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ABSTRACT  Electrocardiogram, electrodermal activity, electromyogram, continuous blood pressure, and
impedance cardiography are among the most commonly used peripheral physiological signals (biosignals)
in psychological studies and healthcare applications, including health tracking, sleep quality assessment,
disease early-detection/diagnosis, and understanding human emotional and affective phenomena. This paper
presents the development of a biosignal-specific processing toolbox (Bio-SP tool) for preprocessing and
feature extraction of these physiological signals according to the state-of-the-art studies reported in the
scientific literature and feedback received from the field experts. Our open-source Bio-SP tool is intended
to assist researchers in affective computing, digital and mobile health, and telemedicine to extract relevant
physiological patterns (i.e., features) from these biosignals semi-automatically and reliably. In this paper,
we describe the successful algorithms used for signal-specific quality checking, artifact/noise filtering, and
segmentation along with introducing features shown to be highly relevant to category discrimination in
several healthcare applications (e.g., discriminating patterns associated with disease versus non-disease).
Further, the Bio-SP tool is a publicly-available software written in MATLAB with a user-friendly graphical
user interface (GUI), enabling future crowd-sourced modification to these tools. The GUI is compatible
with MathWorks Classification Learner app for inference model development, such as model training,
cross-validation scheme farming, and classification result computation.

INDEX TERMS  Affective computing, biosignal processing, blood pressure (BP), dimensionality reduction,
electrocardiogram (ECG), electrodermal activity (EDA), electromyography (EMG), feature extraction, health
informatics, impedance cardiography (ICG), machine learning, pattern recognition, quality checking.

I. INTRODUCTION

Measures of peripheral physiological signals (biosignals),
including the electrocardiogram (ECG), impedance cardio-
gram (ICG), electromyogram (EMG), electrodermal activity
(EDA) and continuous, noninvasive arterial blood pres-
sure (BP) can provide rich information about peripheral
physiological functioning of the body with the potential for
providing insights on phenomena such as health status, sleep
quality, and the affective properties of psychological expe-
rience. These measures are thus widely used as the input
data for machine learning and pattern recognition algorithms
focused on preventive care, diagnostics, and telemedicine,
including guiding therapy [1]-[8]. For example, a support
vector machine (SVM) classifier was trained on ECG signal

features, such as inter-beat interval (IBI) to predict ischaemic
heart disease in [2], and an SVM was trained on EDA sig-
nal features to corroborate coding by adult experimenters
of groups of children who were either easy or hard to
engage socially during a set of lab interaction tasks [3].
In [4], an inference model trained on EMG signal features
was used to aid the diagnosis of neuromuscular disorders,
and in [5], a model trained on BP signal features was used
to aid in diagnosing diabetes. Valvular heart diseases have
been predicted by models using ICG signal features [6] and
physiological responding under stress has been studied by
analyzing multimodal data comprising ECG, EMG, EDA,
and ICG signal features [7]. These are just a few examples
of the rapidly expanding research utilizing the information
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present in biosignals for machine learning and pattern recog-
nition in healthcare and psychological science [7], [9].

Typically, in these studies, a large amount of physiologi-
cal data is collected. However, to reduce the dimensionality
of these data, researchers often extract specific attributes
(i.e., features) from each biosignal to use as input for machine
learning or pattern classification models. Identifying relevant
features of a given biosignal for a specific inference tasks
requires deep knowledge regarding the human biological
mechanisms as well as expertise in analyzing these data [10].
Due to increasing interest in and usability of these peripheral
biosignals in medical and bio-engineering research, several
commercial software and open-source toolboxes have been
developed to simplify the preprocessing and feature extrac-
tion required when analyzing these biosignals [10]-[12].
There are also biosignal-specific processing algorithms for
ECG [12]-[14], [14], [15], EMG [16], [17], EDA [18]-[20],
continuous blood pressure (BP) [21], [22] and ICG [23], [24]
signal processing. However, a large portion of these software
and algorithms are not designed for semi-automatic process-
ing, and require intensive manual interventions by the users.
For instance, many processing pipelines are unreliable with-
out visual inspection and therefore demand visual inspections
for basic quality checking; this is because their algorithm
are not sufficiently robust to morphological variations of
the biosignals and to the low signal-to-noise-ratio conditions
that often arise. Moreover, details and rationale behind the
choice of the processing algorithms, their implementation and
parameter tuning are missing in the majorities of these works.

The present work describes an open-source Biosignal-
Specific Processing toolbox (Bio-SP tool) for psychologists,
neuroscientists, and researchers in affective computing, ma-
chine learning and pattern classification that can be used to
process ECG, EMG, EDA, ICG and continuous BP biosignals
all in one easy-to-use, MATLAB-based toolbox. Bio-SP tool
extracts relevant features for each signal automatically and
reliably, and has been used in affective computing studies for
processing and feature extraction with peripheral physiolog-
ical biosignals [7], [25]. In this paper, we provide additional
background information about the Bio-SP tool.

