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Abstract

One of the main limitations of ultrasound imaging is that image quality and interpretation depend 

on the skill of the user and the experience of the clinician. Quantitative ultrasound (QUS) methods 

provide objective, system-independent estimates of tissue properties such as acoustic attenuation 

and backscattering properties of tissue, which are valuable as objective tools for both diagnosis 

and intervention. Accurate and precise estimation of these properties requires correct 

compensation for intervening tissue attenuation. Prior attempts to estimate intervening-tissues 

attenuation based on minimizing cost functions that compared backscattered echo data to models 

have resulted in limited precision and accuracy. To overcome these limitations, in this work we 

incorporate the prior information of piece-wise continuity of QUS parameters as a regularization 

term into our cost function. We further propose to calculate this cost function using Dynamic 

Programming (DP), a computationally efficient optimization algorithm that finds the global 

optimum. Our results on tissue-mimicking phantoms show that DP substantially outperforms a 

published Least Squares Method in terms of both estimation bias and variance.
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I. Introduction

Ultrasound is an inexpensive, real-time, safe and easy-to-use imaging modality that is 

widely used in numerous clinical applications. However, its simplest implementation only 

provides qualitative brightness values, which cannot be directly used for classification of 

tissue pathology. Quantitative ultrasound (QUS) aims to solve this limitation by providing 

attenuation and backscattering properties of the tissue. As such, QUS has numerous 

applications in both diagnosis and therapy monitoring. Some clinical applications of 

attenuation estimation include differentiation of fatty liver from normal liver [1], monitoring 

of liver ablation [2], diagnosis of thyroid cancer [3] and assessment of bone health [4], [5], 

[6]. Backscatter estimation has been successfully used in the classification of benign versus 

malignant masses in several different organs such as eyes [7], breast [8], [9], [10] and 

thyroid [11], [12], and used to monitor the normal function of kidneys [13]. A review of 

recent QUS techniques and applications can be found in [14], [15].
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Nevertheless, QUS has been less widely translated into clinical applications compared to 

ultrasound elastography. This is mainly due to the difficulty in accurately and precisely 

estimating attenuation and backscattering. To address this issue, Nam et al. [16] proposed a 

Least Squares (LSq) method to simultaneously estimate backscatter and attenuation 

coefficients. Although this method substantially improved the results compared to the 

commonly used Reference Phantom Method (RPM) [17], it calculates these parameters at 

each spatial location independent of its neighbors and hence neglects spatial dependency of 

these coefficients. More recently, Coila et al. [18], [19] adapted the conventional spectral log 

difference technique for attenuation estimation by adding a regularization term. Despite 

substantially improving the results, this work only estimates attenuation (not backscattering). 

These two properties are closely related and our goal is to simultaneously calculate both of 

them.

Herein, we propose a novel cost function that incorporates both data terms and spatial 

information in the form of regularization. We propose to use the Dynamic Programming 

(DP) method to optimize this cost function. DP breaks the main cost function into small 

problems, and efficiently obtains the global optimum by exploiting overlapping 

computations in these sub-problems. An analogous use of DP has been reported to estimate 

high-quality displacement estimates in ultrasound elastography [20], [21] and in computer 

vision [22].

This paper is summarized as follows. In Section II, we show how the spatial relationship of 

attenuation and backscatter coefficients can be incorporated into a cost function, and outline 

the proposed DP framework for optimization of the cost function. Experiments and results 

on phantoms are provided in Section III, and the paper is concluded in Section V.

II. Methods

Quantitative ultrasound often aims at estimating attenuation and backscatter properties of 

tissues, and parameters derived from them. The total attenuation along an RF line is usually 

modeled as:

A( f , z) = exp( − 4α fz) (1)

where A is the total attenuation corresponding to frequency f and depth z, and α is the 

effective attenuation coefficient versus frequency (i.e., the average attenuation from 

intervening tissues). Backscatter coefficients are often parametrized with the following 

power law equation:

B( f ) = bf n (2)

where b is a constant coefficient and n represents the frequency dependence. Our goal is to 

find the values of α, b and n from Eqs. 1 and 2.
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The framework for the proposed algorithm is based on the Reference Phantom Method 

developed by Yao et al.[17] Let Ss (f, z) and Sr (f, z) be, respectively, the sample and 

reference echo signal power spectra computed from radiofrequency (RF) echo signals 

obtained from scanning a tissue sample (or a tissue-mimicking test phantom) and a reference 

phantom (of known acoustic properties) with the same ultrasound transducer and the same 

imaging settings (i.e. frequency, focal properties, etc). Taking the ratio of the two spectra 

eliminates any dependence on the imaging setting (assuming the media have equivalent 

sound speeds [23]), leaving only attenuation and backscatter-dependent terms:

RS( f , z) =
Ss( f , z)
Sr( f , z) =

Bs( f )
Br( f ) .

