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Gene prioritization, communality 
analysis, networking and 
metabolic integrated pathway to 
better understand breast cancer 
pathogenesis
Andrés López-Cortés   1,2, César Paz-y-Miño1, Alejandro Cabrera-Andrade3,4, 
Stephen J. Barigye5, Cristian R. Munteanu2,6, Humberto González-Díaz7,8, Alejandro Pazos2,6, 
Yunierkis Pérez-Castillo   4,9 & Eduardo Tejera4,10

Consensus strategy was proved to be highly efficient in the recognition of gene-disease association. 
Therefore, the main objective of this study was to apply theoretical approaches to explore genes 
and communities directly involved in breast cancer (BC) pathogenesis. We evaluated the consensus 
between 8 prioritization strategies for the early recognition of pathogenic genes. A communality 
analysis in the protein-protein interaction (PPi) network of previously selected genes was enriched with 
gene ontology, metabolic pathways, as well as oncogenomics validation with the OncoPPi and DRIVE 
projects. The consensus genes were rationally filtered to 1842 genes. The communality analysis showed 
an enrichment of 14 communities specially connected with ERBB, PI3K-AKT, mTOR, FOXO, p53, HIF-1, 
VEGF, MAPK and prolactin signaling pathways. Genes with highest ranking were TP53, ESR1, BRCA2, 
BRCA1 and ERBB2. Genes with highest connectivity degree were TP53, AKT1, SRC, CREBBP and EP300. 
The connectivity degree allowed to establish a significant correlation between the OncoPPi network 
and our BC integrated network conformed by 51 genes and 62 PPi. In addition, CCND1, RAD51, CDC42, 
YAP1 and RPA1 were functional genes with significant sensitivity score in BC cell lines. In conclusion, 
the consensus strategy identifies both well-known pathogenic genes and prioritized genes that need to 
be further explored.

BC is a complex and heterogeneous disease. This pathology represents a significant health problem and is char-
acterized by an intricate interplay between different biological aspects such as environmental determinants, sig-
naling pathway alterations, metabolic abnormalities, hormone disruption, gene expression deregulation, DNA 
genomics alterations and ethnicity1,2.

The heterogeneity of BC can be observed at molecular, histological and functional levels, all of which have 
clinical implications3. The 95% of mammary tumors are adenocarcinomas. The in situ carcinoma is classified into 
ductal carcinoma in situ and lobular carcinoma in situ4. On the other hand, the malignant cells of the infiltrating 
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ductal carcinoma are classified as lobular, tubular, medullary, papillary and metaplastic5. However, the histo-
pathologic classification coupled with the molecular subtypification of the estrogen receptor (ER), progesterone 
receptor (PR), human epidermal growth factor receptor 2 (HER2), and the PAM50 mRNA-based assay gen-
erate five different intrinsic molecular subtypes: luminal A (ER+ and/or PR+, HER2−, low Ki67), luminal B 
(ER+ and/or PR+, HER+ or HER− with high Ki67), basal-like (ER−, PR−, HER2−, cytokeratin 5/6+, and/or 
HER1+), HER2-enriched (ER−, PR−, HER2+) and normal-like3,6–9.

The major BC hallmarks are related to cell proliferation, differentiation and cell apoptosis processes that are 
associated to the deregulation of the cell cycle and the impairment of DNA repair processes10. However, the 
underlying molecular interactions of these processes are to-date not well understood and the corresponding 
network of the mechanistic interplay and physical interactions between individual genes, proteins and metab-
olites are unexplored due to the fact that most pathways are complex connected to regulate particular cellular 
processes11. For this reason, BC genes need to be understood as being part of a complex network12. In general, 
genes involved in the BC progression represent a broad class of proteins such as transcription factors, chromatin 
remodelers, growth factors, growth factor receptors, signal transducers and DNA repair genes13. The individual 
key players of BC progression are classified as oncogenes, tumor suppressor genes and genomic stability genes14. 
These genes are playing a key role in the regulation of cell cycle, cell proliferation and cell differentiation13.

Despite what is known up to date, we still have not a complete, integrative understanding about the association 
between BC driver genes, networks and metabolic pathways. Hence, the consensus strategy (CS) had proofed 
to be an efficient way to explore gene-disease association15,16. Therefore, we will include several prioritization 
strategies that will be integrated using a CS in order to rank the genes in the gene-disease association. The con-
sensus result will be integrated in network analysis and metabolic pathway analysis in order to identify relevant 
pathogenic genes and pathogenic pathways related to BC. The aim of this study is to apply several theoretical 
approaches to explore BC, specially those genes directly involved in the pathogenesis through a multi-objective 
design.

