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Abstract

Recent studies suggest that deep Convolutional Neural Network (CNN) models show higher

representational similarity, compared to any other existing object recognition models, with

macaque inferior temporal (IT) cortical responses, human ventral stream fMRI activations

and human object recognition. These studies employed natural images of objects. A long

research tradition employed abstract shapes to probe the selectivity of IT neurons. If CNN

models provide a realistic model of IT responses, then they should capture the IT selectivity

for such shapes. Here, we compare the activations of CNN units to a stimulus set of 2D reg-

ular and irregular shapes with the response selectivity of macaque IT neurons and with

human similarity judgements. The shape set consisted of regular shapes that differed in

nonaccidental properties, and irregular, asymmetrical shapes with curved or straight bound-

aries. We found that deep CNNs (Alexnet, VGG-16 and VGG-19) that were trained to clas-

sify natural images show response modulations to these shapes that were similar to those

of IT neurons. Untrained CNNs with the same architecture than trained CNNs, but with ran-

dom weights, demonstrated a poorer similarity than CNNs trained in classification. The dif-

ference between the trained and untrained CNNs emerged at the deep convolutional layers,

where the similarity between the shape-related response modulations of IT neurons and the

trained CNNs was high. Unlike IT neurons, human similarity judgements of the same shapes

correlated best with the last layers of the trained CNNs. In particular, these deepest layers

showed an enhanced sensitivity for straight versus curved irregular shapes, similar to that

shown in human shape judgments. In conclusion, the representations of abstract shape sim-

ilarity are highly comparable between macaque IT neurons and deep convolutional layers of

CNNs that were trained to classify natural images, while human shape similarity judgments

correlate better with the deepest layers.
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Author summary

The primate inferior temporal (IT) cortex is considered to be the final stage of visual pro-

cessing that allows for object recognition, identification and categorization of objects.

Electrophysiology studies suggest that an object’s shape is a strong determinant of the

neuronal response patterns in IT. Here we examine whether deep Convolutional Neural

Networks (CNNs), that were trained to classify natural images of objects, show response

modulations for abstract shapes similar to those of macaque IT neurons. For trained and

untrained versions of three state-of-the-art CNNs, we assessed the response modulations

for a set of 2D shapes at each of their stages and compared these to those of a population

of macaque IT neurons and human shape similarity judgements. We show that an IT-like

representation of similarity amongst 2D abstract shapes develops in the deep convolu-

tional CNN layers when these are trained to classify natural images. Our results reveal a

high correspondence between the representation of shape similarity of deep trained CNN

stages and macaque IT neurons and an analogous correspondence of the last trained

CNN stages with shape similarity as judged by humans.

Introduction

Recently, several studies compared the representations of visual images in deep Convolutional

Neural Networks (CNN) with those of biological systems, such as the primate ventral visual

stream [1–4]. These studies showed that the representation of visual objects in macaque infe-

rior temporal (IT) cortex corresponds better with the representations of these images in deep

CNN layers than with representations of older computational models such as HMAX [5]. Sim-

ilar findings were obtained with human fMRI data [6–10]. The images used in these studies

were those of real objects in cluttered scenes, which are the same class of images as those

employed to train the deep CNNs for classification. Other single unit studies of IT neurons

employed two-dimensional (2D) shapes and observed highly selective responses to such sti-

muli (for review see [11]). If deep CNNs provide a realistic model of IT responses, then the

CNNs should capture also the selectivity observed for such two-dimensional shapes in IT. To

our knowledge, thus far there has been no comparison between the 2D-shape representation

of IT neurons, measured with such reduced stimuli, and that of deep CNN models. It is impos-

sible to predict from existing studies that compared deep CNN activations and neurophysiol-

ogy whether the deep CNNs, which are trained with natural images, can faithfully model the

selectivity of IT neurons for two-dimensional abstract shapes. Nonetheless, such correspon-

dence between CNN models and single unit selectivity for abstract shapes is critical for assess-

ing the generalizability of CNN models to stimuli that differ markedly from those of the

trained task but have been shown to drive selectively IT neurons.

Previously, we showed that a linear combination of units of deep convolutional layers of

CNNs trained with natural images could predict reasonably well the shape selectivity of single

neurons recorded from an fMRI-defined body patch [4]. However, in that study, we adapted

for each single unit the shapes to the shape preference of that neuron, precluding a comparison

between the shape representation of the population of IT neurons and deep CNNs. To perform

such a comparison, one should measure the responses of IT neurons to the same set of shapes.

Furthermore, the shape set should include variations in shape properties IT neurons were

shown to be sensitive to. Also, the IT response selectivities for such shapes should not trivially

be explainable by physical image similarities, such as pixel-based differences in graylevels.

Deep neural network models of neural shape responses
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Kayaert et al. [12] measured the responses of single IT neurons to a set of shapes that varied

in regularity and the presence of curved versus straight boundaries (Fig 1). The first group of

stimuli of [12] was composed of regular geometric shapes (shown in the first two rows of Fig 1

and denoted as Regular (R)) that all have at least one axis of symmetry. These shapes are sim-

ple, i.e., have low medial axis complexity [13]. The stimulus pairs in each column of these two

rows (denoted by a and b) differed in a non-accidental property (NAP). NAPs are stimulus

properties that are relatively invariant with orientation in depth, such as whether a contour is

straight or curved or whether a pair of edges is parallel or not. These properties can allow effi-

cient object recognition at different orientations in depth not previously experienced [14–16].

NAPs can be contrasted with metric properties (MPs), which vary with orientation in depth,

such as aspect ratio or the degree of curvature. The three other groups are all ‘Irregular’. They

differed from the Regular shapes in that they do not have a single axis of symmetry. The two

shapes in each row of the three Irregular groups differed in the configuration of their concavi-

ties and convexities or corners. The shapes in the Irregular Simple Curved (ISC) set all had

curved contours. The Irregular Simple Straight (ISS) shapes were derived from the ISC shapes

by replacing the curved contours with straight lines. Thus, the corresponding stimuli in the

ISS and ISC shapes differed in a NAP. Last, the Irregular Complex (IC) group was more com-

plex in that the shapes in that group had a greater number of contours.

Kayaert et al. [12] found that anterior IT neurons distinguished the four groups of shapes.

Importantly, the differences in IT responses amongst the shapes could not be explained by

pixel-based gray level differences, nor by HMAX C2 unit differences. In fact, none of the tested

quantitative models of object processing could explain the IT response modulations. Further-

more, the IT response modulations were greater for the Regular shapes and when comparing

the curved and straight Irregular Simple shapes than within the 3 Irregular shape groups, sug-

gesting a greater sensitivity for NAPs than for MPs (see also [17,18]). We reasoned that this

shape set and corresponding IT responses was useful to examine to what degree different lay-

ers of deep CNNs and IT neurons represent abstract shapes similarly. We employed deep

CNNs that were pretrained to classify ImageNet data [19], consisting of images of natural

objects in scenes. Hence, the CNNs were not exposed during training to silhouette shapes

shown to the IT neurons. Deep CNNs have a particular architecture with early units having

small receptive fields, nonlinear pooling of units of the previous layer, etc. Such a serial, hierar-

chical network architecture with increasing receptive field size across layers may result in itself,

i.e. without training, in changes in the representational similarity across layers. To assess

whether potential correlations between IT and CNN layer response modulations resulted from

classification training or from the CNN architecture per se, we also compared the activations

of untrained CNNs with the IT response modulations.