As( f , z)
Ar( f , z)

=
bs f

ns

br f
nr

exp{ − 4(αs − αr) f . z}
(3)

where the subscripts s and r refer to the sample and the reference phantom, respectively. 

Taking the natural logarithm of Eq. 3 leads to ln

ln
Ss( f , z)
Sr( f , z) = ln

bs
br

+ (ns − nr)ln f − 4(αs − αr) f . z . (4)

Substituting the following variables:

ln
Ss( f , z)
Sr( f , z) ≡ X( f , z), ln

bs
br

≡ b, ns − nr ≡ n, αs − αr ≡ α (5)

into Eq. 4 leads to:

X( f , z) = b + n ln f − 4α fz (6)

where X is known from the experimental data, and the goal is to estimate α, b and n, which 

reveal quantitative properties of the sample.

In the next section, we first briefly overview the Least Squares (LSq) method for recovering 

these parameters [16]. We will then present a novel framework wherein continuity of 

quantitative tissue properties is incorporated into the cost function. We also propose a global, 

yet efficient, optimization of this cost function using DP.

A. Least Squares (LSq) Method

Nam et al. [16] proposed the following LSq formulation for estimating α, b and n:
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[α, b , n] = arg min
α, b, n

D (7)

where the data term D (in contrast to a regularization term that we will introduce later in Eq. 

10) is:

D = ∑
i = 1

K
(X( f i, z) − b − n ln f i + 4α f iz)2 (8)

where the summation is over the frequency range of X. The search range for these 

parameters is usually confined as follows:

α1 ≤ α ≤ α2, b1 ≤ b ≤ b2, n1 ≤ n ≤ n2 (9)

where α1 and α2, b1 and b2, and n1 and n2 are the lower and upper search limits for the 

attenuation coefficient α, the magnitude of the backscatter coefficient b, and the frequency 

dependence of the backscatter coefficient n, respectively. Search ranges contained k = 1,…, 

K discrete values for α, l = 1,…, L discrete values for b, and m = 1,…, M discrete values for 

n.

The aforementioned LSq formulation does not consider the fact that the properties of the 

sample do not arbitrarily change across the phantom, and therefore can result in estimates 

with large variance. The proposed Dynamic Programming (DP) framework in the next 

section addresses this issue.

B. Dynamic Programming (DP)

Parameters α, b and n can rapidly change from one tissue type to another, but they change 

gradually within each tissue type. Thus, these parameters can be considered piecewise 

continuous.[19] This condition can be used to improve parameter estimation. Similar to our 

previous work in the field of elastography [24], [21], we proposed a regularized cost 

function that incorporates both data terms and prior information for parameter estimation. 

Our cost function has the general form of

C = D + R (10)

where D is the data term of Eq. 8 and R is a regularization term defined as:

R = wα(α j − α j − 1)2 + wb(b j − b j − 1)2 + wn(n j − n j − 1)2 (11)
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with subscripts j and j – 1 referring to axial positions at the current and previous rows, and 

wα, wb, and wn are the regularization weights for each unknown. Let vector u encapsulate 

the unknowns as follows:

u = [α, b, n] (12)

To find the global minimum of this cost function, we use the efficient DP framework, and 

formulate the following recursive cost function:

C( j, u j) = min
u

{C( j − 1, u j − 1) + R(u j − 1, u)} + Δ( j, u) (13)

where Δ(j, u) is:

Δ( j, u) = Δ( j, α, b, n) = ∑
i = 1

K
(X( f i, z) − b − n ln f i + 4α f iz)2 (14)

The minimization is performed on three unknowns u at each location. The cost function in 

Eq. 13 is formed as a 4D matrix Cjklm including the location (zj) as well as vector u with 

components [αk, bl, nm] where j refers to each of the j = 1,…, J axial positions, k = 1, .., K, l 
= 1 ,…, L and m = 1, …, M refer to the discrete search range values of parameters α, b, and 

n.

