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Abstract

Objectives: Rare pathogenic variants in the SPINK1, PRSS1, CTRC, and CFTR genes have been strongly associated with a
risk of developing chronic pancreatitis (CP). However, their potential impact on the age of disease onset and clinical
outcomes, as well as their potential interactions with environmental risk factors, remain unclear. These issues are
addressed here in a large Chinese CP cohort.

Methods: We performed targeted next-generation sequencing of the four CP-associated genes in 1061 Han Chinese
CP patients and 1196 controls. To evaluate gene–environment interactions, the patients were divided into three
subgroups, idiopathic CP (ICP; n= 715), alcoholic CP (ACP; n= 206), and smoking-associated CP (SCP; n= 140). The
potential impact of rare pathogenic variants on the age of onset of CP and clinical outcomes was evaluated using the
Kaplan–Meier model.

Results: We identified rare pathogenic genotypes involving the SPINK1, PRSS1, CTRC, and/or CFTR genes in 535
(50.42%) CP patients but in only 71 (5.94%) controls (odds ratio= 16.12; P < 0.001). Mutation-positive patients had
significantly earlier median ages at disease onset and at diagnosis of pancreatic stones, diabetes mellitus and
steatorrhea than mutation-negative ICP patients. Pathogenic genotypes were present in 57.1, 39.8, and 32.1% of the
ICP, ACP, and SCP patients, respectively, and influenced age at disease onset and clinical outcomes in all subgroups.

Conclusions: We provide evidence that rare pathogenic variants in the SPINK1, PRSS1, CTRC, and CFTR genes
significantly influence the age of onset and clinical outcomes of CP. Extensive gene–environment interactions were
also identified.

Introduction
Chronic pancreatitis (CP) is a chronic inflammatory

process of the pancreas that leads to irreversible mor-
phological changes and progressive impairment of both
exocrine and endocrine functions1. Its prevalence is
generally thought to be 30–50 per 100,000 individuals1

but may be as high as 120–143 per 100,000 individuals2.
The disease is associated with a poor quality of life3,
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confers an increased risk of pancreatic cancer4, and
represents a major cause of morbidity5. The leading cause
of CP is excessive alcohol consumption (40–70% of
cases1), followed by so-called idiopathic chronic pan-
creatitis (ICP; defined throughout this paper as the
absence of any identifiable etiology prior to genetic ana-
lysis) that accounts for up to 25% of patients6,7.
It is generally thought that once CP is established, its

progression cannot be reversed1. Thus, the identification
of underlying heritable risk factors with strong effect
holds out the promise of improved options in terms of
prevention and treatment. Over the past two decades, it
has been increasingly appreciated that ICP has a strong
genetic basis, to which rare pathogenic variants (defined
here as having a minor allele frequency of <1%8,9) in the
CFTR (encoding cystic fibrosis transmembrane con-
ductance regulator; MIM# 602421) gene10,11 and the three
trypsin-dependent pathway genes12, namely PRSS1
(encoding cationic trypsinogen; MIM# 276000)13, SPINK1
(encoding pancreatic secretory trypsin inhibitor; MIM#
167790)14, and CTRC (encoding chymotrypsin C, MIM#
601405)15,16, make an important contribution7,17,18. Some
rare pathogenic variants in these four genes have also
been found to be overrepresented in patients with alco-
holic chronic pancreatitis (ACP)15,19–21.
The above notwithstanding, most previous studies had a

variety of limitations, including low numbers of patients
screened, the analysis of only one or two genes, lack of
appropriate control data from the normal population, the
selective genotyping of known pathogenic variants or the
sequencing of only a few specified exons and the limited
evaluation of “other etiologic factors, particularly smok-
ing, whose causative role has been more firmly estab-
lished”7. These limitations have not only prevented a
more accurate estimation of the global contribution of
rare pathogenic variants in the four genes to CP but have
also hampered our understanding of the complex
gene–gene and gene–environment interactions in the
disease. Moreover, the potential impact of rare pathogenic
variants on the age of onset and severity of CP remains
unclear. This latter issue has previously been addressed in
the context of autosomal dominantly inherited hereditary
pancreatitis, a rare cause of CP that accounts for <1% of
cases1, but the three representative studies generated
inconsistent findings22–24. Relevant studies in the context
of ICP have so far been few and have invariably involved
relatively small numbers of ICP patients (e.g., 35 in
Sandhu and colleagues25, 45 in Xiao and colleagues26, and
61 in Cho and colleagues27), precluding firm conclusions.
In the present study, we report findings from a compre-
hensive analysis of rare pathogenic vagrants in the
SPINK1, PRSS1, CTRC, and CFTR genes in a large cohort
of well-phenotyped Han Chinese patients with CP.