Kayaert et al. [12] had also human subjects sort the same shapes based on similarity and

found that human subjects had a pronounced higher sensitivity to the difference between the

curved and straight simple irregular shapes (relative to the regular shapes) than the IT neurons.

We examined whether a similar difference in response pattern between macaque IT neurons

and human similarity judgements would emerge in the deep CNNs. We expected that deeper

layers would resemble the human response patterns while the IT response pattern would peak

at less deep layers.

Results

Kayaert et al [12] recorded the responses of 119 IT neurons to the 64 shapes shown in Fig 1.

The 64 shapes are divided in four groups based on their regularity, complexity and whether

they differed in NAPs. We presented the same shapes to 3 deep CNNs: Alexnet [20], VGG-16,

Deep neural network models of neural shape responses
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Fig 1. Shape set. One group of Regular (R) and three groups of Irregular shapes: Irregular Complex (IC), Irregular

Simple Curved (ISC) and Irregular Simple Straight (ISS). A group of 16 shapes corresponds to two consecutive rows

(labeled a,b) and the group names are depicted in the tree graph on the right. The 8 pairs (a,b) of each group are

defined by the numbers on top of the figure (1,2, . . .8).

https://doi.org/10.1371/journal.pcbi.1006557.g001

Fig 2. Model architectures. Deep Convolutional Neural Network (CNN) architectures for the 3 different networks that we employed: Alexnet, VGG-16 and

VGG-19. Early computational blocks consist of consecutive operations such as: convolution (conv), RELU activation function, normalization (norm; only

for Alexnet) and max pooling (pool). The later stages of each CNN incorporate three fully connected (fc) layers, where the first two are followed by a RELU

activation function.

https://doi.org/10.1371/journal.pcbi.1006557.g002
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VGG-19 [21] and measured the activations of the units in each layer of the deep nets. These

deep nets differ in their number of layers, the number of units in each layer and the presence

of a normalization stage, but each have rectifying non-linearity (RELU) and max pooling

stages (Fig 2). We employed deep nets that were pre-trained in classification of a database of

natural images, which were very different in nature from the abstract shape stimuli that we

employ here to test the models and neurons. The aim was to compare the representations of

the shapes between IT neurons and each layer of the deep nets. To do this, we employed repre-

sentational similarity analyses [22,23], following the logic of second order isomorphism

[24,25], and examined the correlation between the neural IT-based similarities and CNN-

based similarities in responses to shapes. We are not trying to reconstruct the shapes based on

IT neuron or CNN unit outputs but we are examining whether shapes that are represented

close to each other in the neural IT space are also represented close to each other in the CNN

layer space.

In a first analysis, we computed the pairwise dissimilarity between all 64 stimuli using the

responses of the IT neurons and the activations in each of the CNN layers. We employed two

dissimilarity metrics: Euclidean distance and 1 –Spearman rank correlation ρ. The dissimilar-

ity matrices computed with the Euclidean distance metric for the IT neurons and for 5 layers

of the trained CNNs are illustrated in Fig 3B and 3C, respectively. In this and the next figures,

we will show only the data for Alexnet and VGG-19, since VGG-16 and VGG19 produced sim-

ilar results. In addition, Fig 3A shows the pixel-based dissimilarities for all image pairs. Visual

inspection of the dissimilarity matrices suggests that (1) the pattern of dissimilarities changes

from the superficial to deep layers in a relatively similar way in the CNNs, (2) the dissimilarity

matrix of the first layer (e.g. conv1.1) resembles the pixel-based similarities (Fig 3A) and (3)

the deeper layers resemble more the IT neural data (Fig 3B).

We quantified the similarity between the IT shape representation and that of each layer by

computing the Spearman Rank correlation between the corresponding pairwise dissimilarities

of IT and each layer. Thus, we could assess to what degree stimuli that produce a very different

(similar) pattern of responses in IT also show a different (similar) pattern of activations in a

CNN layer. We found that for both dissimilarity metrics the similarity between IT neuronal

responses and trained CNN layer activations increased significantly with the depth of the

layer. This is shown using the Euclidean distance metric for Alexnet and VGG-19 in Fig 4 (see

S1 Fig for the data of both distance metrics and the 3 networks). In the VGG nets, the similar-

ity peaked at the deepest convolutional layers (Fig 4) and then decreased for the deepest layers.

In fact, the Spearman correlations for the last two fully connected layers did not differ signifi-

cantly from that of the first convolutional layer in each CNN (Fig 4). The decrease in similarity

for the deepest layers was weaker in Alexnet. The peak similarity was similar amongst the 3

nets, with ρ hovering around 0.60, and were larger for the correlation (mean peak ρ = 0.64)

compared with Euclidean distance metric (mean peak ρ = 0.58). To assess the degree to which

the models explained the neural data, we computed the reliability of the neural-based distances

giving the finite sampling of the IT neuron population. This noise ceiling was computed by

randomly splitting the neurons into two groups, computing the dissimilarities for each group,

followed by computation of the Spearman rank correlation between the dissimilarities of the

two groups. This split-half reliability computation was performed for 10000 random splits. Fig

4 shows the 2.5, 50 (median) and 97.5 percentiles of the Spearman-Brown corrected correla-

tions between the two groups. The correlations between (some) CNN layers and neural

responses were close but still below the estimated noise of the neural dissimilarities.

In order to assess to what degree the similarity between neural data and the CNN layers

reflects the architecture of the CNNs versus image classification training, we computed also

the similarity for untrained networks with random weights. Fig 3C illustrates dissimilarity

Deep neural network models of neural shape responses
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matrices computed using Euclidean distances for 5 untrained layers of two CNNs. Visual

inspection suggests little change in the dissimilarity matrices of the different layers of the

Fig 3. Dissimilarity matrices. Matrices of Euclidean distances for pixel gray-levels (A), the IT neurons (B), and 5 layers of the trained and

untrained versions of 2 deep CNNs (C). Note that the dissimilarity matrices are by definition symmetric about the diagonal of zeros, which is

plotted in white color. The stimulus groups are indicated in (A) as in Fig 1 and the CNN layers in (C) have the same terminology as in Fig 2. The

matrices have been separately normalized and are plotted in percentile units, following [23]. Dissimilarities increase from blue to yellow.

https://doi.org/10.1371/journal.pcbi.1006557.g003
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CNNs, except for fc8. Furthermore, the pattern of dissimilarities resembled the pixel-based

dissimilarities shown in Fig 3A. Both observations were confirmed by the quantitative analysis.

The Spearman correlations of the neural data and untrained CNNs increased only weakly with

depth, except for a marked decrease in correlation for the last two fully connected layers.