The biosignal processing pipeline employed in Bio-SP tool
includes signal-specific algorithms for: (1) checking the qual-
ity of physiological data, (2) preprocessing of the biosignal
data (e.g., noise filtering and artifact removal), (3) segmenta-
tion of continuous biosignal data, (4) detection of characteris-
tic points on a biosignal waveform, and (5) feature extraction.
The signal-specific algorithms employed in Bio-SP tool are
developed using the current state-of-the-art in the scientific
literature [13]-[24], [26] and are based on feedback received
from field experts. Future iterations can incorporate or link
to new signal processing tools that appear in the literature
such as a new moving ensemble averaging procedure for
processing ICG data (Cieslak et al., 2018).

Moreover, very few software/toolboxes have ICG process-
ing tools that have been combined with such tools for other
peripheral biosignals. Our Bio-SP tool provides the ability to
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process ICG and extract ICG-based signal features, such as
cardiac output (CO), pre-ejection period (PEP), and stroke
volume (SV), which are associated with distinctive patterns
of cardiovascular response (i.e., threat vs. challenge) during
motivated performance tasks [27]-[29].

The Bio-SP tool is accessible via the MathWorks File
Exchange site [30]. The toolbox has been developed such
that the outputted feature matrix can be employed directly
by machine learning algorithms for further analysis, or even
passed directly as input into the Classification Learner
App provided by MATLAB.

Il. MATERIALS AND METHODS

We developed a set of signal-specific algorithms to extract
physiologically relevant features from raw biosignals of
ECG, EDA, EMG, ICG and continuous BP. To this end,
for each biosignal, several layers of algorithms are imple-
mented in consecutive order. The input-output as well as
inner toolbox layers of Bio-SP tool are schematically illus-
trated in Fig. 1. Although, the algorithms are signal-specific,
the general pipeline is similar across all five signal modalities.
First, we perform basic automatic quality checking. Segments
of the raw signal that are purely noise or are of low quality
due to improper attachment of sensors or large movements
of participants are detected and marked in red, identifying
them for possible replacement or removal from the original
signal. Signals then undergo a filtering process designed to
remove high frequency noise (e.g., 60 Hz power-line interfer-
ence) and lower frequency artifacts (e.g., limb movements).
Parameters of choice for the specification of filters (filter
type or bandpass values) can be tuned by users, however,
we provided the recommended values for filtering parameters
for each biosignal. Next, signal-specific algorithms are used
to detect characteristic points of each waveform based on the
prior knowledge provided by experts in these signals or exist-
ing published guidelines in this literature. Finally, relevant
physiological features are extracted and outputted as a feature
matrix for machine learning and pattern recognition analysis.
This paper is primarily focused on the biosignal-specific
feature extraction algorithms. We first describe the filtering,
characteristic point detection, and feature extraction algo-
rithms for each biosignal, and then we elaborate on the algo-
rithms used for quality checking. Finally, we briefly introduce
the tool box graphical user interface (GUI).

A. DATASET DESCRIPTION

In this work, we used a dataset from the Interdisciplinary
Affective Science Laboratory in the Psychology Department
at Northeastern University for algorithm development and
verification. The data were recorded as part of a larger
research project funded by the Army Research Institute for
the Behavioral and Social Sciences (W5J9CQ-12-C-0049).
Data from 107 participants (65 females) were randomly
selected from a larger dataset of 260 participants. All of the
physiological measures included in our Bio-SP tool were
recorded from each participant while he/she was performing
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FIGURE 1. Our Bio-SP tool pipeline. The input (left) to the Bio-SP tool is a raw segment of either ECG, EDA, EMG, BP, or ICG biosignal (or modality).
The Bio-SP tool output (right) is the signal-specific feature vector. The Bio-SP tool itself is comprised of the following consecutive processing

steps: (1) Basic quality checking of raw signals. Poor quality portions of the input signal are detected and marked in red for possible elimination or
replacement. (2) Preprocessing (filtering) of raw signals for noise or artifact removal. (3) Characteristic point detection on the filtered signal based
on a series of signal-specific algorithms. (4) Feature extraction as functions of characteristic points detected on the signal.

a series of motivated performance tasks [7]. All biosignals
were recorded using BioLab v.3.0.13 (Mindware Technolo-
gies; Gahanna, OH), and were acquired on a BioNex 8-Slot
Chassis with a sampling rate of 1000 Hz. We included sam-
ples of this dataset in the Bio-SP tool directory for the tutorial
purposes. For further algorithm evaluation, we also employed
datasets from the PhysioBank ATM website [31] as well
as some datasets shared by the MIT Affective Computing
group [32].

Raw ECG Signal

N
~

Amplitude(mV)
o N

o o
SN

3000 4000 5000 6000
Bandpass Filtered ECG Signal
TR T = —R

o
]
S
N
oL
S
]

Amplitude(mV)
o

S

Yoo 200 000 w000 %00 6000
Time(ms)

FIGURE 2. Raw ECG signal (top); bandpass filtered ECG signal (bottom)

with the characteristic points (P,Q,R,S and T) identified on the signal.