Methods
Participants and disease definitions
1061 CP patients, having neither a reported family

history of the disease nor any of the following causative
factors, namely post-traumatic, hypercalcemic, hyperlipi-
demic, and autoimmune, after comprehensive clinical and
laboratory evaluations, participated in this study. It should
be noted that, as in a previous study7, pancreas divisum
was not considered here as a causative factor. CP was
diagnosed in accordance with the Asia-Pacific consensus
report28.
The participating patients were from 29 provinces and

municipalities on the Chinese mainland, all of Han ori-
gin, and referred to the Department of Gastroenterology
at Changhai Hospital between 2010 and 2015. We
designed a questionnaire about detailed past medical and
personal history including alcohol intake and cigarette
smoking for patients with CP. These data were collected
by face-to-face conversation during their hospital stay.
Patients were divided into three subgroups as follows:
ACP was assigned in terms of an alcohol intake of ≥80 g/
d for a male and 60 g/d for a female for at least two years
in accordance with previous publications29,30, irrespec-
tive of smoking status; among the remaining patients,
those had smoked ≥20 cigarettes per day for at least two
years were assigned to a “smoking-associated chronic
pancreatitis (SCP)” subgroup; all the remaining patients
were assigned to the “ICP” subgroup. A total of 1196
unrelated Han Chinese blood donors were used as
healthy controls.
The electronic medical records of each patient were

systematically evaluated for the following clinical features:
age at disease onset (this was defined as the age at onset of
abdominal pain; in patients who did not experience prior
symptoms, age at diagnosis of CP); age at diagnosis of
pancreatic stones, diabetes mellitus and steatorrhea; and
M-ANNHEIM clinical stages. Pancreatic stones were
diagnosed when stones or calcification were found in the
pancreas by radiological examinations such as abdominal
X-ray, CT, or MRI. Diabetes was diagnosed according to
the diagnostic criteria of the American Diabetes Asso-
ciation, based on a threshold of ≥7.0 mmol/L for
fasting plasma glucose or 2-h plasma glucose value of
≥11.1 mmol/L in a 75 g oral glucose tolerance test31.
Steatorrhea was diagnosed in accordance with one of the
following conditions: (1) chronic diarrhea with foul-
smelling, oily bowel movements; (2) a positive result in a
standard quantification test (a fecal fat excretion of over
14 g/d)32. M-ANNHEIM clinical stages were classified in
accordance with ref. 33.
This study was approved by the Ethics Committee of

Changhai Hospital. Written informed consent was
obtained from all patients.
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Targeted next-generation sequencing of PRSS1, SPINK1,
CTRC, and CFTR
We designed a total of 73 target-specific primer pairs

(8 for PRSS1, 4 for SPINK1, 12 for CTRC and 49 for
CFTR; see Supplementary Figures 1–4) for all exons and
exon/intron boundaries of the four genes using Pri-
mer334. The primers were synthesized with common
adapter sequences at their 5′ ends as previously
described35. The primer pairs were divided into two
multiplex primer pools. Pre-amplification of the tagged-
gene amplicons, generation of a barcoded DNA library
for multiplex high-throughput sequencing, quantifica-
tion and clean-up of the DNA library, and sequencing
were performed essentially as previously described35.
Variant calling and filtering for point mutations and
micro-insertions or -deletions were performed as pre-
viously described36. All called rare variants were sub-
jected to validation by Sanger sequencing (for details,
see Supplementary Material). The nomenclature for the
description of sequence variants followed HGVS
recommendations37.

Variant inclusion criteria
We focused on rare variants, defined as having a minor

allele frequency of <1% in the control population8,9. Thus,
we first excluded from consideration those variants with a
minor allele frequency of ≥1% in the Chinese control
dataset. Then, we divided the retained variants into known
or novel categories by reference to data in the genetic risk
factors in chronic pancreatitis database (http://www.
pancreasgenetics.org/index.php) (for SPINK1, PRSS1, and
CTRC variants) or CFTR2 (https://www.cftr2.org/) and
CFTR-France (https://cftr.iurc.montp.inserm.fr/cgi-bin/
about_CFTR.cgi) databases (for CFTR variants). Of the
known variants, those classified as pathogenic or disease-
causing were included in the final analysis, whereas those
classified as non-pathogenic were excluded from further
consideration, and those classified as being of unknown
significance were treated as novel variants. Of the novel
variants, those affecting canonical splice sites or which
resulted in premature stop codons or changes in the
reading frame, were automatically classified as pathogenic
and included in the final analysis. With regard to the novel
missense variants detected, only those that were predicted
to be pathogenic or likely pathogenic by at least five of six
pathogenicity prediction algorithms, namely PolyPhen-2
(http://genetics.bwh.harvard.edu/pph2/index.shtml), PRO-
VEAN (http://provean.jcvi.org/seq_submit.php), Mutatio-
nassessor (http://mutationassessor.org/r3/), SNPs&GO
(http://snps.biofold.org/snps-and-go/snps-and-go.html),
Align-GVGD (http://agvgd.hci.utah.edu/agvgd_input.php),
and Mutationtaster (http://www.mutationtaster.org/) were
included in the final analysis. All the other novel variants
were excluded from consideration.

