Skip to main content
. 2018 Jun 5;6:1900211. doi: 10.1109/JTEHM.2018.2844195

TABLE 3. Performance of QRS Detection Algorithm.

Pt. # Detection Classification
QRS (#) Se (%) P+ (%) PM (#) OM (#) C (%) Se (%) P+ (%) Ac (%)
1 11 100 100 10 1 100 100 91 91
2 12 92 100 11 1 90 100 91 91
13 100 100 8 5 100 100 89 91
3 28 100 97 25 3 91 88 100 89
14 100 100 14 0 100 100 100 100
18 94 90 14 4 90 100 100 100
4 13 100 100 12 1 100 100 100 100
11 100 100 7 4 92 86 100 91
10 100 100 7 3 84 71 100 80
5 13 100 100 12 1 100 92 100 92
14 93 100 13 1 99 100 100 100
13 100 100 12 1 100 100 100 100
13 100 100 11 2 97 100 92 92
6 12 100 100 11 1 100 100 100 100
14 100 100 12 2 97 100 100 100
12 100 100 12 0 95 92 100 92
7 17 100 100 16 1 100 100 100 100
8 7 100 100 5 2 100 100 83 86
12 92 100 10 2 90 89 100 91
10 100 100 9 1 92 100 90 90
Tot 267 99 99 231 36 96 96 97 94

Pt. = patient; Se = sensitivity; P+ = positive predictivity; PM = predominant morphology; OM = outlier morphology; C = concordance; Ac = accuracy. Undetected and erroneously detected QRS complexes were not included in the calculations of the classification accuracy measures.