B. BIOSIGNAL #1: ELECTROCARDIOGRAM (ECG)

ECG is a primary diagnostic signal for detecting cardiovas-
cular disease [33] and contains rich information relevant to
human health, sleep quality, and psychological states [13].
The ECG signal comprises a consistent, complex electrical
waveform that typically repeats for each heartbeat. The wave-
form associated with each beat contains several critical events
including a P wave, a QRS complex, and a T wave (Fig. 2).
Relevant physiological features can be defined by detecting
these characteristic points for each heartbeat. We first use
filtering to remove noise and artifacts. Then our developed
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robust algorithms are used to detect all important events
(P, Q, R, S, T points) [30]. Finally, physiological features are
calculated using these detected points.

1) ECG PREPROCESSING

Corruption of the ECG signal may be caused by power-
line interference or baseline shifts, which can be caused by
respiration or large movements of the participants or drift in
the recording instruments [15], [34]. Therefore it is necessary
to preprocess the ECG signal prior to applying any detection
algorithm. Using an analysis of the signal power spectral
density (PSD) function of ECG in our dataset, we determined
that several band-pass filters, such as Elliptic, Gaussian,
or Butterworth provide satisfactory performance in eliminat-
ing baseline and high-frequency noise without significantly
decreasing the amplitude of the QRS complexes. Although
we specified a band-pass Elliptic filter as a default option,
other types of band-pass filters are also available in our GUIL.

2) ECG CHARACTERISTIC POINT DETECTION

Inspired by the commonly used Pan-Tompkins algorithm [14],
we developed an algorithm for robust QRS detection for ECG
with the following steps:

Step I: Since the human heart rate does not exceed 5 beats
per second two adjacent QRS complexes cannot appear
closer together than 200ms [14]. Therefore, a sliding window
of 400 ms size with a step size of 1 sample can iteratively
scan the entire signal. At each iteration, we find the global
maximum in the sliding window and if this global maximum
appears in the middle of the window, that global maximum is
marked as a potential R point. By scanning the entire input
ECG signal, the peaks which are likely to be R peaks are
detected. The ith peak is denoted by R;.

Step II: R; peaks that are lower in amplitude than an
amplitude threshold (Amp-Thr) are eliminated. Amp-Thr
is initially set to % times the maximum amplitude of the
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first 2 seconds of the input ECG signal. To adapt to the
changes in the ECG over time, upon passing sufficient
R peaks from the beginning of the signal, Amp-Thr is updated
to 0.75 times the mean of the amplitude of the last eight
determined R peaks.

Step II1: After scanning through all the detected adjacent R
peak to R peak time intervals (R-R intervals), if any R-R inter-
val is greater than a predefined threshold (RR-Thr), it implies
that an R peak is missing. Thus, we assign a new R peak as the
global maximum amplitude of the signal within the range of
R;+200ms and R;1-200ms [14]. According to [14], the rate
of change for adjacent R-R intervals will not exceed 166%.
Thus, RR-Thr is initially set to the previous R-R interval
multiplied by 1.66. Upon detecting enough R-R intervals,
the RR-Thr is then updated to reflect the average of the last
eight R-R intervals multiplied by 1.66.

Step 1V: Detection of P, Q, S, and T points are based on the
locations of the detected R peaks. Q; is identified as the first
closest local minimum before R; and within the interval of
R;-70ms and R;. Likewise, S; is identified as the first closest
local minimum after R; and within the interval of R; and
R;+70ms. The peak of the P wave, P;, is identified as the
global maximum point found in the interval of R;—120ms to
R;, and the peak of the T wave, Tj, is identified as the global
maximum point found in the interval of R; to R;+300ms. The
detected locations of P, Q, R, S, and T on a few sample heart-
beats are shown in Fig. 2. We investigated the accuracy of our
Q and S point detection algorithm by comparing the results
of our automated detection algorithm with visual inspection
of 1000 randomly selected heartbeat cycles from the ECG
signal of 10 different participants. Results demonstrated that
that almost all the Q and S points were accurately detected
(see Fig. 3). Slight differences were likely caused by the lower
resolution in the visualization used to mark manual detection.
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FIGURE 3. Validation of detecting characteristic ECG points, with visual
detection (x-axis) vs. algorithm-based detection (y-axis): Q point (left),
and S point (right).

3) ECG FEATURE EXTRACTION
The following morphological features were extracted based
on the QRS detection:

IBIM is the mean of all inter-beat intervals (IBIs) in a
segment, where each IBI is the time (ms) between adjacent
R-R intervals [16].

IBISD is the standard deviation of all IBIs in the input
signal segment [16].

SDSD is defined as the standard deviation of the dif-
ferences between adjacent IBIs in a signal segment [16].
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SDSD may be found by the following equation:

N
SDSD = 1/N Z(RRi — RRi_| — )2, (1)
i=2
where RR; is the ith R-R interval, u = w
is the number of R-R intervals.
RMSSD is the square root of the mean of the sum of
the squares of the differences between adjacent IBIs in a
segment [17].

and N

N
RMSSD = | (Y _(RR; — RRi_1)?)/(N — 1). 2)
i=2

ECG-derived respiratory mean (EDRm) and standard
deviation (EDRsd) [16] are related to respiratory effort.
EDR is calculated based on the area of each normal QRS
complex measured over a fixed window width w, which
is determined by the interval from the PQ junction to the
J(junction)-point which is the onset of repolarization phase
on the ECG signal. We estimated w as two times the sum of
the QR interval and the RS interval (w = 2 x (QR+RS)). The
mean and standard deviation of EDR (EDRm and EDRsd) are
outputted as two features.