Methods
Selection of pathogenic genes for validation.  The methodology used below is similar to that previously 
described by Tejera et al.17. The validation strategy for prioritization on pathogenic genes was performed from 
the identification of specific genes involved in the BC pathogenesis. Through a search in Scopus and PubMed 
databases, a gene was considered as pathogenic if: (1) the silencing or induced overexpression of the proposed 
gene in organism models generate a clinical phenotype like BC (Group G1), and (2) at least one polymorphism 
was associated with BC in meta-analysis studies (Group G2)17,18.

The full gene list of G1 (n = 59) and G2 (n = 101) can be found in Tables S1 and S2, respectively. While the 
145 unique genes combining G1 + G2 and its corresponding Entrez Gene ID identifier can be found in Table S3.

Prioritization algorithms and Consensus strategy.  The prioritization methods were selected according 
to two criteria: (1) full available platform in web service, and (2) requiring only the disease name for gene prior-
itization. The eight bioinformatics tools that met these criteria were Glad4U19, DisgeNet20, Génie21, SNPs3D22, 
Guildify23, Cipher24, Phenolyzer25 and Polysearch26. These prioritization algorithms present several characteristics 
that have been previously evaluated by several authors15,27. The previously selected prioritization tools were well 
integrated in the CS17. Each gene “i” in the ranked list provided by each method “j” was normalized (GeneNi,j 
which means, the normalized score of the gene “i” in the method “j”) in order to integrate all methods for the 
Consensus approach. For the final score per gene we considered the average normalized score as well as the num-
ber of methods that predict the gene “ni” using:
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The equation (1) corresponds with the geometrical mean between the average score of each gene obtained 
in each method and the normalized score according to the number of methods which predict the gene-disease 
association17. The geometrical mean, using the square root, is applied because it is more sensitive to extreme 
values than the arithmetic mean. Therefore, genes are ordered according to the Genei values. This sorting will 
produce a ranking that further normalized leading to the final score of each gene (ConsenScorei). The final list has 
19,989 prioritized genes. To reduce this list we used the already predefined pathogenic genes (G1 and G2) and the 
following equation (2):
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where TP and FP were the true positive and false positive values (up to the ranking value of the Genei), respec-
tively. The maximal value of Ii is the maximal compromise between the TP and FP rate compensated with the 
ranking index of each gene.

Enrichment analysis.  Pathway enrichment analysis and gene ontology (GO) were performed using David 
Bioinformatics Resource28,29. Revigo was used to simplify the high number of genes and GO terms, maintaining 
it with highest specificity30,31. In addition, RSpider was used to obtain integrated information from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)32,33. RSpider will produce statistical analysis of the enrichment and 
a network representation integrating the information in both databases. This tool connects into non-interrupted 
sub-network component as many input genes as possible using minimal number of missing genes32.
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Protein-protein interaction network analysis.  The protein-protein interaction (PPi) network with a 
highest confidence cutoff of 0.9 and zero node addition was created using the String Database34. The confidence 
score is the approximate probability that a predicted link exists between two enzymes in the same metabolic map. 
The String Database takes into account known and predicted interactions34. The centrality indexes calculation 
and network visualization was analyzed through the Cytoscape software35. The communality network analysis 
(CNA) was performed by clique percolation method using the CFinder software36. The CNA provides a better 
topology description of the network overlapping modules that correspond with relevant biological information 
and including the location of highly connected sub-graphs (k-cliques)17. The different k-cliques present different 
number of communities and genes per community. The selection of the k-clique value will define our further 
analysis. The higher the k-clique value is, the lower the number of communities that integrate it and vice versa. In 
our network, both extremes (too small or too high k-clique values) generate imbalance in the gene distribution 
present in each community. In order to minimize this bias, we used “S” index detailed in equation (3)17, where Ng

k

and Nc
krepresent the number of genes in each community and the number of communities for a defined k-clique 
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In order to provide a weight of the pathways integrating also network information we used the PathScorem 
defined as17: if ConsenScorei

k is the ConsenScorei of the gene “i” in the community “k” then: (1) Each community 
“k” was weighted as: = ∑W ConsenScore N/k i

k
k, where Nk is the number of communities. (2) Each pathway “m” 

was weighted as: = ∑PathRankScore W N/m k
m

k
m, where Wk

m is the weight (Wk) of each community connected 
with the pathway “m” and Nk

m is the number of communities connected with the pathway “m”. (3) A second 
weight was given to the pathway “m” (PathGeneScorem) considering all the genes involved in the pathway as: 

=PathGeneScore ConsenScorem i
m n

N
m

m
, where “Nm” is the total number of genes in the pathway “m” while “nm” 

is the number of those genes which are also found in the PPi network. ConsenScorei
m is the average of the 

ConsenScorei of all genes present in the pathway “m”. (4) The final score associated with the pathway “m” 
(PathScorem) is calculated as the geometrical mean between PathGeneScorem and the normalized PathRankScorem.