Except for the deep convolutional and the last two layers, the trained and untrained networks

showed similar Spearman correlations of the neural and CNN distances (Fig 4). This suggests

that overall the similarity between the IT data and the shallow CNN layers are unrelated to

classification training but reflect merely the CNN architecture. Significant differences between

Fig 4. Representational similarity analysis of deep CNN layers and IT neurons for the whole shape set. Spearman

rank correlation coefficients between IT and model layer similarities are shown for each layer of Alexnet (A) and

VGG19 (B) using the Euclidean distance metric. Error bars depict 95% confidence intervals, determined by 10,000

bootstrap samples of the IT neuron pool (n = 119 neurons). Stars indicate layers for which the Spearman rank

correlations for the trained version differed significantly from its untrained version (paired bootstrap test (see

Materials and Methods); False Discovery Rate corrected q<0.05). Crosses indicate trained layers which differed

significantly from the first convolutional layer of the network (paired bootstrap test (see Materials and Methods); False

Discovery Rate corrected q<0.05). Layers are indicated by the same nomenclature as in Fig 2. The horizontal line and

gray band indicate the median and 95% interval, respectively, of the Spearman-Brown corrected split-half correlations

(n = 10000 splits) of the neuronal distances, as an estimate of the noise ceiling.

https://doi.org/10.1371/journal.pcbi.1006557.g004
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trained and untrained CNNs were observed for the deeper convolutional layers (Fig 4), sug-

gesting that the similarity between IT and the deep convolutional layers depends on classifica-

tion training. The similarities for the first fully connected layer (fc6 and relu6 in Fig 4) did not

differ significantly between the trained and untrained layers (except for the correlation metric

in AlexNet (S1 Fig). The deepest two (fully connected) layers showed again a significantly

greater similarity for the trained compared with the untrained networks. However, this can be

the result of the sharp drop in correlations for these layers in the untrained network. Overall,

these data suggest that the shape representations of the trained deep convolutional layers, but

not of the deepest layers, shows the highest similarity with shape representations in macaque

IT.

Receptive field (RF) size increases along the layers of the CNNs, allowing deeper layer units

to integrate information from larger spatial regions. The difference in IT-CNN similarity

between untrained and trained layers shows that the increase in RF size cannot by itself explain

the increased IT-CNN similarity in deeper layers, since untrained CNN also increase their RFs

along the layer hierarchy. Also, the decrease in similarity between IT responses and the fully

connected layers argues against RF size being the mere factor. Nonetheless, although not the

only contributing factor, RF size is expected to matter since arguably small RFs cannot capture

overall shape when the shape is relatively large. Hence, it is possible that the degree of IT-CNN

similarity for different layers depends on shape size, with smaller shapes showing a greater

IT-CNN similarity at earlier layers. We tested this by computing the activations to shapes that

were reduced in size by a factor of two in all layers of each of the 3 trained CNNs. Fig 5 com-

pares the correlations between dissimilarities of the trained Alexnet and VGG-19 networks

and IT dissimilarities for the original and reduced sizes, with dissimilarities computed using

Euclidean distances. The stars indicate significant differences between the similarities for the

two sizes (tested with a FDR corrected randomization test; same procedure as in Fig 4 when

comparing trained and untrained correlations). In each of the CNNs (S2 Fig), the IT-CNN

similarity increased at more superficial layers for the smaller shape. The overall peak IT-CNN

similarity was highly similar for the two sizes in the VGG networks and occurred at the deep

convolutional layers. For Alexnet, the overall similarity was significantly higher for the smaller

shapes in the deep layers. This analysis indicates that shape size is a contributing factor that

determines at which layer the IT-CNN similarity increases, but that for the VGG networks,

peak similarity in the deep layers does not depend on size (at least not for the twofold variation

in size employed here). Note that also for the smaller size the IT-CNN similarity drops

markedly for the fully connected layers in the VGG networks. Thus, the overall trends are

independent of a twofold change in shape size.

In the preceding analyses, we included all units of each CNN layer. To examine whether the

similarity between the CNN layers and the IT responses depends on a relatively small number

of CNN units or is distributed amongst many units, we reran the representational similarity

analysis of deep CNN layers and IT neurons for the whole shape set for smaller samples of

CNN units. We took for each network the layer showing the peak IT-CNN similarity and for

that layer sampled 10000 times at random a fixed percentage of units. We restricted the popu-

lation of units to those that showed a differential activation (standard deviation of activation

across stimuli greater than 0) since only those can contribute to the Euclidean distance. Fig 6A

plots the median and 95% range of Spearman rank correlation coefficients between IT and

CNN layer dissimilarities for the whole shape set as a function of the percent of sampled units

for two CNNs. We found that the IT-CNN similarity was quite robust to the number of sam-

pled units. For instance, for Alexnet, the IT-CNN similarity for the original and the 95% range

of the 10% samples overlap, indicating that 315 Alexnet units can produce the same IT-CNN

similarity as the full population of units. Note also that the lower bound of the 95% range is

Deep neural network models of neural shape responses
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still above the IT-CNN similarities observed for the untrained network (median Spearman rho

about 0.40; see Fig 4). This indicates that the IT-CNN similarity does not depend on a small

subset of units, since otherwise the range of similarities (Spearman rho correlations) for the

10% samples would be much greater. The same holds for the other CNNs (S3 Fig), except that

these tolerated even smaller percent sample size (for VGG19 even 0.1%, which corresponds to

100 units).

The above analysis appears to suggest that the activations of the CNN units to the shapes

are highly correlated with each other. To address this directly, we performed Principal

Fig 5. Representational similarity analysis of deep CNN layers and IT neurons for the whole shape set with two

different sizes. Spearman rank correlation coefficients between IT and model layer similarities are shown for each

layer of Alexnet (A) and VGG19 (B) for the original and twofold smaller sizes (“reduced size”). The dissimilarities were

Euclidean distances. Error bars depict 95% confidence intervals, determined by 10,000 bootstrap samples of the IT

neuron pool (n = 119 neurons). Stars indicate layers for which the Spearman rank correlations for the trained version

differed significantly from its untrained version (paired bootstrap test; False Discovery Rate corrected q<0.05). The

horizontal line and gray band indicate the median and 95% interval, respectively, of the Spearman-Brown corrected

split-half correlations (n = 10000 splits) of the neuronal distances, as an estimate of the noise ceiling.

https://doi.org/10.1371/journal.pcbi.1006557.g005
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Component Analysis (PCA) of unit activations of the same peak CNN layers as in Fig 6 and

computed Euclidean distance based dissimilarities between all stimulus pairs for the first, first

two, etc. principal components (PCs), followed by correlation with the neural dissimilarities as

done before for the distances computed across all units of a CNN layer. For both the Alexnet

and VGG-19 layer, the first 10 PCs explained about 70% of the variance in CNN unit

Fig 6. Similarities between IT and CNN peak layer shape dissimilarities as a function of percent of units. (A)

Spearman rank correlation coefficients between IT and peak CNN layer similarities are shown for each of two CNN

models as a function of sample size, expressed as percentage of the total number of units that were activated

differentially by the 64 shapes. (B) Pearson correlation coefficients between the mean neural distances and the mean

distances of the peak CNN layer (n = 6 mean distances; Fig 10) as a function of percentage of the total number of units.