QR to QS ratio and RS to QS ratio, features used in
cardiology, are defined as the ratio of the QR interval to the
QS interval, and the ratio of the RS interval to the QS interval
for each R peak, respectively.

C. BIOSIGNAL #2: ELECTRODERMAL ACTIVITY (EDA)
EDA reflects changes in the electrical conductivity of the skin
that results from both internal (e.g., deep breaths) and external
stimuli (e.g., sounds to which we attend) [35]. Changes in
EDA reflect changes in the activity of the eccrine sweat
glands, which are exclusively innervated by the sympathetic
nervous system (SNS). Because of this relationship between
EDA activity and SNS activity, EDA has been widely used as
an indirect measure of peripheral physiological arousal [36].
The EDA signal is composed of two components, both a
background, or tonic, level and phasic changes that are of
shorter duration (on the order several seconds). The tonic
level is referred to as the skin conductance level (SCL).
The phasic changes are referred to as skin conductance
responses (SCRs). SCRs can arise from stimuli external to the
person (often called event-related skin conductance responses
or ER-SCRs) or the responses can be non-specific meaning
that there is no apparent external stimulus (non-specific or
NS-SCRs) [18].

1) EDA PREPROCESSING

To eliminate noise, the filtering options provided for EDA in
our Bio-SP tool are the same as those described above for
the ECG signal (Elliptic, Gaussian and Butterworth filters).
Some authors have suggested using a Gaussian filter with a
low-pass frequency of 1 Hz to filter the EDA signal [19].
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2) EDA CHARACTERISTIC POINTS DETECTION

SCRs contained within the EDA signal can be detected by
performing differentiation and subsequent convolution with a
20-point Bartlett window [20]. A Bartlett window is a triangle
function represented as:

2n
-, 0<n<N/)2

wimy={N , 3)
Z—F, N/2<n§N,

where N is the window size (=20) and n is the nth signal
sample in the window. The occurrence of a SCR is detected by
finding two consecutive zero-crossings, from negative to pos-
itive and positive to negative of the bartletted differentiated
EDA signal (see Fig. 4). We considered negative to positive as
the beginning and positive to negative as the end of each SCR.
The amplitude of the SCR is obtained by finding the maxi-
mum value between these two zero-crossings, and calculating
the difference between the initial zero crossing and the max-
imum value. Detected SCRs with amplitudes smaller than
10 percent of the maximum SCR amplitudes that are already
detected on the differentiated signal will be eliminated [20].
Fig. 4 demonstrates the detection of SCRs. In Fig. 4 top,
the beginning, end, and peak of each detected SCR is shown
on the differentiated signal. In Fig. 4 bottom, the correspond-
ing locations of the previously detected SCRs are provided
on the original low-pass filtered signal.
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FIGURE 4. Detection of SCRs on bartletted differentiated EDA signal (top)
and demonstration of detected SCRs peaks and starts on low passed
filtered EDA signal (bottom).

3) EDA FEATURE EXTRACTION
After detecting the SCRs in the signal, the following features
can be extracted:

SCR duration mean is the average of each detected SCR’s
duration within a given input segment. Duration of an SCR is
defined as the time (in ms) from the beginning to the end of
an SCR detected in the differential signal.

SCR amplitude mean is the average of the amplitude of
the detected SCRs within a given input segment.

SCR rise-time mean is the average of the SCR rise-times
within a given input segment, which is defined as the time (in
ms) between the beginning and the peak of an SCR.

Mean skin conductance (MSC) is the average of the
low-pass filtered signal within a given input segment.
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Number of detected SCRs is the number of the detected
SCRs in the input segment.

Tonic SCL is the average value of the EDA signal within
a given input segment, with data from the start to end of each
SCR excluded from the calculation. If no SCRs are detected
throughout the input segment, all the features except MSC
and Tonic SCL will be outputted as NaN values.

D. BIOSIGNAL #3: ELECTROMYOGRAPHY (EMG)

EMG is a measure of electrical activity, here measured at the
surface of the skin, which is responsible for the activation of
a skeletal muscle region [37]. In general, it is best to refer
to muscle regions rather than specific muscles when using
surface EMG, because the signal detected at the skin typi-
cally reflects the combined electrical changes from multiple
underlying muscles. EMG is sometimes used as a diagnostic
procedure to determine the health of muscles and the nerve
cells that control them (motor neurons) [38]. EMG signals
are also widely used to measure facial muscle activation of
muscles that create facial configurations, which, despite a
common assumption, do not have a one-to-one relationship
with specific emotional experiences such as happiness or
anger [39].

1) EMG PREPROCESSING

The proper choice of EMG filtering depends on the specific
muscles that are being measured. For example, different fil-
tering options are used for facial muscles vs. larger mus-
cles in the arms/legs. Moreover, the speed/duration of the
anticipated response also must be considered. For instance,
different filters should be used when measuring an eye blink
response relative to a sustained muscle activation over a large
muscle. Thus, Bio-SP tool incorporates multiple filter options
including the type of filter as well as multiple choices of
cut-off frequencies that are chosen by the user. A band-pass
Elliptic filter with the cut-off frequency of 10-300 Hz [40] is
provided as the default filter option.