K-mean analysis.  Once the k-clique cutoff is defined, there are several communities that need also to be 
rationally reduced. We proposed a K-mean clustering analysis using the following variables: PathScore, average 
degree and average consensus ranking of the genes in that community. The cluster analysis will lead us to group 
communities with similar patterns according to predefined variables.

Oncogenomics validation with the OncoPPi BC network and the DRIVE project.  OncoPPi 
reports the generation of a cancer-focused PPi network, and identification of more than 260 high-confidence 
cancer-associated PPi according to Li et al., and Ivanov et al.37,38. In addition, the OncoPPi BC network is con-
formed by 94 genes and 170 PPi experimentally analyzed in BC cell lines37,38. The correlation of the degree cen-
trality by means of Spearman p-value test between the OncoPPi BC network and our String PPi network, and 
between the OncoPPi BC network and our BC integrated network allows validation of all the high-confidence 
breast cancer-focused PPi analyzed in cell lines and proposed in our study.

On the other hand, the DRIVE project (deep RNAi interrogation of visibility effects in cancer) is the 
larger-scale gene knockdown experiment to discover functional gene requirements across diverse sets of can-
cer39. According to McDonald et al., DRIVE constructed deep coverage shRNA lentiviral libraries targeting 7,838 
human genes (e.g. druggable enzymes) with a median of 20 shRNAs per gene and used to screen 398 cancer 
cell lines, including 24–25 BC cell lines, in order to analyze cell viability39. shRNA activity was aggregated to 
gene-level activity by Redundant siRNA Activity method (RSA). According to König et al., RSA method uses all 
shRNA reagents against a given gene to calculate a statistical significance that knockdown of gene X leads to loss 
of viability40. Genes with RSA value (sensitivity score) ≤−3 for >50% of cancer cell lines were deemed essential, 
genes with RSA ≤−3 for 1–49% of cancer cell lines were deemed active and genes with RSA ≤−3 for 0% of cancer 
cell lines were deemed inert. Regarding our study, we analyzed the sensitivity score of the Consensus genes, the 
most relevant communities, pathogenic genes, the BC integrated network and the OncoPPi BC network in all 
cancer cell lines and BC cell lines.

Results
Consensus prioritization.  The analyses of pathogenic genes in all bioinformatics tools are presented in 
Table 1. However, not all methods are able to identify the 145 proposed BC pathogenic genes.

CS is the method with highest identification of pathogenic genes in G1 and G2 datasets at the lower 1% of the 
data (199 of 19,989 genes). CS identified the 49.2% of G1 set in the initial 1% and almost 80% of G1 and G2 genes 
in the 5% of the final gene list (29 and 116 genes, respectively) followed by Phenolyzer method25. The identifi-
cation of the pathogenic genes is important but it is also relevant a low rank for those genes. Therefore, we also 
included the average rank of the detected genes as presented in Table 2.

The rank of the detected genes using CS is actually not superior to Guildify23, and it is actually very close to 
Phenolyzer25. However, considering both criteria recovering and ranking, CS is superior recovering in the first 
1% more genes (10% more than Phenolyzer) in the average 50 top genes. Similarly, in the initial 10% of the data 
(1998 genes) Consensus recovers almost 20% more genes than Phenolyzer and 50% more than Guildify in the 
average 280 initial genes.
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The number of prioritized genes is really elevated (19,989) and consequently a rational cutoff needs to be 
applied. The maximal value of Ii is 0.787148315 and corresponds with a ranking value of 1842. Therefore, our final 
reduced list for BC comprises the first 1842 genes (Fig. 1a). The entire gene list as well as their scores and ranking 
can be found in Table S4. In the 1842 genes there are 91.5% of predefined pathogenic genes.

Enrichment analysis of breast cancer related genes and protein-protein interaction net-
work.  The enrichment analysis of GO terms related to biological processes (BP) and metabolic pathways was 
carried on in the 1842 genes. The GO enrichment results into more than 300 terms with a false discovery rate 
(FDR) < 0.01. In order to simplify this list we used Revigo to calculate the GO term frequencies30.