Statistical analysis
The significance of the differences between variant or

genotype carrier frequencies in patients and controls was
tested by means of Chi-square or Fisher’s exact test using
GraphPad Prism (v5.01). A P value < 0.05 was considered
to provide evidence of statistical significance.
The following statistical analyses were performed using

SPSS (v19.0) software. The statistical significance of dif-
ferences between mutation-positive and -negative patients
in terms of gender, pancreatic stones, diabetes mellitus,
steatorrhea, and M-ANNHEIM clinical stages was asses-
sed by means of the Chi-square or Fisher’s exact test; the
odds ratio (OR) value with corresponding 95% confidence
interval (CI) was calculated. The statistical significance of
differences between mutation-positive and -negative
patients in terms of the mean age at disease onset and the
mean ages respectively at diagnosis of pancreatic stones,
diabetes mellitus, and steatorrhea were compared using
the t test under an equal condition by homogeneity test.
The Kaplan–Meier method was used to plot survival
curves. Differences between the survival curves of the
tested groups were assessed using a log-rank test with a
0.05 significance level.

Results
Genetic analysis of SPINK1, PRSS1, CTRC, and CFTR
Targeted next-generation sequencing was performed on

the entire coding sequences plus exon/intron boundaries
of the five-exon PRSS1, four-exon SPINK1, eight-exon
CTRC, and 27-exon CFTR genes in a total of 2257 Han
Chinese subjects, including 1061 CP patients and 1196
controls. The age of subjects among the cases was 40.7 ±
16.0 years (range 6–85 years) and 47.7 ± 6.0 years (range
18–87 years) among the controls (P < 0.001). The CP
group contained more males than the control group (69.9
vs 47.8%, P < 0.001). All called rare variants were sub-
jected to Sanger sequencing and all validated variants
were classified as being either pathogenic or non-
pathogenic in accordance with the procedure described
in the Methods. As such, we identified a total of 45 dis-
tinct rare pathogenic variants (11 in SPINK1, 6 in PRSS1,
12 in CTRC, and 16 in CFTR), of which 22 (5 in SPINK1,
one in PRSS1, 7 in CTRC, and 9 in CFTR) had not been
previously described (Supplementary Table 1). Below, we
describe findings in the context of all patients, followed by
findings in subgroup analyses and a genotype–phenotype
relationship analysis in ICP.

Confirmation of association with disease risk
We firstly evaluated the association of rare pathogenic

variants with CP at both the single and the aggregate
variant levels in the context of each gene, with OR values
being provided both for those variants individually
achieving a significant association and the aggregated
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variants. We robustly confirmed the individual associa-
tions of some previously reported rare pathogenic variants
with CP (e.g., the most studied SPINK1 c.101A>G
(p.Asn34Ser), PRSS1 c.365G>A (p.Arg122His), CTRC
c.180C>T (p.Gly60Gly), and CFTR c.4056G>C
(p.Q1352H)) and the association of the aggregated var-
iants in each gene with CP. However, the variants differed
markedly in terms of the strengths of their genetic effects.
For example, the OR values of those variants individually
achieving a significant association ranged from 3.24 (i.e.,
heterozygous CFTR c.4056G>C (p.Q1352H)) to 137 (i.e.,
homozygous SPINK1 c.194+2T>C). The aggregated var-
iants in the CTRC, CFTR, PRSS1, and SPINK1 genes also
differed quite dramatically in terms of the strength of their
genetic effect, their corresponding ORs being 3.58, 3.71,
6.95, and 40.59, respectively (Supplementary Table 1).

Impact on age of disease onset and clinical outcomes
To perform this task appropriately, we first stratified

patients into genotype groups and generated OR values
for those genotypes individually achieving a significant
association with disease risk and the aggregated genotypes
in each group (Supplementary Table 2). Altogether, rare
pathogenic genotypes involving the SPINK1, PRSS1,
CTRC, and/or CFTR genes were found in 535 (50.42%) of
the 1061 CP patients but in only 71 (5.94%) of the 1196
controls (OR= 16.12; P < 0.001).
Next, we tested these pathogenic genotypes for possible

association with disease onset and clinical outcomes in
the patients. To this end, we compared the demographic
and clinical characteristics of all CP patients with and

without the pathogenic genotypes (Table 1). Mutation-
positive patients had significantly earlier mean ages at
disease onset, at diagnosis of pancreatic stones, and at
diagnosis of diabetes mellitus. Mutation-positive patients
were also more likely to have pancreatic stones (90.28 vs
78.14%) and to progress to M-ANNHEIM III/IV stages
(7.66 vs 3.99%). Further, there were more females among
the mutation-positive patients than among the mutation-
negative patients. No significant differences were however
observed between the two patient groups with respect to
the relative number of patients having diabetes mellitus or
steatorrhea (Table 1).
Moreover, using the Kaplan–Meier model, we demon-

strated that the median ages at disease onset of CP, at
diagnosis of pancreatic stones and at diagnosis of diabetes
mellitus in the mutation-positive ICP patients were
respectively 14.4 years [29.8 (95% CI, 27.7–31.9) vs 44.2
(95% CI, 42.4–46.0)], 13.6 years [37.4 (95% CI, 35.6–39.2)
vs 51.0 (95% CI, 49.3–52.7)], and 15.9 years [51.1 (95% CI,
47.6–54.6) vs 67.0 (95% CI, 63.0–71.0)] earlier than in the
mutation-negative ICP patients. Moreover, at 60 years of
age, the cumulative incidence of steatorrhea was 57.7% for
mutation-positive patients but only 31.0% for mutation-
negative patients (Fig. 1).