2) EMG FEATURE EXTRACTION

The feature extraction implementation in this paper is based
on the recommendations provided in [26] for the EMG data
of larger muscle groups in the arms or legs. We refer readers
interested in feature extraction of facial EMG (fEMG) sig-
nals, to the work by Fridlund and Cacioppo [41].

MAV is the mean absolute value of the EMG signal in a
analysis time window with N samples. x; is the kth sample
in this analysis window [26]: MAV = L 33| |xcl.

Zero crossing count is the number of times the EMG sig-
nal crosses zero within a analysis time window. It is a simple
measure associated with the frequency of the signal. To avoid
signal crossing counts due to low-level noise, a threshold ¢
is used in deriving the count (¢ = 0.015V) [26]. The zero
crossing count is increased when:

Xk — xk411 > €,

and
(xx > 0and xx4+1 < 0) or (xx < 0 and xg41 > 0).
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Slope sign change is related to the signal frequency and
is defined as the number of times that the slope of the
EMG waveform changes sign within an analysis window.
A count threshold € is used to reduce noise-induced counts
(e = 0.015V) [26]. The slope sign count increases by one if:
X — xk+1] = € or |xp — xx—1] > €, and (xx > xx—1 and
Xk > Xg41) Of (X < Xp—1 and xx < Xg41)-

Waveform length provides a measure of the complexity
of the signal [26] and is defined as the cumulative mag-
nitude of the EMG signal within the analysis window as
SR bk — X1 |

Log detector is an estimate of the exerted muscle force and
its feature is defined as eV Lzt 192kl

Peak amplitude is the amplitude of the maximum of the
filtered EMG signal for a given epoch relative to zero voltage.

Peak latency is the time in which the maximum of the
filtered EMG signal takes place.

SD is the standard deviation of the amplitudes of the fil-
tered EMG signal.

RMS is the root mean square of the amplitudes of the
filtered EMG signal for a given epoch.

E. BIOSIGNAL #4: CONTINUOUS BLOOD PRESSURE (BP)
BP in the circulatory system is a common measure because it
is an important parameter relevant to the overall function of
cardiovascular system. BP, the overall force of blood against
the vessel walls, results from the complex, combined effects
of changes in blood vessel diameter and the elasticity of the
walls of the large arteries [42]. Although some researchers
rely on intermittent readings of systolic and diastolic blood
pressure, recent technological advances have increased the
availability of devices that enable the noninvasive measure
of continuous BP. Thus, it is crucial that there are automatic,
robust, and accurate methods for extracting beat to beat BP
features such as mean arterial pressure (MAP), systolic blood
pressure (SBP), and diastolic blood pressure (DBP) from
continuous BP signals.

1) BP PREPROCESSING

The low-pass filter frequency for continuous BP signal pre-
processing should be at least 10 times higher than the heart
rate and less than half of the sampling rate [43]. Since a typi-
cal resting human heart rate varies between 40 and 100 beats
per minute (bpm) [44], a low-pass filter with a cut-off fre-
quency of 40 Hz is often used for removal of high frequency
artifacts in BP signals [43]. However, in our software, other
filter options, similar to those provided for ECG (Elliptic,
Gaussian, and Butterworth filters), are also available for pre-
processing the BP signal.

2) BP CHARACTERISTIC POINT DETECTION

An algorithm implemented by Laurin [21] for the feature
extraction of arterial blood pressure is used in this work.
This algorithm, inspired by the derivatives and thresh-
olds described by Pan and Tompkins [14] and criteria of
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detected on the signal. The foot is equivalent to the diastolic BP.

Sun et al. [22], primarily detects the characteristic points
in the BP signal including systolic BP, diastolic BP (Foot),
the dicrotic notch and the dicrotic peak (see Fig. 5). The
Foot, or lowest level of BP for a given heartbeat, is defined
as the BP at the time of occurrence of the maximum point in
the second derivative of the BP time-series for each heartbeat.
The systolic point is defined as the maximum value of the
BP waveform within the time range of [0s - 0.125s] after
the Foot index [21]. The dicrotic notch, which occurs due to
a disruption in the flow of blood as the aortic valve closes,
is defined as the BP at the minimum of the subtraction of the
signal and the straight line going from systole to Foot. Finally,
the dicrotic peak is defined as the BP at the minimum of
the second derivative of the time-series following the dicrotic
notch, within a window of size %s above it where RR,, is
the median heartbeat interval computed from the Foot points.

3) BP FEATURE EXTRACTION
Based on the extraction of these characteristic peaks, the fol-
lowing five physiological features are extracted [21].

Mean diastolic pressure (Foot) is the mean of all the
signal values (pressures) at the Foot indices for a given epoch.

Mean systolic pressure is the mean of all the sig-
nal values (pressures) at the systolic indices for a given
epoch.

Mean dicrotic peak pressure is the mean of all the
signal values (pressures) at the dicrotic peak for a given
epoch.