Tables S5 and S6 present a full list of BP in BC genes. We only consider terms with a frequency <0.05%. The 
BP that present low frequency are more specific and therefore they give a greater biological meaning41. Several 
BP such as ERBB2 signaling pathway, DNA synthesis involved in DNA repair, phosphatidylinositol-3-phosphate 
biosynthetic process, cellular response to epidermal growth factor stimulus and positive regulation of tyrosine 
phosphorylation of STAT3 protein are directly associated with the BC pathogenesis42–44.

The enrichment analysis of the KEGG pathways generated significant association (FDR) between BC and the 
PI3K-AKT, FOXO, ERBB, RAS, prolactin and MAPK signaling pathways45–51. The BP and enriched pathways are 
consistent between them and also with scientific knowledge about BC (Table S7).

To better understand BC behavior, in addition to the association between BP and enrichment pathways, it 
was important to supplement information through a network analysis. With the indicated cutoff of 0.9, the final 
interaction network had 1484 nodes, corresponding with the 80.6% of the initial Consensus genes (n = 1842). The 
best-ranked k-clique was 9 (Sk = 0.126) with 49 communities (Fig. 1b and Table S8).

Of the 1484 network nodes, only 496 were part of one of the 49 communities (k-clique 9). The network with 
1484 genes presented 124 of the 145 predefined pathogenic genes (86%). The sub-network of 496 genes com-
prises 63 of 145 (43%) predefined pathogenic genes. In this reduction there is an enrichment of the pathogenic 
genes considering that hypergeometric probability test (HPT) provides a p < 0.01. This means that the number of 
pathogenic genes in this group is higher than what would be expected at random. On the other hand, the average 
degree of the pathogenic genes was 37.4 which was statistically significant higher than non pathogenic genes 
(18.1) at p < 0.05. This result indicates that the average degree of the genes in the network could be associated to 
BC.

The metabolic pathways obtained by previous enrichment analysis is weighted considering the consensus 
score of the genes involved as well as their participation in the interaction network. The results presented in 
Table 3 (Table S9) shown that some metabolic pathways are present in several communities while others are 
poorly represented. Among the most relevant signaling pathways with highest PathScore for BC were ERBB, pro-
lactin, mTOR, p53, FOXO, HIF-1, MAPK, PI3K-AKT and VEGF signaling pathways.

Methods

1% 5% 10% 20% 50%

G1 G2 G1 + G2 G1 G2 G1 + G2 G1 G2 G1 + G2 G1 G2 G1 + G2 G1 G2 G1 + G2

GLAD4U 6.8 4.5 3.2 15.3 15.3 12.3 20.3 22.5 19.4 32.2 34.2 30.3 45.8 47.7 43.9

Disgenet 0.0 0.0 0.0 1.7 1.8 1.3 8.5 4.5 3.2 10.2 9.0 6.5 15.3 12.6 9.7

Genie 3.4 1.8 1.3 5.1 2.7 2.6 6.8 4.5 4.5 47.5 27.9 31.0 67.8 55.0 56.1

SNP3D 11.9 8.1 5.8 22.0 26.1 20.6 35.6 37.8 32.9 44.1 54.1 47.7 59.3 65.8 60.6

Guildify 18.6 16.2 14.8 18.6 23.4 20.0 23.7 28.8 25.2 44.1 36.9 38.1 76.3 69.4 70.3

Cipher 3.4 2.7 1.9 5.1 7.2 5.8 13.6 14.4 12.3 20.3 16.2 15.5 25.4 21.6 20.0

Phenolyzer 47.5 29.7 31.6 79.7 55.0 60.6 86.4 71.2 74.2 88.1 85.6 85.2 94.9 98.2 96.8

Polysearch 0.0 0.0 0.0 1.7 0.9 0.6 1.7 0.9 0.6 3.4 1.8 1.3 5.1 4.5 3.2

Consensus 49.2 42.3 40.6 76.3 84.7 80.0 83.1 98.2 92.3 93.2 100.0 97.4 96.6 100.0 98.7

Table 1.  Identification (in %) of pathogenic genes in each approach.

