Skip to main content
. 2018 Sep 21;20(9):e263. doi: 10.2196/jmir.9227

Table 1.

Predictive accuracy of hospital admission and use of corticosteroids of different definitions of exacerbation.

Description Practical AUCa (empirical 95% CI) Events, N+ Samples, N
Prediction of 24-hour admissions using exacerbation definitions, complete data

Definition 1 Yes 0.600 (0.509-0.692) 17 17,610

Definition 2 Yes 0.578 (0.496-0.672) 17 17,610

Definition 3 No 0.553 (0.440-0.666) 8 14,106

Definition 4 No 0.490 (0.424-0.556) 8 14,106

Definition 5 No 0.657 (0.523-0.792) 9 16,170
Prediction of 24-hour admissions using exacerbation definitions, imputed data

Definition 1 Yes 0.513 (0.477-0.551) 55 57,150

Definition 2 Yes 0.524 (0.486-0.544) 55 57,150

Definition 3 No 0.496 (0.471-0.521) 55 56,702

Definition 4 No 0.505 (0.473-0.536) 55 56,702

Definition 5 No 0.517 (0.479-0.555) 55 57,150
Prediction of 24-hour corticosteroid decisions using exacerbation definitions, complete data

Definition 1 Yes 0.655 (0.630-0.679) 238 9768

Definition 2 Yes 0.605 (0.581-0.628) 238 9768

Definition 3 No 0.568 (0.544-0.592) 178 8489

Definition 4 No 0.544 (0.522-0.567) 178 8489

Definition 5 No 0.646 (0.622-0.670) 237 9322
Prediction of 24-hour corticosteroid decisions using exacerbation definitions, imputed data

Definition 1 Yes 0.660 (0.639-0.681) 316 13,899

Definition 2 Yes 0.605 (0.585-0.625) 316 13,899

Definition 3 No 0.564 (0.543-0.586) 228 10,442

Definition 4 No 0.543 (0.524-0.564) 228 10,442

Definition 5 No 0.647 (0.626-0.668) 316 12,477
Prediction of 24-hour admissions using machine learning models, imputed data

Machine learning model Yes 0.740 (0.673-0.803) 55 57,150
Prediction of 24-hour corticosteroid decisions using exacerbation definitions, imputed data

Machine learning model Yes 0.765 (0.738-0.791) 316 13,503

aAUC: area under the receiver operating characteristic curve.