As a simplified illustrative example, Fig. 1 shows a 2D version of Cjklm, i.e., Cjk which 

considers only one unknown, attenuation coefficient α. We allocate a 2D matrix to store 

different values of Cjk as zj and αk vary (Fig. 2). Every cell in this matrix is filled with cost 

values at the associated αk and depth with that cell. In order to find the cost value at a cell in 

Fig. 2, we first calculate the Δ term in Eq. 13 at zj and the corresponding αk. Then, the 

minimization part in Eq. 13 is performed. The index j — 1 in this term indicates that the cost 

value at depth j depends on the cost value at the previous depth. In other words, we add the 

values stored in row Zj–1 to the regularization term (Eq. 11) and find its minimum. We also 

store the values of unknown coefficients for which this minimization occurs (a step 

technically known in DP as memoization). These locations are stored in M, a 2D matrix with 

the same size as C in this reduced example. Finally, the Δ term added to the minimum value 

is stored as the value of the cost function at the corresponding cell to be used for the next 

depth.

The DP cost function must be calculated for every axial row. After that, a final minimization 

is performed on the cost function in the last row to estimate the α at that depth. Then, 

starting from the values stored in M, we trace back the minimum points to the first row using 

the memoization matrix M.

Extending this reduced example of DP to the quantitative ultrasound problem in Eq. 13 with 

three unknowns, u, and depth dependency, the matrix in Fig. 2 as well as memoization 
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matrix M change to 4D matrices. Consequently, cost values at depth j illustrated as a row in 

Fig. 2 will be a 3D matrix as shown in Fig. 3.

C. Data acquisition

1) Homogeneous phantoms: Two homogeneous tissue-mimicking phantoms, a 

sample and a reference, were used to compare the performance of the LSq and DP 

algorithms. The reference phantom consisted of an agarose-based gel with graphite powder 

within a 15×15×5 cm3 acrylic box [25]. The sample phantom was a mixture of water-based 

agarose-propylene glycol and filtered milk within a 16×10×10 cm3 acrylic box [25]. Both 

phantoms had scanning windows covered by a 25 μm thick Saran-Wrap (Dow Chemical, 

Midland MI, USA). Solid glass beads (5-43μm diameter; Spheriglass 3000E, Potter 

Industries, Malvern, PA) with a mean concentration of 236 scatterers/mm3 were added to 

produce incoherent scattering. Ground truth values of each phantom α, b and n (Table I) 

were measured from 2.5 cm-thick test samples using narrowband substitution (attenuation) 

and broadband pulse-echo (backscatter) techniques with single-element transducers [26], 

[27].

Both phantoms were scanned with a 9L4 38 mm-aperture, linear array transducer on a 

Siemens Acuson S3000 scanner (Siemens Medical. Solutions USA, Inc., Malvern, PA) 

operated at 6.6 MHz center frequency and a transmit focal depth of 3 cm. The scanner was 

enabled with the Axius Direct ultrasound research interface to provide radiofrequency (RF) 

echo data sampled at 40 MHz. [28] Ten statistically independent RF data frames, each 

separated by at least one elevational aperture, were acquired from each phantom. The 

following search ranges were used for both LSq and DP:

αs − 0.5 ≤ α ≤ αs + 0.5

e−1bs ≤ b ≤ e1bs
ns − 2 ≤ n ≤ ns + 2

where αs, bs, and ns are ground truth values of the sample phantom.

2) Layered phantoms: To compare the performance of the LSq and DP algorithms 

when estimating piece-wise varying acoustic properties, we applied both methods to RF data 

from two layered tissue mimicking phantoms, each composed of three axially arranged 

layers: a 4 cm-thick top layer, a 1.5 cm-thick bottom layer, and a 1.5 cm-thick central layer 

offering contrast of either attenuation or backscatter with respect to the other two layers. 

[29] The first phantom had uniform backscatter and higher attenuation in the second layer. 

The second phantom had uniform attenuation and a central layer with 6 dB higher 

backscatter than the other two layers. Both phantoms consisted of an emulsion of 

ultrafiltered milk and water-based gelatin with 5–43 μm diameter glass beads as sources of 

scattering (3000E, Potters Industries, Valley Forge, Pennsylvania). Attenuation was 

controlled by varying amounts of evaporated milk, while the strength of backscatter was 

increased by augmenting the concentration of glass beads. More detail on the phantom 

properties can be found in Nam et al. [16] Ground truth values of attenuation and backscatter 
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parameters of the three layers were obtained similarly as for the uniform phantoms and are 

shown in Tables II and III.

The layered phantoms were scanned with a 18L6 58 mm-aperture, linear array transducer on 

a Siemens Acuson S2000 scanner (Siemens Medical. Solutions USA, Inc., Malvern, PA) 

operated at 8.9 MHz center frequency and a transmit focal depth of 5.3 cm. RF echo data 

from ten statistically independent RF data frames were obtained through the system’s Axius 

Direct ultrasound research interface [28].