Comparative analyses across three subgroups
In an attempt to acquire a flavor of the

gene–environment interactions in CP, we compared the
overall prevalence of rare genotypes and their impact on
disease onset and severity across three subgroups, ICP
(n= 715; 318 females, 397 males), ACP (n= 206; one

Table 1 Comparison of demographic and clinical characteristics in all Han Chinese CP patients with and without rare
pathogenic genotypes involving SPINK1, PRSS1, CTRC, and/or CFTR genes

Characteristic Pathogenic genotype-
positive (n= 535)

Pathogenic genotype-
negative (n= 526)

P value

n % n %

Female 199 37.20 120 22.81 <0.001

Mean age at symptom onset (years ± SD) 29.70 ± 14.84 43.01 ± 15.97 <0.001

Pancreatic stones

Yes 483 90.28 411 78.14 <0.001

Mean age at diagnosis (years ± SD) 34.22 ± 14.35 46.96 ± 14.18 <0.001

Diabetes mellitus

Yes 122 22.80 129 24.52 0.51

Mean age at diagnosis (years ± SD) 39.33 ± 11.03 48.05 ± 11.22 <0.001

Steatorrhea

Yes 93 17.38 73 13.88 0.12

Mean age at diagnosis (years ± SD) 38.69 ± 11.56 44.29 ± 13.03 0.004

M-ANNHEIM clinical stages

I 361 67.48 345 65.59 0.51

II 133 24.86 160 30.42 0.04

III/IV 41 7.66 21 3.99 0.01
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female, 205 males), and SCP (n= 140; all males). Patho-
genic genotype distribution in ICP patients and controls,
and OR values wherever appropriate, as performed for all
patients, are provided in Table 2. As for the comparatively
small ACP and SCP cohorts, only the distributions of
pathogenic genotypes in patients are provided (Supple-
mentary Table 3).
Pathogenic genotypes were found in 57.1% (408/715) of

ICP patients (Table 2), which is significantly higher than the
39.8% (82/206) detection rate in ACP patients (Supple-
mentary Table 3; P < 0.0001), the 32.1% (45/140) detection

rate in SCP patients (Supplementary Table 3; P < 0.0001) as
well the 50.4% (535/1061) detection rate in all patients
(Supplementary Table 2; P= 0.006) (see also Fig. 2a). In
terms of the relative frequencies of different pathogenic
genotypes among the three subgroups of mutation-positive
patients, the most obvious observations are a ~10% decrease
in the “PRSS1 only” genotypes and an ~8% increase in the
“all the others” genotypes in ICP than either ACP or SCP
(Fig. 2b). Nonetheless, no significant differences were
apparent among the three subgroups of mutation-positive
patients in terms of the relative detection rates of the most

Fig. 1 Pathogenic genotypes affect disease onset and clinical outcomes of CP. Kaplan–Meier plots of age at disease onset (a), age at diagnosis of
pancreatic stones (b), age at diagnosis of diabetes mellitus (c), and age at diagnosis of steatorrhea (d) for all Han Chinese CP patients with and without
pathogenic SPINK1, PRSS1, CTRC, and/or CFTR genotypes. Red, patients with pathogenic genotypes. Blue, patients without pathogenic genotypes
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Table 2 Rare pathogenic genotypes involving the SPINK1, PRSS1, CTRC, and/or CFTR genes in Han Chinese ICP patients
and controls

Gene(s) Genotypea ICP patients
(n= 715)

Controls
(n= 1196)