The total number of units (100%) for each CNN layer is listed in the legend. Note that 0.1% corresponds to only 3

Alexnet units, explaining the large range of correlations for that sample size. The dissimilarities were Euclidean

distances. Error bars depict 95% confidence intervals, determined by 10,000 random samples from the population of

differentially activated CNN units of that layer.

https://doi.org/10.1371/journal.pcbi.1006557.g006
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activations to the 64 stimuli (Fig 7B). Only the first 3 (Alexnet) or 5 (VGG-19) PCs were

required to obtain a similar correlation between the model and neural distances as observed

when using all model units of the layer (Fig 7A; about 7 PCs were required for VGG-16; see S4

Fig). This analysis shows that the neural distances between the abstract shapes relate to a rela-

tively low dimensional shape representation in the CNN layer, with a high redundancy

between the CNN units.

In the above analyses, we compared the overall similarity of the shape representations in IT

and CNN layers. However, a more stringent comparison between the shape representations in

IT and the CNNs involves response modulations for the shape pairs for which Kayaert et al

[12] observed striking differences between predictions of pixel-based models or computational

models like HMAX and the neural responses. The average response modulations (quantified

by pairwise Euclidean distances) for the different group pairs comparisons are shown in Fig 8

for the IT neural data, the HMAX C2 layer and the pixel differences. Kayaert et al [12] showed

that the mean response modulation in IT (Fig 8A)was significantly greater for the regular

shape pairs (1–8 in Fig 1) than for the 3 irregular shape group pairs, despite the pixel differ-

ences between members of a pair being, on average, lower or similar for the regular group

than for the 3 irregular groups (Fig 8D). In addition, the response modulation to ISC vs. ISS

was significantly greater than the modulations within IC, ISC and ISS, although the average

pixel-difference within the ISC vs. ISS-pairs was much lower than the pixel-differences within

the other pairs. This differential neural response modulation to ISC vs ISS was present for both

members of the ISC and ISS pairs (a and b members: “ISCa vs ISSa” and “ISCb vs ISSb”) and

thus was highly reliable. Note that the difference between ISC vs. ISS and the IC and ISS shape

groups that are present in the neural data is not present for the HMAX C2 distances (Fig 8C).

Kayaert et al. [12] reported also a relatively higher sensitivity to the straight vs. curved contrast

of the ISC vs. ISS comparison compared with the regular shapes in human similarity ratings

(Fig 8B), compared with the IT neural data. In other words, human subjects appear to be more

sensitive to the curved versus straight NAP difference than macaque IT neurons.

In a second analysis, we determined whether the marked differences in IT response modu-

lations and human judgements shown in Fig 8 are present in the dissimilarities for the differ-

ent layers of the deep CNNs. Fig 9 illustrates the results for 8 layers of VGG-19. The left

column of the figure plots the distances for the trained network. The dissimilarities for the first

convolutional layer fits the pixel-based distances amongst the shape pairs (Fig 8D; Pearson cor-

relation between pixel-based distances and first layer distances = 0.966), but differ from those

observed in IT and for human judgements. Similar trends are present until the very deep con-

volutional layers where the dissimilarities became strikingly similar to those observed in

macaque IT (e.g. compare trained conv5.4 or pool5 of Fig 9 with Fig 8A). The dissimilarities

for the last two layers (e.g. trained relu7 and fc8 in Fig 9) are strikingly similar to those

observed for the human judgements (Fig 8B), and differ from the pattern seen in macaque IT

neurons. Indeed, as noted above, the human judgements differ from the IT responses in their

sensitivity for the ISC vs ISS comparison relative to that for the regular shape pairs: for the

human judgement distances, the ISC vs ISS distances are greater than for the regular shape dis-

tances while for the neural distances both are statistically indistinguishable (Kayaert et al.

[12]). Therefore, we tested statistically for which CNN layer the ISC vs ISS distances were sig-

nificantly greater than the regular shape distances (Wilcoxon test), thus mimicking the human

distances. We found a significant difference for the very deep VGG19 layer fc8 (p = 0.039) and

VGG16 layers fc7 (p = 0.039), relu7 (p = 0.023), and fc8 (p = 0.023). Although the deepest

Alexnet (fully connected) layers showed the same trend, this failed to reach significance. These

tests showed that only the very deep CNN layers mimicked the human judgements. None of

the untrained CNN layers showed a dissimilarity profile similar to that observed in monkey IT
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or in human judgements (Fig 9, right column). In fact, the untrained data resembled more the

pixel-based distances (see Fig 8D). Indeed, the Pearson correlation between the pixel-based

distances and the conv1.1 distances was 0.999 for the untrained VGG-19.

We quantified the correspondence between the neural response dissimilarities of Fig 8A

and the CNN layer dissimilarities (as in Fig 9) by computing the Pearson correlation coeffi-

cient between the dissimilarity profiles (n = 6 dissimilarity pairs). The same quantification was

performed for the human judgements (Fig 8B) and the CNN dissimilarities (n = 5 pairs).

These correlations are plotted in Fig 10A and 10B as a function of layer for two CNNs, trained

and untrained. For the neural data, the correlations are negative for the shallow layers and

highly similar for the trained and untrained CNNs. The negative correlations are a result of the

nearly inverse relationship between neural and low-level (pixel) differences between the shapes

(Fig 8D). This was not accidental, but by design: when creating the stimuli, Kayaert et al [12]

ensured that the NAP differences (e.g. between ISC and ISS) were smaller than MP differences.

For both VGG networks (S5 Fig; Fig 10B), there was a sharp increase in correlations at the

Fig 7. Similarities between IT and CNN peak layer shape dissimilarities as a function of retained principal components.

(A) Spearman rank correlation coefficients between IT and peak CNN layer similarities are shown for each of two CNN

models as a function of retained principal components of the CNN layer activations. The dissimilarities were Euclidean

distances. Error bands depict 95% confidence intervals, determined by 10,000 bootstrap samples of the IT neuronal pool. (B)

The cumulative proportion of explained variance as a function of principal component number for the Alexnet (black line)

and VGG-19 layer (gray line). (C) Pearson correlation coefficients between the mean neural distances and the mean distances

of the peak CNN layer (n = 6 mean distances; see Fig 10) as a function of retained principal components. In A and C, the

bands represent 95% confidence intervals, determined by 10,000 bootstrap samples of the IT neuronal pool.

https://doi.org/10.1371/journal.pcbi.1006557.g007
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Fig 8. Response modulations for the shape groups: IT neurons, human judgements, HMAX and pixel-based

dissimilarities. (A) Mean response modulations of IT neurons for the shape groups R, IC, ISC, ISS, “ISCa vs ISSa” and

Deep neural network models of neural shape responses
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trained deep 5.1 convolutional layer, followed by a decrease of the correlations for the fully

connected layers. This trend was similar, although more abrupt, to that observed for the global

dissimilarities of Fig 4. For Alexnet, the increase of the correlations with increasing depth of

the trained convolutional layers was more gradual, but like the VGG networks, high correla-

tions were observed for the deeper trained convolutional layers. For the human judgement

data, the correlations were already higher for the trained compared with the untrained CNNs

at the shallow layers, although still negative. Like the neural data, there was a marked increase

in correlation at the very deep trained layers. Contrary to the neural data, the correlations for

the human judgements continued to increase along the trained fully connected layers,

approaching a correlation of 1 at the last layer. These data show that the average response

modulations of IT neurons for the shape groups of Fig 1 correspond nearly perfectly with

those of the deeper layers of CNNs, while the differences in human similarity judgements

between the groups are captured by the later fully connected layers of the CNNs. This holds

for Alexnet and VGG nets. Note that the deep CNN layers performed better at predicting the

neural IT and human perceptual dissimilarities than the HMAX C2 layer output (Fig 10C).