Reference echo data were obtained from the top layers of the phantoms by scanning from 

their flank [16]. The search ranges for both DP and LSq for the three parameters of interest 

included the expected values for each phantom’s layer:

αsMin − 0.5 ≤ α ≤ αsMax + 0.5

e−1bsMin ≤ b ≤ e1bsMax
nsMin − 2 ≤ n ≤ nsMax + 2

where αsMin, bsMin, and nsMin refer to the minima of the ground truth values in three layers 

of the layered phantoms for the coefficient α, b, and n, respectively, and αsMax, bsMax, and 

nsMax correspondingly refer to the maxima of the ground truth values in three layers of the 

layered phantoms for the coefficient α, b, and n.

D. Data processing

Both LSq and DP were implemented on the RF data frames using custom-built MATLAB 

routines. Echo-signal power spectra were computed at different axial and lateral locations by 

raster-scanning a 4×4 mm2 spectral estimation window with an 85% overlap ratio and using 

a multitaper approach with NW=3 [30]. Because different transducers were used in each 

experiment, this approach produced a power spectrum array with 74 rows and 40 columns 

for uniform phantoms and 108 rows and 86 columns for layered phantoms, which 

correspond to different axial and lateral locations, respectively. To reduce correlation 

between different columns, we selected 4 columns in each phantom separated as far as 

possible as follows. For the uniform phantom, we selected columns 1, 10, 20 and 40. For the 

layered phantoms, we picked columns 10, 30, 45, and 80. Each experiment consists of 10 

frames, yielding a total of 40 total columns in each experiment. Each cell contained a vector 

of normalized power spectrum estimates. The LSq and DP estimators were fed with the 

normalized power spectra in the frequency range from 3.7–7 MHz corresponding to the 

spectral band with power content at least 10 dB above the noise floor measured at 15 MHz.

We applied DP and LSq to four different lateral positions from 10 different frames of RF 

data, i.e 40 sample positions in total. The weights of the regularization term in DP for 

uniform phantom were set to 108 in all 40 sample positions. To provide a fair comparison, 

we used identical search ranges for both LSq and DP.

In the case of the layered phantoms, the LSq and DP methods were applied to the 108 rows 

and 40 columns of power spectra from 10 different frames. The weights of the DP 
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regularization were set to wα = 106 and wb = wn = 103 for the uniform backscatter phantom, 

and wα = 5 × 106 and wb = wn = 10 for the uniform attenuation phantom. These weights are 

automatically selected as follows. First, we run LSq and investigate the Normalized Range 

(NR) of b values by dividing the range of LSq estimations for backscatter coefficient b by 

the mean value of estimates. If the NR is greater than eight, we use the lower regularization 

value for wb and wn above. Otherwise, these weights are set to a higher value as for the 

uniform backscatter phantom. This is similar to our previous work on Conditional Random 

Fields (CRF) [31] where we adjust the regularization term based on the data term.

III. Results

A. Uniform Phantom

Fig. 4(a) shows the DP (red) and the LSq (blue) estimates of αs vs axial distance. Thick, 

colored lines and errorbars correspond to the mean and standard deviations among 40 

estimates at each depth, respectively. Fig. 4(b) show the reconstructed BSC parameters bs 

and ns. Black dashed lines indicates expected values. DP substantially outperforms LSq in 

estimation of all three parameters.

The bias and standard deviation averaged over the 6cm depth range of αs, bs and ns are 

shown in Table IV, and the uncertainty in these estimates are shown in Table V. The units for 

parameters α and b are respectively dB·cm−1MHz−1 and cm−1sr−1MHzn while parameter n 
has no units. Both the value of bias and variance, as well as their uncertainty, are 

substantially lower in DP compared to LSq except for the bias of backscatter coefficient n by 

LSq which is slightly less than DP; however the uncertainty is still lower for DP.

B. Layered Phantom

Figs. 5 and 6 show the DP (red) and the LSq (blue) estimates of (a) αs and (b)-(d) the 

reconstructed BSC parameters bs and ns for each of the three layers vs axial distance. Thick, 

colored lines and errorbars correspond to the mean and standard deviations among 40 

estimates at each depth, respectively. Estimates from the DP method closely follow the depth 

dependence of effective attenuation αs, in contrast to the high variance of the LSq method. 

Black dashed lines indicate expected values. DP substantially outperforms LSq in the 

estimation of the BSC in each of the three layers.

The standard deviation and bias of the two-layered phantoms, as well as the uncertainties of 

these measurements, are shown in Tables VI to IX. Again, DP substantially outperforms LSq 

in terms of both standard deviations of the estimates as well as the uncertainty in these 

estimates. Although the bias of LSq and DP estimates are comparable, the uncertainty in the 

estimated bias is substantially lower in DP.