OR 95% CI P value

+ % + %

SPINK1 only c.[93_101del];[=] 2 0.28 0 0 NS

c.[101A>G];[=] 7 1.12 5 0.42 NS

c.[142G>A];[=] 1 0.14 0 0 NS

c.[174C>A];[=] 0 0 1 0.08 NS

c.[194G>A];[=] 1 0.14 0 0 NS

c.[194+2T>C];[=] 179 25.03 13 1.09 30.39 17.15–53.86 <0.001

c.[202C>T];[=] 1 0.14 0 0 NS

c.[101A>G];[101A>G] 1 0.14 0 0 NS

c.[194+2T>C];[194+2T>C] 45 6.29 0 0 162.4 9.98–2642 <0.001

c.194+2T>C(;)93_101del 1 0.14 0 0 NS

c.194+2T>C(;)101A>G 9 1.26 0 0 32.18 1.87–554.1 <0.001

c.194+2T>C(;)172T>A 1 0.14 0 0 NS

c.194+2T>C(;)206C>T 3 0.42 0 0 NS

Subtotal 251 37.76 19 1.59 33.51 20.76–54.08 <0.001

PRSS1 only c.[86A>T];[=] 7 0.98 0 0 25.33 1.44–444.5 0.002

c.[346C>T];[=] 7 1.12 0 0 28.75 1.66–499.2 0.001

c.[364C>T];[=] 3 0.42 0 0 NS

c.[365G>A];[=] 16 2.24 3 0.25 9.69 2.83–33.18 <0.001

c.[544A>T];[=] 1 0.14 0 0 NS

c.[623G>C];[=] 19 3.36 22 1.84 1.85 1.03–3.33 0.036

c.346C>T(;)623G>C 1 0.14 0 0 NS

Subtotal 54 7.55 25 2.09 3.90 2.41–6.32 <0.001

CTRC only c.[2T>C];[=] 0 0 1 0.08 NS

c.[94G>A];[=] 1 0.14 0 0 NS

c.[176G>A];[=] 0 0 1 0.08 NS

c.[180C>T];[=] 4 0.56 3 0.25 NS

c.[217G>T];[=] 0 0 1 0.08 NS

c.[760C>T];[=] 0 0 2 0.17 NS

c.649G>A(;)703G>A 1 0.14 0 0 NS

Subtotal 6 0.84 8 0.67 NS

CFTR only c.[263T>G];[=] 0 0 1 0.08 NS

c.[1488G>T];[=] 2 0.28 0 0 NS

c.[1549T>C];[=] 0 0 1 0.08 NS

c.[1630G>T];[=] 1 0.14 0 0 NS

c.[1813T>C];[=] 0 0 1 0.08 NS

c.[1858C>T];[=] 0 0 1 0.08 NS

c.[1865G>A];[=] 1 0.14 1 0.08 NS

c.[2909G>A];[=] 4 0.56 1 0.08 NS

c.[3205G>A];[=] 3 0.42 1 0.08 NS

c.[3635delT];[=] 1 0.14 0 0 NS

c.[3987_3988del];[=] 0 0 1 0.08 NS

c.[4056G>C];[=] 8 1.12 11 0.92 NS

Subtotal 20 2.80 19 1.59 NS

SPINK1 and PRSS1 SPINK1:c.[194+2T>C] PRSS1:c.[86A>T] 1 0.14 0 0 NS

SPINK1:c.[194+2T>C];[194+2T>C] PRSS1:c.[365G>A] 1 0.14 0 0 NS

SPINK1:c.[194+2T>C] PRSS1:c.[623G>C];[623G>C] 1 0.14 0 0 NS

SPINK1:c.[194+2T>C] PRSS1:c.[623G>C] 31 4.34 0 0 110.1 6.72–1804 <0.001

Subtotal 34 4.76 0 0 121.1 7.41–1980 <0.001

SPINK1 and CTRC SPINK1:c.[194+2T>C] CTRC:c.[180C>T] 8 1.12 0 0 28.75 1.66–499.2 0.001

SPINK1:c.[194+2T>C] CTRC:c.[181G>A] 1 0.14 0 0 NS

SPINK1:c.[194+2T>C] CTRC:c.[493+1G>A] 1 0.14 0 0 NS

SPINK1:c.[194+2T>C] CTRC:c.[641G>A] 1 0.14 0 0 NS

Subtotal 11 1.54 0 0 39.06 2.30–664.4
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frequent “SPINK1 only” genotypes (i.e., 61.5% (251/408) in
ICP, 59.8% (49/82) in ACP, and 57.8% (26/45) in SCP;
Table 2 and Supplementary Table 3, Fig. 2b) and the most
frequent single genotype, SPINK1:c.[194+2T>C];[=] (i.e.,
43.9% (179/408) in ICP, 47.6% (39/82) in ACP and 46.7%
(21/45) in SCP; Table 2 and Supplementary Table 3).
Using the Kaplan–Meier model, we demonstrated that

pathogenic genotypes affected the age of disease onset and
clinical outcomes across the three subgroups, with the
strongest effects being observed in the ICP patients
(Supplementary Figure 5; Supplementary Table 4).

Genotype and phenotype relationships in the context of
ICP
As shown in Table 2, the four most frequent genotypes

were SPINK1:c.[194+2T>C];[=] (i.e., SPINK1 c.194
+2T>C heterozygote; n= 179), SPINK1:c.[194+2T>C];
[194+2T>C] (i.e., SPINK1 c.194+2T>C homozygote; n=
45), SPINK1:c.[194+2T>C] PRSS1:c.[623G>C] (i.e.,
SPINK1 c.194+2T>C and PRSS1 c.623G>C (p.Gly208Ala)
trans-heterozygotes; n= 31), and PRSS1:c.[623G>C];[=]
(i.e., PRSS1 c.623G>C heterozygote; n= 19). Most nota-
bly, SPINK1 c.194+2T>C in homozygosity exhibited a
more than fivefold higher OR than when it was present in
the heterozygous state (162.4 vs 30.39). Moreover, the
PRSS1 c.623G>C variant, when present in the hetero-
zygous state, was associated with an OR of 1.85; however,
its co-inheritance with SPINK1 c.194+2T>C served to

