if so, are they conserved 

and do they promote healthy longevity under normal conditions?

- Which cells/organs produce the lipid molecules associated with health and 

longevity?

- Do HNF-4-related transcription factors modulate longevity in organisms 

other than worms?

- Are supplemented lipids, such as medium chain fatty acids, binding a specific 

NR or pushing the metabolic machinery towards enhanced lipid turnover that 

in turn produces fasting signals?

- Is enhanced lipid metabolism (turnover) a conserved mechanism underlying 

lifespan modulation?

- What other health-promoting and lifespan-extending lipid signals can we 

identify? And are they associated to known or unknown NRs?
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Figure 1. Reduced insulin insulin-like signaling (IIS) extends lifespan in a DAF-16/DAF-12/
NSBP-1 dependent manner.
In wild type C. elegans, IIS phosphorylates and negatively regulates NSBP-1, a cholesterol 

binding protein, and DAF-16 transcription factor. Under reduced IIS, these proteins become 

dephosphorylated and migrate into the nucleus and interact in a cholesterol-dependent 

manner to modulate the transcription of pro-longevity genes. Extension of lifespan by 

lowered IIS is also dependent on DAF-12 and its ligand DA. Worms with reduced IIS cannot 

maximize lifespan-extension in the absence of DA or excess of cholesterol. I: Insulin; P: 

Phosphate; C: Cholesterol; DA; Dafachronic Acids
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Figure 2. Different dietary restriction (DR) paradigms promote longevity in ways that depend on 
lipid signals.
While different DR interventions in C. elegans have at least partially independent 

mechanisms for lifespan extension, they all seem to rely on the regulation of transcription 

factors that act in response to putative lipid signals. Hence, increased lifespan from eat-2 
mutation relies on NHR-49 and NHR-62, although their respective lipid ligands (if they have 

one) remain unknown. NHR-62 is also involved in extension of lifespan by BDR, at least at 

low food concentrations, and NHR-8 and DA are also required, although the nature of their 

interaction is unclear. IF relies on DAF-16 and AP-1 to achieve maximum lifespan 

extension, but whether NSBP-1 may play a role here remains unknown.
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Figure 3. Germline ablation increases lifespan by modulating lipid metabolism.
Germ cells inhibit the production of DA. We propose that, as a consequence, the 

transcriptional activity of both DAF-16 and DAF-12 is dampened. Conversely, removal of 

germ cells allows production of DA and transcription of pro-longevity genes by DAF-16 and 

DAF-12, including genes involved in lipid metabolism. These changes promote the 

generation of putative lipid signals, which in turn activate downstream factors such as 

NHR-49, NHR-80 and SKN-1 that promote longevity through different transcriptional 

programs. However, these putative lipid signals remain unknown. Whether 

Oleoylethanolamide (OEA) serves as a NHR-80 ligand under germline ablation remains 

unclear. FA stands for fatty acids.

Bustos and Partridge Page 19

Trends Biochem Sci. Author manuscript; available in PMC 2018 November 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Aging can be modulated
	Nuclear receptors and dauer formation in C. elegans
	Cholesterol and insulin signaling mediated longevity
	Does dietary restriction promote longevity through lipid signals?
	Dietary restriction through eat-2 mutation
	Dietary restriction through dilution of bacterial food
	Dietary restriction through intermittent fasting

	Dietary restriction affects lipid metabolism in mammals
	Germline ablation signals and longevity
	Use of lipids in disease treatment and lifespan extension
	Lipidomics leads the way
	Concluding remarks and future directions
	References
	Figure I
	Figure 1
	Figure 2
	Figure 3