C. Effects of expected attenuation

To investigate the performance of DP over a large range of attenuation values, we simulated 

a new dataset by assigning values of the sample and reference QUS parameters to the log-

transformed ratio of power spectra (Eq. 2). Specifically, 0.1 ⩽ α ⩽ 2.5 dB·cm−1MHz−1, and 

the values of the other parameters were the same as the expected ones for the uniform 
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sample and reference phantoms used in the first experiment. Based on the model developed 

in Lizzi et al. [32] for the variance of the log-transformed sample-to-reference ratio of power 

spectra, white noise with variance inversely proportional to the number of independent 

scanlines used to estimate one power spectrum (N=10) was added to the simulated log-

transformed normalized power spectra. DP was run on each of the simulated data sets, and 

we computed the percent bias and standard deviation of the estimated attenuation with 

respect to the expected values.

The bias and standard deviation in the results of DP and LSq for different attenuation values 

are plotted in Fig. 7. As it can be observed in Fig. 7(a), for a higher value of the attenuation 

coefficient, the bias in the estimation of both methods decreases similarly. However, the 

standard deviation in the estimation of DP in Fig. 7(b) demonstrates the consistency and 

substantially smaller standard deviation for all values of α compared to LSq. The standard 

deviation values of DP are multiplied by 1012 to be visible in the scale of corresponding 

values for LSq.

D. Regularization Weight Analysis

In order to illustrate the impact of regularization weights on the values estimated by DP, we 

ran the code for a range of regularization weights for the homogeneous phantom to compare 

the bias (Fig. 8) and standard deviation (Fig. 9) at each weight. The bias and standard 

deviation of α, b, and n are shown in Figs. 8 and 9, where the corresponding regularization 

weight is varied from 1 to 1010 while weights of the other two coefficients were fixed at 108. 

These results show that increasing the regularization weight has a small effect on bias while 

substantially reducing the variance.

E. DP and LSq Cost Values

In order to observe the functionality of the LSq and DP cost functions at different unknowns 

along the search ranges we compared them for the layered phantom with uniform 

backscatter coefficients in Fig. 8. Again, as it is hard to illustrate the 4D cost function, we set 

α as the only unknown and calculated the cost function of both LSq and DP at their 

previously estimated values for b and n and different values of α. Fig. 10 compares the 

averaged cost function values obtained by running LSq and DP for 40 different RF data of 

this phantom. In Fig. 11, we added n as the second unknown and plotted the 3D cost 

function with n and α set as variables. These two figures demonstrate that the DP cost 

function is more convex (i.e. has a higher second order derivative) and is therefore less 

susceptible to optimization failures.

IV. Discussion

The DP method was introduced to simultaneously estimate attenuation and backscatter 

coefficients of tissue-mimicking phantoms. DP was selected as the optimization technique 

because it gives the global minimum of the cost function, and is also computationally 

efficient. The LSq method, which also simultaneously estimates attenuation and backscatter 

coefficients, was used as a benchmark. Both methods were tested on three phantoms: one 

homogeneous phantom and two piecewise homogeneous phantoms.
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Fig. 4 clearly indicates that DP results are substantially more precise than Lsq results for 

both attenuation and backscatter coefficients. The LSq results have a large estimation 

variance, compared to very small variance in DP results. This large improvement in the 

performance is due to the inclusion of the regularization term, which acts as a prior 

information and eliminates noisy data. It is also due to the optimization scheme, wherein DP 

provides the global minimum of the cost function. Moreover, the bias of DP results in the 

homogeneous phantom is lower than that of LSq. The exception was the bias of n, which 

was larger for DP. This bias would affect the bias and precision of estimates of the effective 

scatterer size, a parameter derived from the frequency dependence of backscatter. We are 

currently investigating the severity of these effects.

Fig. 5 shows the comparison of the performance of DP and Lsq for the layered phantom 

with variable attenuation and constant BSC coefficients. Again, as expected, DP estimates 

have much smaller variance compared to LSq results. We also see that despite the 

regularization term, DP estimates reproduce more accurately the depth dependence of the 

three parameters. This is because the penalty for not following the data term at 

discontinuities overcomes smoothness penalties.

The last experiment which was on the inhomogeneous phantom with constant attenuation 

and variable BSC coefficients offered interesting results by both LSq and DP (Fig. 6). 

Although bias averaged over depth was similar between LSq and DP, LSq showed an 

unexpected trend of decreasing αs over depth. In addition, the DP results in (b) to (d), 

demonstrate that BSC parameters estimated by DP are closer to the expected than those 

estimated by LSq.