As for the representational similarity analysis for all shapes (Fig 6A), we computed also the

Pearson correlation coefficients between the dissimilarity profiles (n = 6 dissimilarity pairs) of

the same peak CNN layers and the IT distances for the 6 shape groups (as in Fig 10) for smaller

samples of units. As shown in Fig 6B, we observed similar IT-CNN correlations for the within-

group distances up to the 1% and 0.1% samples compared with the full population of units for

Alexnet and VGG, respectively. Again, this suggests that IT-CNN similarity does not depend

on a small number of outlier CNN units. The greater tolerance for percent sample size for the

VGG units is because the VGG layers consisted of a larger number of units per se (total num-

ber of units are indicated in the legend of Fig 6). In addition, we computed the mean distances

for the same layers and their correlation with the mean neural modulations as a function of

retained PCs (Fig 7B). Up to 30 PCs were required to obtain a similar correlation between neu-

ral and CNN layer distances for the six groups of shapes as when including all units of the

layer (Fig 7B). This suggests that the close to perfect modeling of the mean response modula-

tions across the 6 shape groups required a relatively high dimensional representation of the

shapes within the CNN layer.

Discussion

The particular set of shapes that we employed in the present study was designed originally to

test the idea that the shape selectivity of IT neurons reflects the computational challenges

posed when differentiating objects at different orientations in depth [12,14]. Here, we show

that deep CNNs that were trained to classify a large set of natural images show response modu-

lations to these shapes that are similar to those observed in macaque IT neurons. We show that

untrained CNNs with the same architecture than the trained CNNs, but with random weights,

demonstrate a poorer IT-CNN similarity than the CNNs trained in classification. The differ-

ence between the trained and untrained CNNs emerged at the deep convolutional layers,

where the similarity between the shape-related response modulations of IT neurons and the

trained CNNs was high. Unlike macaque IT neurons, human similarity judgements of the

same shapes correlated best with the deepest layers of the trained CNNs.

“ISCb vs ISSb”. See Fig 1 for the nomenclature of the different shape groups. (B) Dissimilarities for the shape groups

(R, IC, ISC, ISS, ISC vs ISS) based on human judgements. (C) Dissimilarities for the same shape groups based on the

HMAX C2 layers’ output. (D) Pixel-based dissimilarities. Error bars indicate standard errors of the mean. B, C and D

are taken from Kayaert et al. [12].

https://doi.org/10.1371/journal.pcbi.1006557.g008
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Fig 9. Response dissimilarities for the shape groups: Deep CNN layers. Dissimilarities for groups R, IC, ISC, ISS,

“ISCa vs ISSa”, “ISCb vs ISSb” of selected trained (left column) and untrained (right column) versions of VGG-19

layers (same nomenclature as in Fig 2). Same conventions as in Fig 8. The specific selection of layers is motivated by

the fact that there were no critical differences in the layers that follow the selected ones.

https://doi.org/10.1371/journal.pcbi.1006557.g009
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Early and many later studies of IT neurons employed shapes as stimuli (e.g. [26–31,22,32–

37]), in keeping with shape being an essential object property for identification and categoriza-

tion. Deep CNNs are trained with natural images of objects in cluttered scenes. If deep CNNs

are useful models of biological object recognition [38], their shape representations should

Fig 10. Correspondence between model dissimilarities and biological dissimilarities (IT responses and human judgement-

based dissimilarities) for the shape groups. (A, B). Gray curves show the Pearson correlation coefficients between the mean

neural distances and the mean distances of the CNN layers (n = 6 mean distances per layer). Blue curves show the Pearson

correlation coefficients of the CNN layer distances and the distances based on human judgements. Data for trained and

untrained CNNs are plotted with full and dashed lines, respectively. Nomenclature of CNN layers as in Fig 2. Results for all two

models (Alexnet and VGG-19) are displayed in the subplots (A, B). (C) Neural: Pearson correlation coefficient between the mean

IT distances and the mean distances of the peak Alexnet layer, peak VGG-19 layer, the mean HMAX C2 layer distances, and

mean pixel-based distances, across shape groups. Human: Pearson correlation coefficient between the distances based on the

human judgements and the peak Alexnet layer, peak VGG-19 layer, HMAX C2 layer and pixel-based distances.

https://doi.org/10.1371/journal.pcbi.1006557.g010
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mimic those of the biological system, although the CNNs were not trained with such isolated

shapes. We show here that indeed the representation of the response modulations by rather

abstract, unnatural shapes is highly similar for deep CNN layers and macaque IT neurons.

Note that the parameters of these CNN models are set via supervised machine learning meth-

ods to do a task (i.e. classify objects) rather than to replicate the properties of the neural

responses, as done in classic computational modeling of neural selectivities. Thus, the same

CNN model that fits neural responses to natural images [1–4] also simulates the selectivity of

IT neurons for abstract shapes, demonstrating that these models show generalization across

highly different stimulus families. Of course, the high similarity between deep CNN layers and

IT neurons activation patterns we show here may not generalize for (perhaps less fundamen-

tal) shape properties that we did not vary in our study.

Kubilius et al. [39] showed that deep nets captured shape sensitivities of human observers.

They showed that deep Nets, in particular their deeper layers, show a NAP advantage for

objects (“geons”), as does human perception (and macaque IT [18]). Although we also manip-

ulated NAPs, our shapes differed in addition in other properties such as regularity and com-

plexity. Furthermore, our shapes are unlike real objects and more abstract than the shaded 3D

objects employed by Kubilius et al. [39] when manipulating NAPs.