Mean dicrotic notch pressure is the mean of all the
signal values (pressures) at the dicrotic notch for a given
epoch.

Mean arterial pressure (MAP) represents mean signal
value (in pressure) for the entire input BP signal for a given
epoch.

Total peripheral resistance (TPR) is another important
BP feature reflecting the overall resistance to blood flow
in the systemic circulation [45]. Because the calculation of
TPR also requires features extracted from the ICG signal,
the description of TPR is provided in the ICG section.
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F. BIOSIGNAL #5: IMPEDANCE CARDIOGRAPHY (ICG)
ICG is a non-invasive method used to extract estimates of
stroke volume, cardiac output, and overall vascular resis-
tance (i.e., TPR), along with systolic time intervals includ-
ing pre-ejection period (PEP) and left-ventricular ejection
time (LVET). Together these measures provide a more com-
plete understanding of the full hemodynamic function of the
cardiovascular system. Biosignals measured via ICG include
basal thoracic impedance (Z0) and its first derivative (dZ/dt).
Common features from the ICG signal include: (1) mean Z0;
(2) stroke volume (SV), which is defined as the amount of
blood pumped by the heart with each heartbeat (usually in
units of ml); (3) cardiac output (CO), which is the volume
of blood pumped by the heart per unit of time (typically
as liters/minute) [46], (4) total peripheral resistance (TPR),
which is the overall resistance to blood flow in the sys-
temic circulation [45], (5) pre-ejection period (PEP), which
is the time period between the electrical activity signaling
the start of ventricular contraction and the onset of blood
being ejecting into the aorta [47]; and (6) left ventricular
ejection time (LVET), which is the time period during which
blood flows through the open aortic valve. Guidelines for the
collection and reporting of ICG signals are provided by [23].
Additional details on ensemble averaging methods can be
found in [48], and on a new method for moving ensemble
averaging in [12]. These six features can be calculated from
the basal impedance (Z0), the dZ/dt, the ECG, and BP.

1) 1CG PREPROCESSING
The preprocessing of the ICG signal includes the following
steps.

Noise and artifact removal is a necessary step in prepro-
cessing the ICG signal. A second order Elliptic band-pass
filter with a low cut-off frequency of 0.75 Hz and high cut-off
frequency of 40 Hz is recommended in available biosignal
software, such as Biolab [49]. However, our Bio-SP tool
allows the user to adjust these low and high cut-off frequen-
cies as desired as well as to choose the filter type (Elliptic,
Gaussian, or Butterworth).

Segmentation of the dZ/dt signal into beat to beat intervals
is required for the ensemble averaging step. Using the R peak
from the ECG signal, we considered a beat to beat interval to
startat Tg = —250 ms and toend at Tg = +500 ms, where Tg
is the R peak location time in ms [23], [49].

Ensemble averaging of multiple cardiac cycles is per-
formed to eliminate stochastically distributed noise as well
as respiratory influences and movement artifacts in the dZ/dt
signal [23], [48], [50]. The number of cycles is adjustable by
the user and is set to 8 beats by default in the Bio-SP tool.

2) DZ/DT AND ECG POINT DETECTION
To extract features, the following points have to be identified
on the dZ/dt and ECG signals:

Q point time is the Q point time derived from the ECG
signal (Fig. 6).
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FIGURE 6. Three cases of dz/dt (bottom) with the corresponding ECG
signal (top) indicating variations in the morphology of dZ/dt signal with
the characteristic points identified by the algorithm. Left panel: B and X
points occur at a local minimum and global minimum, respectively;
Middle panel: the B point is a notch; Right panel: the X point is just a
local minimum and NOT a global minimum.
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FIGURE 7. Validation of (left) B-point location, (middle) dZ /dtmax value,
(right) X-point location, detected by visual inspection and manual
placement (x-axis) vs. our algorithm (y-axis) for 150 randomly selected
cardiac cycles.

B point identification can be difficult due to variations in
the morphology of the ICG signals [23]. There have been
several algorithmic definitions proposed to approximate the
location of the B point [23], [24], [51]. Fig. 6 illustrates three
examples of the variation in the morphology of the dZ/dt
waveform. In general, the B point indicates the onset of
the final rapid upstroke toward the dZ/dtmax [23]. We use
here a second derivative classification [24], [52] which has
been used in prior literature as a method for detecting the
B point. Specifically, we first calculate the second derivative
of the dZ/dt signal, and then we locate the times when the
maximum peak of this second derivative of the dZ/dt occurs
within a small time period ( 80ms) before occurrence of
the dZ/dty,x. This algorithm robustly detected the B point
in all three of the different morphology samples illustrated
in Fig. 6. To quantitatively evaluate the performance of this
algorithm, we compared B points detected by this algorithm
to B points detected by visual inspection and manual marking
by trained scorers for 150 randomly selected cardiac cycles
from 20 different participants [7]. Results shown in Fig. 7
illustrate that the automatic detection matched the visual
detection with manual marking more than 90% of the time.
The remaining 10% disagreement was the result of the exis-
tence of outliers as well as small, sharp notches on the dZ/dt
signal that were not visible to the naked eye and therefore
not detected by the human inspectors. The root-mean-square
deviation (RMSD) [53] between the manual and algorithmic
detection of the B point was 5.38 ms.
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dZ/dty,« is identical to the global maximum value of
the dZ/dt signal within one cardiac cycle. Full agreement
exists between visual detection with manual marking and the
detection algorithm for dZ/dty,x developed here (Fig. 7).