The results of Tables IV to IX show the standard deviation and bias of LSq and DP, as well 

as the uncertainty in these measurements. As expected, DP substantially outperforms LSq in 

terms of standard deviation of the estimation while giving similar bias. Furthermore, the 

uncertainty in both standard deviation and bias is substantially lower in the proposed DP 

method.

Fig. 8 and Fig. 9 show that DP regularization weights have a generally moderate effect on 

bias and large effect on standard deviation as expected. These weights are often treated as 

hyperparameters in the machine learning community and have to be adjusted in different 

applications. Given that ultrasound machines have different imaging presets for imaging 

different organs (e.g. breast, thyroid, etc.), these hyperparameters can be stored alongside 

those imaging presets.

As demonstrated by the results, the advantage of the DP method relies on its ability to 

improve the precision of QUs parameters. In this manuscript, the QUS parameters came 

from a power-law model of the backscatter coefficient. We chose this model for two reasons. 

First, this model was assumed in the LSq method, thus facilitating the comparison. Second, 

the power law does not assume a physical model for the distribution and size of scatterers in 

the medium. However, Eq. 2 can be considered a particular case of the more general 

equation:
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B( f ) = B0G( f ) (15)

where B0 and G(f) describe the magnitude and frequency dependence of the backscatter 

coefficient of tissue, respectively. By properly defining G(f), the DP algorithm can be 

adapted to quantify different scattering parameters of tissue. For example, G(f) can be 

defined in terms of scattering form factors to simultaneously estimate attenuation and the 

effective size of scatterers in tissue, as initially proposed by Bigelow et al. [33]. Under 

conditions of randomly distributed weak scatters, i.e., diffuse scattering, G(f) takes the form

G( f ) = f 4F( f ; aeff ) (16)

where F(f; aeff) is the scattering form factor equal to the Fourier transform of the 

autocovariance function of the scattering field. Under conditions of diffuse scattering, F(f; 
aeff) depends only on the effective scatterer size aeff [34]. Thus, by parameterizing F(f; aeff), 

in terms of a mathematical model, such as a Gaussian function or an exponential function, 

the DP algorithm can be modified to estimate the effective scatter size, as well as parameters 

related to the magnitude of scattering and the total attenuation. In this sense, this adaptation 

of the DP algorithm would expand the work of Bigelow et al. [33], [35] by quantifying the 

backscatter coefficient magnitude (related to the number density and impedance difference 

of scatterers – relative to the background) and by using regularization and dynamic 

programing to improve the precision of the estimated parameters. Alternatively, the DP 

algorithm can be adapted to compute the packing factor and size of aggregates of Rayleigh 

scatterers, as proposed by Franceschini et al. [36], [37]. In this case, G(z,f) is defined as the 

product of the Rayleigh backscatter coefficient for individual scatterers (with f4 dependence) 

and the structure factor S(f) which takes into account the interaction of scattering sources. 

Therefore, the DP strategy can be potentially adapted to quantify parameters from different 

scattering conditions, improving the precision over previously proposed methods.

We have picked a very large search range to demonstrate that DP provides the correct 

solution even when no good approximate value is known. When applied to real tissue, based 

on prior knowledge of the expected values, we can use smaller search ranges that correspond 

to that tissue, similar to gain settings in imaging presets that current ultrasound machines 

have for imaging different organs. Since DP running time depends on the search range, this 

can substantially reduce the computational complexity of DP. For example, if we halve the 

search range for α, b and n, the running time reduces from 17 hours to 8 hours. Substantially 

faster runtime can be achieved by implementing the code in C++, parallel implementation of 

the method, and multi-resolution search [21].

With a look at all results, it is clear that the regularization term substantially reduces the 

estimation variance as expected. However, the reduction in estimation bias is not as 

significant as the reduction in variance. This is also expected from the cost function, as the 

expected value of the parameters slightly changes with the introduction of the regularization 

term. Bias-variance trade-off is an important issue in estimation theory and an active field of 
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research [38], [39]. We will investigate this trade-off in future work. We are also 

investigating the performance of the DP algorithm in the presence of specular reflectors that 

introduce coherent scattering and, therefore, violate the assumption of diffuse scattering 

behind the derivation of Eq. 6. In addition, we are exploring situations wherein the 

frequency dependence of scattering is substantially different between reference and sample 

due to scatterers of different sizes. Moreover, experiments on phantoms with spherical 

inclusions are a subject of future work.