increase the OR associated with SPINK1 c.194+2T>C
heterozygosity from 30.39 to 110.1 (Table 2). These four
most frequent genotypic combinations manifesting quite
different ORs provided us with a unique opportunity to
explore genotype–phenotype relationships in ICP. We
therefore employed Kaplan–Meier analysis to compare
the impact of the different genotypes with respect to
median age at disease onset (Fig. 3a). We found no sig-
nificant difference either between ICP patients harboring
PRSS1 c.[623G>C];[=] and mutation-negative ICP
patients (P=0.26) or between ICP patients harboring the
SPINK1:c.[194+2T>C] PRSS1:c.[623G>C] genotype and
patients with the SPINK1 c.[194+2T>C];[=] genotype
(p= 0.78). However, the median age at disease onset in
patients with either SPINK1 c.[194+2T>C];[=] or
SPINK1:c.[194+2T>C] PRSS1:c.[623G>C] was sig-
nificantly earlier than that in mutation-negative patients
(P < 0.001). Patients harboring SPINK1:c.[194+2T>C];
[194+2T>C] exhibited the earliest median age at disease
onset, 10 years earlier than that exhibited by ICP patients
harboring SPINK1:c.[194+2T>C];[=] and 27 years earlier
than that in mutation-negative patients (Fig. 3a). Similar
differences were observed with the Kaplan–Meier analysis
with respect to the age at diagnosis of pancreatic stones
(Fig. 3b). Furthermore, PRSS1:c.[365G>A];[=] (i.e., PRSS1
c.365G>A (p.Arg122His) heterozygote; n= 16) was the
fifth most frequent genotype in the ICP cohort (Table 2).
It displayed a very similar impact to that of SPINK1:c.

Table 2 continued

Gene(s) Genotypea ICP patients
(n= 715)

Controls
(n= 1196)

OR 95% CI P value

+ % + %

PRSS1 and CTRC PRSS1:c.[365G>A] CTRC:c.[94G>A] 1 0.14 0 0 NS

PRSS1:c.[365G>A] CTRC:c.[180C>T] 1 0.09 0 0 NS

SPINK1 and CFTR SPINK1:c.[101A>G] CFTR:c.[2909G>A] 1 0.14 0 0 NS

SPINK1:c.[194+2T>C] CFTR:c.[2909G>A] 2 0.28 0 0 NS

SPINK1:c.[194+2T>C] CFTR:c.[2936A>C] 2 0.28 0 0 NS

SPINK1:c.[194+2T>C] CFTR:c.[3205G>A] 2 0.28 0 0 NS

SPINK1:c.[194+2T>C] CFTR:c.[4056G>C] 10 0.28 0 0

SPINK1:c.[194+2T>C];[194+2T>C] CFTR:c.[4056G>C] 1 0.14 0 0 NS

SPINK1:c.194+2T>C](;)199C>T CFTR:c.[2173G>A] 1 0.14 0 0 NS

Subtotal 19 0.27 0 0 67.0 4.04–1112 <0.001

PRSS1 and CFTR PRSS1:c.[346C>T] CFTR:c.[4056G>C] 1 0.14 0 0 NS

PRSS1:c.[623G>C] CFTR:c.[2936A>C] 1 0.14 0 0 NS

PRSS1:c.[623G>C] CFTR:c.[3205G>A] 3 0.42 0 0 NS

PRSS1:c.[623G>C] CFTR:c.[4056G>C] 1 0.14 0 0 NS

Subtotal 6 0.84 0 0 21.92 1.23–390.0 0.0027

CTRC and CFTR CTRC:c.[180C>T] CFTR:c.[3205G>A] 2 0.28 0 0 NS

CTRC:c.[180C>T] CFTR:c.[4056G>C] 1 0.14 0 0 NS

Subtotal 3 0.42 0 0 NS

SPINK1, PRSS1, and CFTR SPINK1:c.[194+2T>C] PRSS1:c.[623G>C] CFTR:c.[4056G>C] 2 0.28 0 0 NS

Total 408 57.06 71 4.35 21.06 15.88–27.92 <0.001

NS not significant
aNomenclature following HGVS recommendations (http://varnomen.hgvs.org/)37
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[194+2T>C];[194+2T>C] in terms of both time to dis-
ease onset (P= 0.99) and time to diagnosis of pancreatic
stones (P= 1.0) by means of Kaplan–Meier analysis
(Fig. 3).