Methods

1% 5% 10% 20% 50%

G1 G2 G1 + G2 G1 G2 G1 + G2 G1 G2 G1 + G2 G1 G2 G1 + G2 G1 G2 G1 + G2

GLAD4U 4.2 2.7 1.9 20.3 10.3 8.1 30.6 18.6 14.4 64.5 26.9 27.4 123.6 71.0 53.0

Disgenet 0.0 0.0 0.0 2.5 1.4 0.6 5.1 2.7 1.9 6.3 5.0 3.5 12.4 7.2 5.4

Genie 11.9 6.3 4.5 27.6 8.7 10.3 50.8 51.5 36.1 273.6 146.2 107.4 389.5 247.9 174.0

SNP3D 6.9 4.6 3.3 24.1 17.9 13.6 60.7 34.4 26.7 104.4 63.2 48.5 214.9 108.8 84.6

Guildify 97.8 39.5 31.4 97.8 120.1 78.6 424.7 226.9 169.0 1576.3 551.4 508.5 3531.5 1863.9 1370.9

Cipher 2.5 2.7 1.9 20.8 18.8 14.4 89.4 45.7 33.2 133.2 51.6 43.4 204.7 116.7 81.2

Phenolyzer 95.3 45.7 36.0 355.8 191.4 147.2 441.9 323.7 221.4 461.2 399.3 264.1 532.0 444.7 298.7

Polysearch 0.0 0.0 0.0 1.7 0.9 0.6 1.7 0.9 0.6 4.2 2.3 1.6 6.3 5.2 3.7

Consensus 91.7 66.9 46.2 372.5 271.3 189.5 510.5 400.2 277.0 989.5 430.4 356.2 1392.2 430.4 413.5

Table 2.  Average ranking of identified pathogenic genes in each method.
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In order to reduce the 49 communities, which is a relative high number, we considered a K-mean cluster anal-
ysis using Euclidian distance with the following variables: average node degree in each community, ConsenScorei 
of each gene in the community, and the average PathScore in each community. The 14 most relevant communities 
of cluster 1 were: 46 (0.664), 45 (0.677), 47 (0.646), 42 (0.674), 44 (0.663), 30 (0.655), 37 (0.616), 41 (0.640), 43 
(0.662), 38 (0.666), 48 (0.649), 32 (0.655), 5 (0.668) and 20 (0.630). These communities could comprise the most 
relevant BC genes and pathways (Fig. 1c).

Table 4 details genes that make up the main communities and the HPT p-values (Table S10). HPT evaluates 
the relevance of the pathogenic genes in the communities. The top 20 genes with highest connectivity degree were 
TP53, AKT1, SRC, CREBBP, EP300, JUN, CTNNB1, RAC1, PIK3CA, EGFR, MAPK8, MAPK1, STAT3, ESR1, 
MAPK14, CCND1, GRB2, CDK2, FOS and CDKN1A. In addition, 19 of these 20 genes were found in the 14 most 
relevant communities. The sub-network of genes comprised in the 14 communities is presented in Figs 2, S1(a) 
and S1(b).

Figure 1.  (a) Variation of Ii with respect to genes ranking. The maximal value of Ii is 0.787148315 and 
corresponds with a ranking value of 1842 genes. (b) Communality network analysis by clique percolation 
method. Values of Sk with respect to each k-clique cutoff value. (c) Clustering result (3 clusters) integrating 
different communities. Green circles represent cluster 1, blue circles represent cluster 2, and purple circles 
represent cluster 3. X-axis represents the average ranking of communities and Y-axis represents weight of 
pathogenic genes.
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Breast cancer integrated network.  Figure S2 shows the BC integrated network conformed by 334 genes 
and proposed by this study: genes from the most relevant communities (n = 84), pathogenic genes (G1 + G2) 
(n = 115), PAM50 genes (n = 26), the ERBB signaling pathway (n = 54), the FOXO signaling pathway (n = 27), 
the HIF-1 signaling pathway (n = 40), the MAPK signaling pathway (n = 68), the mTOR signaling pathway 
(n = 31), the p53 signaling pathway (n = 40), the PI3K-AKT signaling pathway (n = 114) and the VEGF signaling 
pathway (n = 31).

Additionally, Fig. 3 shows a circular chord diagram of the BC integrated network to better understand the 
PPi in BC. Genes of the most relevant communities were most associated with MAPK, PI3K-AKT and HIF-1 
signaling pathways. Pathogenic genes were most associated with PI3K-AKT, MAPK and FOXO signaling path-
ways. PAM50 genes were most associated with PI3K-AKT, ERBB and HIF-1 signaling pathways. The ERBB and 
FOXO signaling pathways were most associated with PI3K-AKT and MAPK signaling pathways. The prolactin, 
mTOR, p53, HIF-1 and MAPK signaling pathways were most associated with PI3K-AKT and FOXO signaling 
pathways. The VEGF signaling pathway was most associated with ERBB and MAPK signaling pathways. Finally, 
the PI3K-AKT signaling pathway was most associated with MAPK and FOXO signaling pathways (Table S11).