In both the representational similarity analysis and the response modulations comparisons

amongst shape groups, we found that the correspondence between IT and deep CNN layers

peaked at the deep convolutional layers and then decreased for the deeper layers. Recently, we

observed a similar pattern when using deep CNN activations of individual layers to model the

shape selectivity of single neurons of the middle Superior Temporal Sulcus body patch [4], a

fMRI-defined region of IT that is located posterior with respect to the present recordings. The

increase with deeper layers of the fit between CNN activations and neural responses has also

been observed when predicting with CNN layers macaque IT multi-unit selectivity [40], voxel

activations in human LO [9] and the representational similarity of macaque and human (puta-

tive) IT [8,10] using natural images. However, the decrease in correlation between CNNs and

neural data that we observed for the deepest layers was not found in fMRI studies that exam-

ined human putative IT [8,10], although such a trend was present in [6] when predicting CNN

features from fMRI activations. The deepest layers are close to or at the categorization stage of

the CNN and hence strongly dependent on the classifications the network was trained on. The

relatively poor performance of the last layers is in line with previous findings that IT neurons

show little invariance across exemplars of the same semantic category [41,42], unlike the deep-

est CNN units [43].

The question of what the different layers in the various CNN models with different depths

represent neurally remains basically unanswered. Shallow CNN layers can be related to early

visual areas (e.g. V1; V4) and deeper layers to late areas (e.g. IT). However, different laminae

within the same visual area (e.g. input and output layers) may also correspond to different lay-

ers of CNNs. Furthermore, units of a single CNN layer may not correspond to a single area,

but the mapping might be more mixed with some units of different CNN layers being mapped

to area 1, while other units of partially overlapping CNN layers to area 2, etc. Finally, different

CNN layers may represent different temporal processing stages within an area, although this

may map partially to the different laminae within an area. Further research in which record-

ings in different laminae of several areas will be obtained for the same stimulus sets, followed

by mapping these to units of different layers in various CNNs, may start to answer this com-

plex issue.

In contrast with IT neurons, human similarity judgements of our shapes matched to a

greater extent the last rather than the less deep convolutional layers. In particular, the deepest

layers showed a similar enhanced sensitivity for straight versus curved irregular shapes. The
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untrained CNNs did not show such straight versus irregular bias for the irregular shapes.

Thus, it appears that a system, be it artificial like the CNNs or a biological system like humans,

that is required to classify natural images of objects develops such bias for curved versus

straight contours, indicating that this shape property must be highly informative for object cat-

egorization. Whether this relates to straight versus curved being a NAP [14] is unclear.

Kayaert et al. [12] employed a sorting task to rate shape similarity. In this task, subjects

were required to sort the shapes into groups based on their similarity. Although this is not the

same as labeling an object, the task for which the CNNs were trained, higher order classifica-

tion can intrude the sorting task judgements. This may explain why the human sortings of

Kayaert et al. [12] resembled that closely the activation pattern seen at the deepest CNN layers,

which are strongly category label driven. Interestingly, even for the shallow convolutional lay-

ers, the correlations between the human judgements and the CNN activations were higher for

the trained compared with the untrained CNNs. This contrasted with the equal correlations

for trained and untrained shallow layers for the IT data. This suggests that the trained shallow

CNN layers show already some, albeit weak, bias for higher order category-related

information.

Previous studies that compared deep CNNs and neural responses rarely included untrained

CNNs as control (e.g. [8], [40]). We found the untrained CNNs helpful in interpreting our

data. The comparison with untrained CNNs can inform to what extent neural responses reflect

features that can be picked up by untrained CNNs (because of CNN architectural properties

such as tiling of local RFs in shallow layers and non-linear pooling). Indeed, we found that

most layers of the untrained CNNs represented rather closely the pixel-based graylevel differ-

ences between the shape groups, which assisted to interpret the representational similarity of

the trained CNNs at shallow layers. Thus, we advise that future studies use untrained CNNs as

control or benchmark.

Currently, deep CNNs are the best models we have of primate object recognition, providing

the best quantitative fits of ventral stream stimulus selectivities and primate recognition behav-

ior [38]. However, recent studies show that CNNs have their limitations, especially when sti-

muli are noisy or partially occluded. For instance, the commonly used deep CNNs tolerate less

image degradation than humans [44], can be fooled by unrecognizable images [45] or show a

sensitivity to imperceptible stimulus perturbations (“adversarial examples”; [46]). Our data

show that training CNNs in object categorization produces at least some shape selectivities

(that are thought to reflect fundamental aspects of shape processing [14]) similar to those that

are observed in neural IT data and human similarity judgements. This does not imply that

CNNs can explain all shape or stimulus selectivity in IT and there is still considerable room for

model improvement (e.g. recurrent connectivity etc.).

In conclusion, deep CNN layers that were trained to classify complex natural images

represented differences among relatively simple abstract 2D-shapes similar to macaque IT

neurons. Human sorting of the same shapes corresponded better with the deepest layers

of the CNNs. The similarity between IT neurons and the deeper convolutional layers is

greater for trained compared to untrained CNNs, suggesting a role of image classification

in shaping the shape selectivity of macaque IT neurons. The latter likely occurs during

ontogenetic development, but may not result from the same supervised learning algo-

rithm as employed to train the CNNs. Indeed, independent of the particular training pro-

tocol (e.g. supervised versus unsupervised), any biological object classification system

may have similar shape representation biases that are inherently useful for performing

invariant object classification.
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Materials and methods

Ethics statement

Two male rhesus monkeys served as subjects. The animals were housed individually with

visual and auditory contact with conspecifics. During the recording weeks, they had controlled

access to fluids but food was available at libitum. All procedures were in accordance with the

Weatherall report on “The use of non-human primates in research” and were approved by the

Animal Ethics committee of the KU Leuven (protocol number: P631/2002).

Stimuli

The 64 shapes were identical to the first stimulus set employed by Kayaert et al. [12] and

are shown in Fig 1. The Regular shapes R were created with Studio MAX, release 2.5,

while the Irregular shapes were made with Fourier Boundary Descriptors, using

MATLAB, release 5. The Irregular Simple Straight (ISS) stimuli were made by replacing

the curves of the Irregular Simple Curved (ISC) shapes by straight lines while preserving

the overall shape. The increase in complexity of the Irregular Complex (IC) shapes com-

pared to the simpler ISC shapes was produced by increasing the number and frequency of

the Fourier Boundary Descriptors.

Each group contains 8 pairs of stimuli (one stimulus in row a and one in row b in Fig

1). The columns of Fig 1 comprise a set of 4 pairs (one for each group) that were matched

in overall size and aspect ratio, both within and between groups. The averaged pixel-based

graylevel differences between the members of the pairs were balanced across groups (see

[12] for more details). The members of the pairs within the Regular shapes differ in a

NAP, such as parallel vs. nonparallel sides, or straight vs. curved contours. The differences

among the members of an irregular pair were created by varying the phase, frequency or

amplitude of the Fourier Boundary Descriptors. For the single unit recordings and the

human behavioral study, all stimuli were filled with the same random dot texture pattern.

The number of black and white dots was required to be equal for 2�2 squares of pixels, so

the texture patterns were highly uniform. Stimuli were presented on a gray background.

In the single unit study, they extended approximately 7 degrees and were shown at the

center of the screen. We employed the identical shapes for the CNN modeling, except that

the noise pattern was replaced by a uniform white surface (see Fig 1 for the actual stimuli

presented to the CNNs).