Discussion
We have recently demonstrated marked ethnic dif-

ferences in genetic predisposition to CP between Han
Chinese and European populations in the context of
three pancreatitis susceptibility loci, namely the absence
of the CEL-HYB risk allele38 in the Chinese popula-
tion39, the lack of significant enrichment of rare
pathogenic CPA1 variants40 in Chinese ICP patients36,
and the lack of any contribution of the CTRB1-CTRB2
risk allele41 to CP risk variation in the Chinese popu-
lation due to allele near-fixation42. These risk variants

were therefore not considered in the present study. In
addition, we focused only on rare variants. Thus, com-
mon CP-predisposing polymorphisms30,43 were not
considered.
The constellation of the concurrent and comprehensive

sequence analysis of all exons and exon/intron boundaries
of the SPINK1, PRSS1, CTRC, and CFTR genes, the
employment of stringent criteria for classifying rare
pathogenic variants, the use of large numbers of well-
phenotyped CP patients with detailed demographic and
clinical characteristics, and the use of a large number of
healthy controls, allowed us not only to robustly replicate
the disease association originally noted in European
populations of rare pathogenic variants in each gene
studied, but also to identify multiple novel variants in the
Han Chinese population. More importantly, these factors

Fig. 2 Comparison of overall prevalence and relative distribution of pathogenic genotypes in Han Chinese ICP, ACP and SCP patients. Data
from all patients are also included for the purposes of comparison. The genotypes are defined as in Table 2 and Supplementary Table 3
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allowed us to come up with several new findings, some of
which are discussed here.
SPINK1 p.N34S is the variant most frequently asso-

ciated with ICP in European countries, being present in
382 of 5962 (6.4%) combined Caucasian ICP patient
alleles and 83 of 11638 (0.07%) combined control alleles
(OR= 9.70)20. It is pertinent to point out that SPINK1

p.N34S itself has no functional effect but is in complete
(in Caucasians) or high (in Han Chinese) linkage dis-
equilibrium with a functional regulatory single nucleotide
polymorphism in an upstream enhancer44. In the Han
Chinese population, SPINK1 p.N34S was present in only
19 of 1430 (1.33%) ICP patient alleles and 5/2392 (0.21%)
control alleles (OR= 6.4; P < 0.001), and was much less

Fig. 3 Impact of different pathogenic genotypes on disease onset and cumulative rate of pancreatic stones in ICP. Kaplan–Meier plots of age at
disease onset (a) and of age at diagnosis of pancreatic stones (b) for the four most frequent pathogenic genotypes in the Han Chinese ICP patients.
PRSS1 c.365G>A (p.Arg122His) was included for the purposes of comparison

Zou et al. Clinical and Translational Gastroenterology           (2018) 9:204 Page 9 of 12

Official journal of the American College of Gastroenterology



common than the most frequent variant, SPINK1 c.194
+2T>C, whose allele frequency was 350/1430 (24.5%) in
ICP patients and 13/2392 (0.54%) in controls (OR= 59.3;
Table 2). Put another way, SPINK1 c.194+2T>C-harbor-
ing genotypes (including simple heterozygotes, simple
homozygotes, compound heterozygotes, and trans-het-
erozygotes) were found in up to 303 (42.4%) of the 715
Han Chinese ICP patients (Table 2). SPINK1 c.194+2T>C
affects gene function by disrupting the canonical donor
splice site of intron 245,46. Consistent with this profound
functional effect, SPINK1 c.194+2T>C heterozygotes
were significantly associated with both disease onset and
clinical outcomes, whereas homozygosity for SPINK1
c.194+2T>C was associated with an even stronger effect
than heterozygosity for SPINK1 c.194+2T>C (Fig. 3).
These findings, considered together with the extremely
high OR values associated with SPINK1 c.194+2T>C
heterozygosity, established that SPINK1 c.194+2T>C is
the most important clinically actionable genetic risk factor
for CP in the Han Chinese population. Additionally, it is
pertinent to point out that SPINK1:c.[194+2T>C];[194
+2T>C] actually had a similar impact on disease onset
and clinical outcomes to PRSS1:c.[365G>A];[=] (Fig. 3),
the most common genotype causing hereditary pancrea-
titis13. These observations serve to identify SPINK1:c.[194
+2T>C];[194+2T>C] and PRSS1:c.[365G>A];[=] as the
most severe genotypes and SPINK1:c.[194+2T>C];[=] to
be a severe genotype predisposing to CP.
The simultaneous analysis of the SPINK1, PRSS1,

CTRC, and CFTR genes had several advantages over the
analysis of each gene independently. First, it allowed
direct comparison of the relative contributions of rare
pathogenic variants in each of the four genes to CP. In this
regard, it is interesting to note that when the pathogenic
variants were stratified into unique genotypes, neither the
“CTRC only” genotypes nor the “CFTR only” genotypes
(both at the individual genotype level and the aggregated
genotype level) showed a significant association with CP
(Table 2; Supplementary Table 2), a new indication of the
generally less important contribution of CTRC and CFTR
to CP as compared to SPINK1 and PRSS1. Second, it
allowed the ascertainment of gene–gene interactions in
the disease; thus, for example, trans-heterozygotes (n=
77) accounted for 18.8% of the 408 rare pathogenic gen-
otypes found in the 715 ICP patients (Table 2). Third, it
allowed the identification of novel genotype–phenotype
relationships, as exemplified by the findings illustrated in
Fig. 3.
Excessive alcohol intake has long been established to be