V. Conclusions

We presented a novel framework for estimation of backscatter quantitative ultrasound 

parameters based on Dynamic Programming (DP). The new technique incorporates the prior 

information of depth-continuity of parameters into a cost function that is solved globally 

using DP. Intuitively, DP considers the data at all depths to estimate u, and finds u that gives 

the global minimum of the cost function. All values of u at different depths are optimized 

together in DP, whereas LSq considers each location independently. This substantially 

reduced the bias and variance in DP estimates compared to LSq in homogeneous phantom.
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Fig. 1. 
At each ROI zj, different values of αk, bl, and nm are explored. To simplify illustration, only 

α is shown in this figure.
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Fig. 2. 
2D matrix of cost values at different depths and αk. Pink cells represent the minimum values 

that are traced back from the last row to the first one using memoization matrix M. The cost 

function in this paper is 4D. To simplify illustration, only α is shown in this figure.
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Fig. 3. 
3D matrix of the cost values at one specific depth. It corresponds to one ROI of the 2D 

matrix in the Fig. 2 wherein only α was considered as an unknown.
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Fig. 4. 
LSq and DP estimation in the uniform phantom for (a) attenuation coefficient and (b) 

backscatter coefficients of Eq. 2.
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Fig. 5. 
LSq and DP estimation of (a) attenuation coefficients and (b–d) backscatter coefficients of 

Eq. 2 in the three-layered phantom with uniform backscattering coefficients for layer 1, 2, 

and 3, respectively.
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Fig. 6. 
LSq and DP estimation of (a) attenuation coefficient and (b–d) backscatter coefficients of 

Eq. 2 in the three-layered phantom with uniform attenuation coefficients for layer 1, 2, and 

3, respectively.
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Fig. 7. 
Percentage of bias and standard deviation in DP and LSq estimations for simulated data with 

different attenuation coefficients α.
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Fig. 8. 
Bias of DP estimations for coefficients α, b, and n at different weight values used in DP. In 

(a), the regularization weight for b and n are fixed at 1e8 while it varies for α. In (b), the 

regularization weight for α and n are fixed at 1e8 while it varies for b. In (c), the 

regularization weight for α and b are fixed at 1e8 while it varies for n.
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Fig. 9. 
STD of DP estimations for coefficients α, b, and n at different weight values used in DP. In 

(a), the regularization weight for b and n are fixed at 1e8 while it varies for α. In (b), the 

regularization weight for α and n are fixed at 1e8 while it varies for b. In (c), the 

regularization weight for α and b are fixed at 1e8 while it varies for n.
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Fig. 10. 
Cost values of DP and LSq at different values of α within the search range in each layer of 

the phantom with uniform backscattering properties. (a) Layer 1 at the depth of 3.5 cm, (b) 

Layer 2 at the depth of 4.5 cm, (c) Layer 3 at the depth of 6.5 cm.
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Fig. 11. 
Cost values of DP and LSq at different values of α and n in each layer of the phantom with 

uniform backscattering properties. In all three layers, the upper surface is the result by DP. 

(a) Layer 1 at the depth of 3.5 cm, (b) Layer 2 at the depth of 4.5 cm, (c) Layer 3 at the 

depth of 6.5 cm.
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TABLE I

GROUND TRUTH VALUES FOR THE UNIFORM PHANTOM.

Reference Phantom Sample Phantom

α (dB/cm-MHz) 0.670 0.654

b (1/cm-sr-MHzn) 8.79e-06 1.02e-06

n 3.14 4.16
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TABLE II

GROUND TRUTH VALUES FOR LAYERED PHANTOM WITH UNIFORM BACKSCATTER.

Layer 1 Layer 2 Layer 3

α (dB/cm-MHz) 0.510 0.779 0.520

b (1/cm-sr-MHzn) 1.60e-06 3.22e-06 1.60e-06

n 3.52 3.13 3.52
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TABLE III

GROUND TRUTH VALUES FOR LAYERED PHANTOM WITH UNIFORM ATTENUATION.

Layer 1 Layer 2 Layer 3

α (dB/cm-MHz)  0.554 0.580 0.554

b (1/cm-sr-MHzn)  4.82e-07 3.94e-06 4.82e-07

n 3.80 3.38 3.80
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TABLE IV

THE STANDARD DEVIATION (STD) AND BIAS IN THE UNIFORM PHANTOM EXPERIMENT. THE SMALLEST VALUES ARE 

HIGHLIGHTED IN BOLD FONT.