PAM50 subtypes.  Regarding the intrinsic molecular subtypes obtained from the PAM50 mRNA-based 
assay3,6–9,52–54, the CS identified 31 of 50 (62%) PAM50 genes. Focused heatmap of classification by nearest cen-
troids selected genes for each subtype: luminal A (n = 7), normal-like (n = 6), luminal B (n = 6), HER2-enriched 
(n = 7), and basal-like (n = 5). The average ranking between luminal A (637.1) with normal-like (624.8), luminal 
B (106.2) with HER2-enriched (98), and basal-like (738.6) was correlated with the heatmap dendogram of the 
centroid models of subtype of Parker et al.3.

The PPi network created using String Database allowed identifying 26 of 50 (52%) PAM50 genes. The expres-
sion patterns of PAM50 are detailed in Table S123. Additionally, the PPi between PAM50 and genes of the most 
relevant communities, pathogenic genes, and the most relevant KEGG signaling pathways in BC are detailed in 
Table S12.

Oncogenomics validation with the OncoPPi BC network.  Of the 1484 genes that make up the String 
Database34, 77 genes (5.2%) were part of the OncoPPi BC network37,38. The degree centrality allowed to establish 
a significant correlation (Spearman p < 0.001; r2 = 0.273) between the OncoPPi BC network and genes of this 

Pathways PathRank N Community PathGene PathScore Community

ERBB signaling pathway 0.815143 14 0.715853953 0.763886926 4 25 26 33 34 36 38 40 42 43 44 46 47 48

Prolactin signaling pathway 0.795867 15 0.72857406 0.761477386 4 6 11 33 34 36 38 39 40 42 43 44 46 47 48

mTOR signaling pathway 0.815500 4 0.687676019 0.748865671 4 36 42 44

p53 signaling pathway 0.735875 8 0.735254081 0.735564475 4 9 10 12 16 30 32 42

FOXO signaling pathway 0.787647 17 0.683991499 0.733991752 4 5 6 11 12 22 34 36 38 39 42 43 44 45 46 47 48

HIF-1 signaling pathway 0.796182 11 0.673983105 0.7325388 2 4 5 22 34 36 38 41 42 45 46

VEGF signaling pathway 0.799750 16 0.663653015 0.728530369 4 6 11 25 26 33 34 36 38 42 43 44 45 46 47 48

Homologous recombination 0.689800 5 0.744804648 0.716774892 9 24 27 30 32

Thyroid hormone signaling pathway 0.801071 14 0.626992865 0.708707323 4 5 10 20 28 33 34 35 36 37 43 44 46 47

Adherens junction 0.794533 15 0.630206366 0.70761569 4 5 11 25 26 28 33 36 38 40 43 44 46 47 48

Adipocytokine signaling pathway 0.831000 6 0.596127825 0.703833945 4 5 10 42 46 48

TNF signaling pathway 0.790667 12 0.621398946 0.700941819 4 6 11 16 36 39 41 42 45 46 47 48

Neurotrophin signaling pathway 0.794800 15 0.61762929 0.700636681 4 6 11 25 34 36 38 39 40 43 44 45 46 47 48

B cell receptor signaling pathway 0.839583 12 0.583361014 0.699842972 4 33 34 36 38 39 42 44 45 46 47 48

Fc epsilon RI signaling pathway 0.785500 14 0.623089264 0.699597468 4 6 11 25 33 34 36 38 40 43 44 46 47 48

Cell cycle 0.705455 11 0.681447933 0.693347346 4 5 9 10 12 13 22 29 30 32 47

Insulin resistance 0.854000 4 0.560416943 0.691806381 4 5 42 46

PI3K-AKT signaling pathway 0.802462 13 0.584009347 0.68457654 4 22 26 33 34 35 36 38 42 44 45 46 47

Focal adhesion 0.800353 17 0.576200699 0.679090513 4 11 22 25 26 33 34 36 38 40 42 43 44 45 46 47 48

AMPK signaling pathway 0.817000 4 0.562233667 0.677749885 4 10 42 44

NOD-like receptor signaling pathway 0.786500 10 0.580649858 0.675781853 4 6 11 36 39 41 43 46 47 48

Sphingolipid signaling pathway 0.782615 13 0.576929156 0.671947642 4 6 11 33 34 35 36 43 44 45 46 47 48