the primary cause of CP1. By contrast, only relatively
recently has cigarette smoking been identified as an
independent etiological risk factor for CP1,47–51. None-
theless, there are currently no consensus guidelines as to
when CP should be considered to have been caused by

either alcohol intake or cigarette smoking. To deal with
this issue, we adopted a pragmatic approach to divide our
patients into three working subgroups, ICP, ACP, and
SCP, an indispensable starting point for investigating gene
and environment interactions in CP. Clearly, it will be
necessary to refine these subgroup definitions as further
data become available.
Our three subgroup cohorts are, respectively, by far the

largest to date in which all exons and exon/intron
boundaries of the SPINK1, PRSS1, CTRC, and CFTR
genes have been simultaneously analyzed for rare patho-
genic variants. This is also the first time that an “SCP”
cohort has been subjected to extensive genetic analysis.
The comparative analysis across the three subgroups
revealed several important and novel findings. First, the
ICP cohort differed significantly from both ACP and SCP
cohorts in terms of the four survival curves (Supple-
mentary Figure 5). For example, both mutation-positive
ACP and SCP patients appeared to acquire the disease
later and to have pancreatic stones, diabetes mellitus and
steatorrhea later than mutation-positive ICP patients.
These apparently paradoxical observations may be
explicable by assuming that many children and adoles-
cents, once they had experienced symptoms of pancrea-
titis or had been diagnosed with pancreatitis, would have
avoided heavy alcohol consumption and/or cigarette
smoking in later years and hence would rarely have been
diagnosed with ACP or SCP as adults. An alternative and
non-mutually exclusive explanation might be that the
pathological mechanism(s) underlying ACP and SCP are
qualitatively different from that of ICP52,53. Irrespective of
the precise underlying reason(s), rare pathogenic geno-
types were found to significantly affect the age of disease
onset and the occurrence of multiple clinical outcomes in
ACP and SCP, suggestive of a possible synergistic effect of
genetic risk factors, alcohol consumption and cigarette
smoking upon the pathogenesis of CP. Moreover, the
impact of pathogenic genotypes on disease onset and
clinical outcomes in ACP appeared to be less profound
than that in SCP (Supplementary Figure 5). In this regard,
it is pertinent to make two points. First, under our sub-
group classification approach, ACP was first assigned
irrespective of smoking status. Consistent with the phe-
nomenon that alcoholics often also tend to be smokers,
more than 80% of our ACP patients fitted the subgroup
definition of SCP. This co-existence of two environmental
risk factors in most of the ACP patients may have ren-
dered the impact of genetic factors less visible. Second, we
used a different criterion to classify SCP, namely those CP
patients who had smoked ≥12 pack-years were designated
as SCP. Using this new criterion, 159 patients were
assigned to SCP and 49 of these were mutation-positive.
Kaplan–Meier analysis of the reclassified SCP as well as
ICP cohorts did not alter our main conclusions in any
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way. Irrespective of how SCP and ACP were classified, the
fact that rare pathogenic genotypes in the four genes were
found in 32–40% of the ACP and SCP subgroup patients
(Supplementary Table 3), suggested an unprecedented
degree of gene–environment interactions in CP.
The above notwithstanding, our study has certain lim-

itations. For example, we did not analyze gross genomic
rearrangements or copy number variants, a rare category of
variant that can cause or predispose to CP54. Although we
adopted a rather stringent approach to classifying newly
identified variants as pathogenic or non-pathogenic (with
newly detected missense variants for example, only those
that were predicted to be pathogenic or likely pathogenic by
at least five of six pathogenicity prediction algorithms were
included for analysis), it is still possible that some of these
putatively pathogenic variants were incorrectly annotated.
However, we consider it unlikely that this affected the main
conclusion because all the newly classified pathogenic var-
iants were individually rare in our cohorts.
In conclusion, on the basis of comprehensive sequen-

cing in a large number of well-phenotyped Han Chinese
participants, we have provided evidence that rare patho-
genic variants in the SPINK1, PRSS1, CTRC, and CFTR
genes significantly affect the onset and clinical outcomes
of CP across three subgroups. We have also identified
extensive gene–environment interactions in the disease
and uncovered novel genotype–phenotype relationships.
The findings from this study should have important
implications for genetic testing and counseling, persona-
lized medicine and prognosis of CP.

Study Highlights

What is current knowledge
● Genetic variants in SPINK1, PRSS1, CTRC, and
CFTR predispose to chronic pancreatitis.

● The potential impact of these genetic variants on
age at disease onset and clinical outcomes remains
unclear.

● The potential interactions of these genetic variants
with environmental risk factors also remain
unclear.

What is new here
● Genetic variants in the four genes were found to
influence age of disease onset and clinical outcomes
in chronic pancreatitis.

● We demonstrated significant gene–environment
interactions in chronic pancreatitis.
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