X point represents the closing of the aortic valve after the
ejection of blood from the left ventricle of the heart [23].
Using the second derivative of the dZ/dt signal, we developed
an X point detection algorithm which is robust to morpho-
logical variations in the dZ/dt signals. The X point is often
defined by the point in time where the minimum dZ/dt value
in one cardiac cycle is detected. However, due to variations in
the morphology of the dZ/dt waveform, this does not always
hold true. For instance, in Fig. 6 the selected X point is not
the global minimum of the ICG signal in the right-most case.
In such cases, the X point is not a minimum point but a
notch in the signal (i.e., a local minimum, but not the global
minimum). To capture these variations, the second derivative
of the dZ/dt can be used: both global minimum points and
notches (local minima) appear as peak values in the second
derivative of the dZ/dt signal. Therefore, the algorithm used
in this work is as follows: We search for all the peak indices
for the second derivative of the dZ/dt signal in a period of
time after the B point (i.e., Tp) from 230 ms to 400 ms
after Tp, and we choose the index that corresponds to the
lowest value in the original dZ/dt signal. If no peak is found
in the second derivative of the dZ/dt signal in this interval,
we repeat the same procedure within a larger window from
Tg = 4200 ms to 400ms. These threshold values for the
time window after Tp (200, 230, and 400 ms) were cho-
sen based on the normal range for LVET values [23], [54],
as well as recommendations made by experts in this area.
Fig. 7 shows the result of the validation of this algorithm for
automatic X point detection in the same sample dataset as
used for validating the automatic B point detection algorithm.
Root-mean-square deviation (RMSD) between manual- and
algorithm-based detection of the X point is 10.59 ms.

3) ICG FEATURE EXTRACTION

After detecting the characteristic points, we can com-
pute physiological features of interest including pre-ejection
period (PEP in msec), left ventricular ejection time
(LVET in msec), stroke volume (SV in ml), cardiac out-
put (CO in I/min), and total peripheral resistance (TPR in
dyne-seconds x cm ™) using the following formulas [23]:

PEP =T —Tp,
LVET = Tx — Tp,
SV = p x (L/Zo)* x LVET x (dZ /dt)max,
CO = SV x heartrate/1000,
TPR = (MAP/CO) x 80,
where T, Tp, and Tx are the times (in sec) when the B,
Q and X points occur, respectively. p is the resistivity of blood
(in ohm-cm) and is usually set to 135 ohm-cm [23]. L (cm)

is the distance between the recording electrodes used for
obtaining the dZ/dt and ZO0 signals, Z0 is the mean basal Z0,
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and MAP is the mean arterial pressure over the same segment.
Finally, the mean value of Z0 is also reported as a feature,
since researchers may be interested in having an estimate of
basal thoracic impedance.

IIl. QUALITY ASSESSMENT OF BIOSIGNALS

Signals recorded with improper sensor attachment or dur-
ing large bodily movements not only provide no useful
information, but they also may result in non-optimal deci-
sions within biomedical systems (e.g., excessive emergency
alarms) and/or lead to poor machine learning-based mod-
els, if they are trained on these aberrant signals. Therefore,
it is necessary to implement basic signal quality assessments
before the more extensive preprocessing and feature extrac-
tion described above so that these large-scale quality issues
can be detected and eliminated (or properly adjudicated).
Although basic data quality assessment has traditionally been
done by visual inspection (coupled with manual marking
of poor quality data), this approach is not feasible with the
quantity of physiological data being collected in many current
studies, particularly data collected under ambulatory condi-
tions. Technological advancements in physiological sensor
technology, particularly mobile sensors, increased data stor-
age capacity and increased device battery life, together have
enabled the collection of very large physiological datasets (on
the order of tens of gigabytes to multiple terabytes) [7], [55].
As a result, entirely manualized visual inspection of all
data should be replaced by semi-automated methods that
permit the visual inspection of smaller, potentially aberrant
epochs of data. There have been numerous biosignal-specific
algorithms developed for the automatic quality checking of
biosignals [56]-[59]. Inspired by these published algorithms,
we developed algorithms for basic quality checking of ECG,
BP, ICG and EDA signals in Bio-SP tool. An algorithm
introduced by Moody [58] is used for the quality check-
ing of ECG, ICG and BP, while an algorithm proposed by
Kleckner [59] is used for the quality checking of EDA.

A. ECG, ICG, AND BP QUALITY CHECKING

A rule-based algorithm proposed by Moody [58] was used in
Bio-SP tool for ECG data quality checking. This algorithm
achieved one of the highest accuracy scores in the Phys-
ionet/CinC Challenge [57]. The algorithm inspects segments
of the signals based on the following three criteria:

(1) If the signal is flat, it suggests that the electrodes are
not well attached to the skin. Mathematically speaking, if the
standard deviation of a segment of a signal is very close to
zero, that segment is a flat signal.