T cell receptor signaling pathway 0.776857 14 0.577623933 0.669874076 4 6 11 25 26 34 36 38 39 40 44 46 47 48

JAK-STAT signaling pathway 0.830000 6 0.523496172 0.659167523 4 10 34 42 44 46

RAS signaling pathway 0.780833 18 0.548420257 0.654388889 4 8 11 22 25 26 33 34 36 38 40 42 43 44 45 46 47 48

Mismatch repair 0.720200 5 0.582186126 0.647526407 9 15 24 30 32

Estrogen signaling pathway 0.731111 18 0.559789644 0.639740908 1 3 4 6 14 20 31 34 35 36 38 39 40 41 44 45 46 47

MAPK signaling pathway 0.777053 19 0.514896219 0.63253574 4 6 8 11 20 22 25 26 34 36 38 39 42 43 44 45 46 47 48

RAP1 signaling pathway 0.736048 21 0.539811636 0.630338853 1 4 6 11 14 22 25 26 31 33 34 35 36 38 42 43 44 45 46 47 48

Table 3.  Pathway enrichment analysis (k-clique 9) and their associated weights.
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network present in our String Database. On the other hand, of the 334 genes that make up the BC integrated 
network, 51 genes (15%) were part of the OncoPPi BC network. The degree centrality allowed to establish a sig-
nificant correlation (Spearman p < 0.05; r2 = 0.237) between the OncoPPi BC network and genes of this network 
present in our BC integrated network (Table S13).

Figure 4 shows the correlation of PPi between the OncoPPi BC network and our BC integrated network. This 
sub-network is conformed by 20 genes of the most relevant communities, 3 PAM50 genes, 4 pathogenic genes 
(G1 + G2), 7 genes of the PI3K-AKT signaling pathway, 1 gene of the ERBB signaling pathway, 2 genes of the 
FOXO signaling pathway, 1 gene of the HIF-1 signaling pathway and 13 multiple signaling pathway genes. Finally, 
this sub-network has 62 breast cancer-associated PPi according to the OncoPPi network (Table S14).

Oncogenomics validation with DRIVE.  Regarding our results, DRIVE detected 70.6% (1300/1842) of 
the Consensus genes, of which 3.08% (40 genes) was essential (sensitivity score ≤−3) in all cancer cell lines 
(n = 398) and 4.15% (54 genes) presented sensitivity score ≤−3 in >50% of BC cell lines (n = 24-25)39. DRIVE 
detected 82% (273/334) of genes that make up the BC integrated network, of which 2.93% (8 genes) was essential 
in all cancer cell lines and 5.50% (15 genes) presented sensitivity score ≤−3 in >50% of BC cell lines. Regarding 
genes that make up the most relevant communities, DRIVE detected 94% (79/84), of which 3.80% (3 genes) was 
essential in all cancer cell lines and 6.33% (5 genes) presented sensitivity score ≤−3 in >50% of BC cell lines, 
observing an enrichment in the detection in contrast with the Consensus genes. Similarly, DRIVE detected 81% 
(76/94) of genes that make up the OncoPPi BC network, of which 3.95% (3 genes) was essential in all cancer 
cell lines and 6.58% (5 genes) presented sensitivity score ≤−3 in >50% of BC cell lines. DRIVE detected 76% 
(110/145) of pathogenic genes G1 + G2, of which 2.73% (3 genes) was essential in all cancer cell lines and 4.55% 
(5 genes) presented sensitivity score ≤−3 in >50% of BC cell lines (Fig. 5a,b). Finally, we proposed a normalized 
gene list according to the Consensus genes and the sensitivity score ≤−3 in all cancer cell lines (Table S15) and 
BC cell lines (Table S16).

Additionally, Fig. 5c shows a Venn diagram of 54 genes with significant sensitivity score (≤−3) in >50% of 
BC cell lines. Of which, CCND1, CDC42, YAP1, RPA1 and RAD51 integrated the most relevant communities, 
CCND1, CDC42, ITGAV, TFDP1 and TRRAP integrated the OncoPPi BC network, CCND1, CDC42, RPA1, 
RAD51, CDK1, SMC2, XRCC6, ITGAV, PLK1, MCL1, BCL2L1, ITGB5, RBX1, PPP2RIA and CRKL integrated 
the BC integrated network, and finally, all 54 genes were part of the Consensus genes. On the other hand, the 
Venn diagram of the essential genes in all cancer cell lines is shown in Fig. S3.