Electrophysiology data of monkey IT

The single unit data have been published before [12] and the procedures have been described

in detail in that paper. Therefore, we will summarize here only briefly the experimental proce-

dures. The IT recordings were made while the two monkeys performed a passive fixation task.

Eye movements were measured with the scleral search coil technique or with a noninvasive

eye tracker (ISCAN). During the recordings, their head was fixed by means of an implanted

head post. We employed the standard dorsal approach to IT and recording sites were verified

with MRI and CT scans with the guiding tube in situ. We lowered a tungsten microelectrode

through the guiding tube that was fixed in a Crist grid, which was positioned within the plastic

recording chamber. The signals of the electrode were amplified and filtered using standard sin-

gle-cell recording equipment. Single units were isolated on line and their timing was stored

together with stimulus and behavioral events for later offline analysis.

The stimuli were presented during fixation for 200 ms in a randomly interleaved fashion.

In the present study, the response of a neuron was defined as the average firing rate in spikes/s
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during a time interval of 250 ms, starting from 50 to 150 ms after stimulus onset. The starting

point of this time interval was chosen for each neuron to best capture its response, by inspec-

tion of the peristimulus time histograms averaged across the stimuli. Responses were averaged

across presentations per stimulus. The minimum number of presentations per stimulus was 5

(median = 10). The data set consisted of 119 anterior IT neurons (76 in monkey 1 and 43 in

monkey 2) that showed significant response selectivity to the stimuli of the set (ANOVA,

p<0.05). The data were pooled across animals. The neurons were located in the lower bank of

the Superior Temporal Sulcus and the lateral convexity of anterior IT (TEad).

Sorting task in human subjects

As described by Kayaert et al. [12], printed versions of the shapes were given to 23 naive adult

human subjects who were asked to sort the stimuli in groups based on shape similarity. No fur-

ther definition of similarity was given and they could freely choose the number of groups. This

is a classical task to measure image similarities [47]. Dissimilarity values between pairs of sti-

muli were computed by counting the number of subjects that put the two members in different

groups.

Deep convolutional neural networks

In order to compare the shape representation of the IT neurons’ population with deep CNN

layers, we extracted stimulus features for each processing stage (layer) of three deep models:

Alexnet [20], VGG-16 and VGG-19 [21]. We used the pretrained networks, which are available

through the MatConvNet toolbox [48] in MATLAB, and their untrained versions. The pre-

trained CNNs were trained on ~1.2 million natural images divided in 1,000 classes for the Ima-

geNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012). The untrained versions

of these networks have the same architecture, but did not undergo any training, thus no update

of their weights took place after initialization. Their layer weights were initialized by sampling

randomly from a normal distribution, using the opts.weightInitMethod = ’gaussian’ setting in

the cnn_imagenet.m function of the MatConvNet toolbox. The stimuli shown to the CNNs

were black and white images with pixel values ranging from 0–255 (0 for black and 255 for

white). Before feature extraction, the mean of the ILSVRC2012 training images was subtracted

from each stimulus, since this was also part of the preprocessing stage of the networks’ training

procedure. In addition, the stimuli were rescaled accordingly to match each network’s input

requirements (227x227 pixels for Alexnet and 224x224 pixels for VGG-16 & VGG-19).

Alexnet. This deep CNN by Krizhevsky et al. [20] was the first successful deep CNN that

outperformed existing object recognition algorithms and won first place at the ILSVRC2012.

It incorporates multiple processing stages (or layers) in 8 weight layer groups, including con-

volutional, Rectified Linear Units (RELU), normalization, max pooling and fully connected

layers. The MatConvNet pretrained version of Alexnet on the validation data of ILSVRC2012

had a 42.6% top-1 error rate performance and 19.6% top-5 error rate.

VGG-16 & VGG-19. Introduced in 2014 [21], they are deeper CNNs than Alexnet and

consist of 16 and 19 weight layers, respectively, including convolutional, RELU, max pooling

and fully connected layers. The pretrained versions of MatConvNet follow the same principles

as Alexnet in terms of their training procedure and processing stages, but they don’t include a

normalization layer due to lack of performance improvement on the ILSVRC dataset and

increased computation time and memory consumption [21]. The MatConvNet versions of

VGG-16 and VGG-19 had 28.7% and 28.5% top-1 error rate performance, respectively, and a

9.9% top-5 error rate performance for both on the validation data of ILSVRC2012.
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Data analyses

In all analyses, we employed as distance metric the normalized Euclidean distance between the

neuronal responses or deep CNN unit activations:

Sn
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i Þ
2

n

� �1
2

;

where R1
i is the response of neuron or deep CNN unit i, to stimulus 1, and n is the number of

neurons or the number of deep CNN units in a specific layer. For the representational similar-

ity analyses, we computed also a second distance metric: 1- Spearman’s correlation coefficient.

The Spearman rank correlation coefficient ρ was computed between the neural responses or

CNN units’ activations for all stimulus pairs.

To compare neuronal data to CNN layers, we performed representational similarity analy-

sis [49], using both distance metrics. We constructed representational dissimilarity matrices

(RDMs) for the whole stimulus set (n = 64 stimuli) for both IT neurons and each deep CNN

layer (trained and untrained separately; for examples see Fig 3), by arranging all possible pair-

wise distances in 64x64 RDMs. We extracted all values above the diagonal (upper triangle of

the RDM, excluding the diagonal) of the symmetrical RDMs, and computed for each layer the

Spearman rank correlation coefficient between the distances of the corresponding pairs of the

neural and CNN matrices.

We computed 95% confidence intervals of the Spearman correlation coefficient between

neural and CNN distances by resampling with replacement 10,000 times 119 neurons out of

our pool of IT neurons and correlating each time the resulting neural distance matrix with

each deep CNN layer for the trained and untrained versions of the same network. The confi-

dence intervals corresponded to the 2.5 and 97.5 percentiles of the bootstrapped correlation

coefficient distributions. To assess whether the trained deep CNN layers significantly differed

from the untrained, we computed for each CNN layer the distribution of the paired differences

of trained minus untrained layer correlations across the 10,000 iterations (one difference per

bootstrapped neuronal sample). For each layer, we computed the percentile in the correspond-

ing distribution of the zero difference value and these defined the p values of the test. For each

of the 3 CNNs, we corrected the p values for multiple comparisons (n = number of CNN lay-

ers) using the Benjamini and Hochberg [50] False Discovery Rate (FDR) procedure. A differ-

ence between the trained and untrained CNNs was judged to be significant when FDR

q< 0.05. The same procedure was used to assess the significance of the difference in IT-CNN

correlations between the original and reduced shape size for each of the CNN layers (Fig 5).

We employed a similar procedure to test the significance of the difference in Spearman rank

correlation coefficients of the neural and CNN distances between the first layer and each sub-

sequent layer. Thus, we computed the pairwise difference between the correlation for the first

and a subsequent layer for each of the 10,000 bootstrapped neural samples and then obtained

the percentile of the zero difference in that distribution of differences. The p values were cor-

rected for multiple comparisons using the FDR procedure and significance was defined when

q< 0.05.