(2) The minimum, maximum, and the maximum-minimum
difference values of the signal should be within an accept-
able range. Values that are too small or too large also may
result from improper electrode attachment or from large noise
spikes in the signal [58].

(3) The ECG signal remains close to a zero voltage
(i.e., the isoelectric line) during much of the overall sig-
nal except during the relatively short period between the
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FIGURE 8. Quality checking of ECG (left panel), dz/dt (middle panel) and continuous BP (right panel) signals. Top row: Raw signals composed
of 4 different good quality segments (blue) as well as three irrelevant synthetically generated signals (green). Bottom row: Low quality signal

portions detected in red color.

P and T waves, when the electrical activity associated with
the heartbeat occurs. Therefore, the duration between these
larger voltage changes should be within a specific range
for high-quality signals. Specifically, given a signal segment
(with the size of larger than one heartbeat), the difference
between the global maximum and global minimum of its
sub-segments as a random variable makes a highly positively
skewed distribution. We measured the skewness using the
definition provided by Groeneveld and Meeden [60]. This
algorithm detects segments of the signal that are not similar
to the specific shape features of a prototypical ECG signal.

If a segment of the signal fails to meet any of these criteria,
that segment will be marked as poor quality. Because ECG,
dZ/dt, and continuous BP signals contain similar frequencies
and patterns related to cardiac activity, we tuned the threshold
parameters used for rules (1)—(3) above for ECG, and applied
similar quality checking algorithms to the dZ/dt and BP
biosignals. To evaluate the performance of our basic quality
checking algorithms for ECG, dZ/dt, and BP, we examined
how our algorithms worked on signals comprising a combina-
tion of good quality signals and synthetically-generated cor-
rupted signals (Fig. 8). Accordingly, we created input signals
containing four segments of clean biosignals from four dif-
ferent datasets [7], [31], [32] as well as several segments with
synthetically-generated noise and with artifacts that occurred
between the segments of good quality data. As shown in Fig. 8
(bottom row), our proposed algorithms robustly detected all
artifactual segments (red) while correctly passing the good
quality signals (blue).

B. EDA QUALITY CHECKING

Using rules documented in [60] and [61], we determined
invalid or poor quality data segments in the EDA signal within
Bio-SP tool as follows:

(1) The minimum or maximum values of the EDA signal
exceed a user-specified acceptable range.

(2) Changes in the EDA signal occur at a higher frequency
than is physiologically plausible (e.g., faster than £10 ©S/s),
where 1S is microSiemens.

(3) EDA signal epochs that are within 5 s of invalid portions
from rules (1) and (2) are also marked as invalid.

Fig. 9 illustrates sample output from our EDA qual-
ity checking algorithm on real EDA data with portions of
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FIGURE 9. Quality checking of EDA signal on a real EDA data with portions
of low quality signal which are being marked in red. The red color regions
are either out-of-range (rule 1) or changing too quickly (rule 2).

low-quality signal marked as red. The algorithm has accu-
rately detected both out-of-range portions (rule 1) of the
signal as well as portions of the signal where the signal is
changing too quickly (rule 2). The acceptable range in rule
(1) may be selected by the user based on the specific char-
acteristics of their recording equipment and amplification
parameters.

In Bio-SP tool, the quality-checking algorithm, for a given
input signal (ECG, dZ/dt, BP or EDA) outputs a two-column
matrix indicating the corresponding start and end indices of
any low-quality regions. Moreover, users can opt to have the
features extracted from these segments be reported as NaNs.

ugmented Cognition Laboratory

Electrocardiogram (ECG)
Electromyogram (EMG)
Eectodermal Acy (EDA)

impedance Cardiography (ICG)

FIGURE 10. A snapshot of first and second pages of Bio-SP tool GUI,
specialized for preprocessing of the ICG signals.

IV. GRAPHICAL USER INTERFACE (GUI)

Our Bio-SP tool produces a feature matrix extracted from
each biosignal which can be further used as the input features
for a variety of machine learning and pattern recognition
algorithms. The GUI designed for Bio-SP tool, starts with a
selection page as shown in Fig. 10 (left panel), where the user
selects the type of biosignal which is to be processed. Options
are: ECG, EMG, EDA, continuous BP, and ICG. By the

2800711



Engineering in
Health and Medicine

|EEE Journal of Translational

M. Nabian et al.: Open-Source Feature Extraction Tool for the Analysis of Peripheral Physiological Data

selection of each signal modality, a second page (e.g., the ICG
page, see Fig. 10 (right panel)) appears which requests the
necessary raw signal inputs, filter characteristics,sampling
rate and other specific parameters required for some signals.

V. CONCLUSION

In this paper, we present our newly-developed Biosignal-
Specific Processing toolbox (Bio-SP tool) for preprocess-
ing and feature extraction of ECG, EDA, EMG, continuous

BP

and ICG biosignals, based on state-of-the-art algo-

rithms reported in the scientific literature and the feedback
received from experts. This open-source toolbox accommo-
dates researchers in machine learning, affective computing,
and psychophysiology to provide more automatic and reliable
extraction of signal-specific physiologically-relevant features
from different biosignals for use with a wide variety of
machine learning and pattern recognition algorithms.
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