LSq DP

Standard Deviation

α (dB/cm-MHz) 0.049 2.236e-16

b (1/cm-sr-MHzn) 9.402e-07 1.706e-21

n 0.410 3.577e-15

Bias

α (dB/cm-MHz) 0.080 0.003

b (1/cm-sr-MHzn) 3.660e-06 3.341e-06

n 0.322 0.820
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TABLE V

UNCERTAINTY IN STD AND BIAS IN THE UNIFORM PHANTOM EXPERIMENT. THE SMALLEST VALUES ARE HIGHLIGHTED IN 

BOLD FONT.

LSq DP

Standard Deviation

α (dB/cm-MHz) 0.397 0.031

b (1/cm-sr-MHzn) 6.344e-06 3.648e-06

n 2.221 0.353

Bias

α (dB/cm-MHz) 1.744 0.136

b (1/cm-sr-MHzn) 2.790e-05 1.599e-05

n 9.767 1.549
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TABLE VI

THE STD AND BIAS IN THE LAYERED PHANTOM WITH UNIFORM BACKSCATTER EXPERIMENT. IN EACH LAYER, THE SMALLEST 

VALUES ARE HIGHLIGHTED IN BOLD FONT.

Layer 1 Layer 2 Layer 3

LSq DP LSq DP LSq DP

STD

α (dB/cm-MHz) 0.059 0.001 0.038 0.014 0.069 0.035

b (1/cm-sr-MHzn) 8.423e-07 7.132e-09 8.979e-07 1.697e-08 5.774e-06 1.471e-07

n 0.323 0.021 0.400 0.014 0.842 0.081

Bias

α (dB/cm-MHz) 0.022 0.009 0.028 0.004 0.091 0.028

b (1/cm-sr-MHzn) 1.272e-06 3.441e-07 4.155e-07 1.242e-06 5.527e-06 5.036e-07

n 0.117 0.062 0.188 0.320 0.290 0.0139
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TABLE VII

THE STD AND BIAS IN THE LAYERED PHANTOM WITH UNIFORM ATTENUATION EXPERIMENT. IN EACH LAYER, THE SMALLEST 

VALUES ARE HIGHLIGHTED IN BOLD FONT.

Layer 1 Layer 2 Layer 3

LSq DP LSq DP LSq DP

STD

α (dB/cm-MHz) 0.081 5.037e-16 0.043 2.833e-16 0.067 2.844e-16

b (1/cm-sr-MHzn) 1.123e-06 3.622e-07 1.575e-06 3.336e-07 5.857e-06 4.581e-06

n 0.343 0.084 0.508 0.043 0.820 0.212

Bias

α (dB/cm-MHz) 0.050 0.055 0.050 0.059 0.106 0.061

b (1/cm-sr-MHzn) 1.278e-06 6.677e-07 7.073e-07 8.746e-07 4.521e-06 3.206e-06

n 0.352 0.458 0.175 0.083 1.413 0.828
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TABLE VIII

UNCERTAINTIES IN STD AND BIAS OF LAYERED PHANTOM WITH UNIFORM BACKSCATTER. IN EACH LAYER, THE SMALLEST 

VALUES ARE HIGHLIGHTED IN BOLD FONT.

Layer 1 Layer 2 Layer 3

LSq DP LSq DP LSq DP

STD

α (dB/cm-MHz) 0.750 0.067 0.307 0.054 0.264 0.086

b (1/cm-sr-MHzn) 7.170e-06 1.518e-06 8.701e-06 1.685e-06 1.479e-05 2.259e-06

n 3.095 0.454 3.385 0.490 3.252 0.588

Bias

α (dB/cm-MHz) 3.018 0.269 0.783 0.137 0.616 0.199

b (1/cm-sr-MHzn) 2.877e-05 6.102e-06 2.214e-05 4.286e-06 3.429e-05 5.251e-06

n 12.457 1.826 8.630 1.249 7.585 1.370
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TABLE IX

UNCERTAINTIES IN STD AND BIAS OF LAYERED PHANTOM WITH UNIFORM ATTENUATION. IN EACH LAYER, THE SMALLEST 

VALUES ARE HIGHLIGHTED IN BOLD FONT.

Layer 1 Layer 2 Layer 3

LSq DP LSq DP LSq DP

STD

α (dB/cm-MHz) 0.670 0.156 0.314 0.156 0.237 0.156

b (1/cm-sr-MHzn) 5.006e-06 1.549e-06 1.081e-05 4.788e-06 1.466e-05 1.150e-05

n 3.063 1.056 3.503 1.890 2.883 2.206

Bias

α (dB/cm-MHz) 2.697 0.627 0.800 0.398 0.551 0.365

b (1/cm-sr-MHzn) 1.976e-05 6.208e-06 2.752e-05 1.220e-05 3.368e-05 2.624e-05

n 12.326 4.245 8.929 4.817 6.713 5.147
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