In the second analysis, using only the original, non-bootstrapped distances, we compared

the pairwise Euclidean stimulus distances amongst the 4 stimulus groups R, IC, ISC, ISS. For

each group, we included only the stimulus pairs numbered 1–8 in Fig 1, i.e. for each group the

members of the a and b rows of Fig 1. In addition, we selected the distances for the “ISCa vs.

ISSa” and “ISCb vs. ISSb” pairs of Fig 1, e.g. the column-wise distances between row a of ISC

and row a of ISS in Fig 1 (likewise for the b rows). This produced twice 8 distances for the ISC

versus ISS comparison, which we analyzed separately, unlike in Kayaert et al. [12]. For each of
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the 4 groups and the two ISC versus ISS comparisons, we computed the mean distance (and

standard errors of the mean) across the 8 pairs per group or comparison. To quantify the rela-

tionship between the mean distances across groups for the neural data and each CNN layer,

we computed the Pearson correlation coefficient between the mean neural distances and the

mean distances of the CNN layers (n = 6 pairs of distances per layer). A similar analysis was

performed comparing the CNN layer distances and the distances based on the human ratings.

However, for this analysis, the available human rating data consisted of the distances that were

computed by Kayaert et al [12], having an ISC versus ISS comparison of 8 stimulus pairs (for

selection of those pairs, see [12]) instead of twice 8 pairs as above. We compared those dis-

tances with the average of the “ISCa vs. ISSa” and “ISCb vs. ISSb” pairs of the CNN layers.

Note that our average neural distances for the “ISCa vs. ISSa” and “ISCb vs. ISSb” pairs were

highly similar to those for the 8 “ISC vs. ISS” pairs selected by Kayaert et al. [12], justifying this

procedure.

We compared neural dissimilarities also with dissimilarities based on pixel graylevels and

the HMAX model [5], employing the same procedures as in Kayaert et al.. We computed the

Euclidean distance between the gray-level values of the pixels for all image pairs (Fig 3B). In

addition, we computed the Euclidean distances between the outputs of C2-units of the HMAX

model as described by Riesenhuber and Poggio [5] and presented in [12]. The HMAX C2

units were designed to extract moderately complex features from objects, irrespective of size,

position and their relative geometry in the image. HMAX-based dissimilarities were computed

as the Euclidean distance between the output of the 256 C2 units.

Supporting information

S1 Fig. Representational similarity analysis of deep CNN layers and IT neurons for the

whole shape set. Spearman rank correlation coefficients between IT and model layer similari-

ties are shown for each layer of the three CNN models used. The same analysis was performed

for two distance metrics: Euclidean distance (left column) and 1-Spearman rank correlation

(right column). Error bars depict 95% confidence intervals, determined by 10,000 bootstrap

samples of the IT neuron pool (n = 119 neurons). Stars indicate layers for which the Spearman

rank correlations for the trained version differed significantly from its untrained version

(paired bootstrap test (see Materials and Methods); False Discovery Rate corrected q<0.05).

Crosses indicate trained layers which differed significantly from the first convolutional layer of

the network (paired bootstrap test (see Materials and Methods); False Discovery Rate corrected

q<0.05). Layers are indicated by the same nomenclature as in Fig 2 of the main text. The hori-

zontal line and gray band indicate the median and 95% interval, respectively, of the Spearman-

Brown corrected split-half correlations (n = 10000 splits) of the neuronal distances, as an esti-

mate of the noise ceiling.

(TIF)

S2 Fig. Representational similarity analysis of deep CNN layers and IT neurons for the

whole shape set with two different sizes. Spearman rank correlation coefficients between IT

and model layer similarities are shown for each layer of the three CNN models for the original

and twofold smaller sizes (“reduced size”). The dissimilarities were Euclidean distances. Error

bars depict 95% confidence intervals, determined by 10,000 bootstrap samples of the IT neu-

ron pool (n = 119 neurons). Stars indicate layers for which the Spearman rank correlations for

the trained version differed significantly from its untrained version (paired bootstrap test;

False Discovery Rate corrected q<0.05). The horizontal line and gray band indicate the

median and 95% interval, respectively, of the Spearman-Brown corrected split-half
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correlations (n = 10000 splits) of the neuronal distances, as an estimate of the noise ceiling.

(TIF)

S3 Fig. Similarities between IT and CCN peak layer shape dissimilarities as a function of

percent of units. (A) Spearman rank correlation coefficients between IT and peak CNN layer

similarities are shown for each of the three CNN models as a function of sample size, expressed

as percentage of the total number of units that were activated differentially by the 64 shapes.

(B) Pearson correlation coefficients between the mean neural distances and the mean distances

of the peak CNN layer (n = 6 mean distances; Fig 8 of the main text) as a function of percent-

age of the total number of units. The total number of units (100%) for each CNN layer is listed

in the legend. Note that 0.1% corresponds to only 3 Alexnet units, explaining the large range of

correlations for that sample size. The dissimilarities were Euclidean distances. Error bars

depict 95% confidence intervals, determined by 10,000 random samples from the population

of differentially activated CNN units of that layer.

(TIF)

S4 Fig. Similarities between IT and CNN peak layer shape dissimilarities as a function of

retained Principal Components. Top left panels: Spearman rank correlation coefficients

between IT and peak CNN layer similarities are shown for each of the three CNN models as a

function of retained principal components of the CNN layer activations. The dissimilarities

were Euclidean distances. Error bands depict 95% confidence intervals, determined by 10,000

bootstrap samples of the IT neuronal pool. Top right panel: The cumulative proportion of

explained variance as a function of principal component number for the 3 CNN. Bottom pan-

els: Pearson correlation coefficients between the mean neural distances and the mean distances

of the peak CNN layer (n = 6 mean distances; see Fig 10 of the main text) as a function of

retained principal components. The error bands represent 95% confidence intervals, deter-

mined by 10,000 bootstrap samples of the IT neuronal pool.

(TIF)

S5 Fig. Correspondence between model dissimilarities and biological dissimilarities (IT

responses and human judgement-based dissimilarities) for the shape groups. (A, B, C).

Gray curves show the Pearson correlation coefficients between the mean neural distances and

the mean distances of the CNN layers (n = 6 mean distances per layer). Blue curves show the

Pearson correlation coefficients of the CNN layer distances and the distances based on human

judgements. Data for trained and untrained CNNs are plotted with full and dashed lines,

respectively. Nomenclature of CNN layers as in Fig 2 of the main text. Results for all three

models (Alexnet, VGG-16 and VGG-19) are displayed in the subplots (A, B and C). (D) Neu-

ral: Pearson correlation coefficient between the mean IT distances and the mean distances of

the peak Alexnet layer, peak VGG-16 layer, VGG-19 layer, the mean HMAX C2 layer dis-

tances, and mean pixel-based distances, across shape groups. Human: Pearson correlation

coefficient between the distances based on the human judgements and the peak Alexnet layer,

peak VGG-16 layer, peak VGG-19 layer, HMAX C2 layer and pixel-based distances.

(TIF)
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