Integrated metabolic network and compounds.  The reference global network from the 1842 genes was 
mapped obtaining three significant models (p < 0.005) using RSpider32. Model 1 has 662 initial genes, model 2 has 
724 initial genes and model 3 has 746 initial genes. The p-value indicates the probability for a random gene/pro-
tein list to have a maximal connected component of the same or larger size. This p-value is computed by Monte 
Carlo simulation as described by Antonov et al.32.

The expanded integrated metabolic network (model 3) (Fig. S4) allows the entrance of 299 (957 in total) genes 
in order to bring connections between initial genes. However, it incorporates 66 compounds that also acts as 
connectors. These compounds obtained from the integrated metabolic network are fully detailed in Table S17.

Discussion
The CS improves the detection and prioritization of pathogenic genes. In our study, 19,989 genes were analyzed 
and after prioritization analysis we obtained a top ranking of 1842 genes where the top 10 genes with highest 
ranking were TP53, ESR1, BRCA2, BRCA1, ERBB2, CHECK2, CCND1, AR, RAD51 and ATM; and where 137 
of 145 (94.5%) predefined pathogenic genes associated with BC were identified. CS is the method with highest 
identification of pathogenic genes in G1 and G2 datasets. Regarding both datasets, CS identified the 40.6% of 
G1 + G2 sets in the 1% and the 92.3% of G1 + G2 sets in the 10% of the final gene list compared to the second best 
method (Phenolyzer) that identifies the 31.6% of G1 + G2 sets in the 1% and the 74.2% of G1 + G2 sets in the 10% 
of the final gene list. Previous studies by Tejera et al. and Cruz-Monteagudo et al., have shown that CS in prioriti-
zation improves the detection of genes related with specific pathologies such as Parkinson’s and preeclampsia17,55. 
The importance of combining different prioritization strategies can remove noisy information and increase the 
relevance of gene-disease association17. Therefore, this study proves for the first time that CS improves the early 
enrichment ability of genes related with BC pathogenesis.

The BP from the Consensus genes allowed obtaining already expected information associated with BC. The 
most relevant BP with major biological meaning were: ERBB2 signaling pathway, whose overexpression can 
increase tyrosine kinase activities triggering down-stream pathways56. DNA synthesis involved in DNA repair, 
in which DNA lesions have been found to be repairable by proteins either under clinical trials for current drug 
targets, namely BRCA1 and PARP-142,57. Phosphatidylinositol-3-phosphate plays a key regulatory function in 
cell survival, proliferation, migration, angiogenesis and apoptosis58. The epidermal growth factor cellular stim-
ulus generates the overexpression of EGFR triggering poor clinical outcomes in BC. Finally, the major signaling 
pathways activated by EGFR receptors are mediated by PI3K, RAS/MAPK and JNK resulting in a plethora of 
biological functions44,59.

It is hard to establish a pathway ranking according to their implications in BC without further enrichment 
analysis. It is the main reason to combine the analysis of the PPi network. The String Database network with 
1484 nodes already comprises the 85.5% of predefined pathogenic genes. The sub-network containing only genes 
belonging to some communities have the 43% of predefined pathogenic genes. On the other hand, the average 
degree of the pathogenic genes (37.4) was statistically significant higher than non-pathogenic genes (18.1). That 
is, the connectivity degree could be associated with the pathogenicity in this network.
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TP53, AKT1, SRC, CREBBP, EP300, JUN, CTNNB1, RAC1, PIK3CA, EGFR, MAPK8, MAPK1, STAT3, ESR1, 
MAPK14, CCND1, GRB2, CDK2, FOS and CDKN1A are those genes with highest connectivity degree. The 95% 
of these genes (19/20) are present in at least one of the 14 most relevant communities. The minimal average rank-
ing, the highest average degree and the Euclidean distance for the identification of clusters using K-mean allowed 
to determine that the cluster 1 conformed by the 14 communities (46, 45, 47, 42, 44, 30, 37, 41, 43, 38, 48, 32, 5 
and 20) are more related with BC.

The CNA determined 84 genes present in the most relevant communities, of which, 12 were BC driver genes 
according to The Cancer Genome Atlas (TCGA) and the IntOGen web platform60. In addition, 35 were tier 1 in 
the Cancer Gene Census61, and 19 of these were cancer hallmarks according to COSMIC62,63, and Hanahan and 
Weinberg (Table S18)10,64. Oncogenes were ERBB2, CCND1, EGFR, PIK3CA, ERBB3, CDK4, MAPK1, ABL1, 
LCK and RAC1; tumor suppressor genes were ATM, CDH1, EP300, ATR and BLM; and genes with both features 
were TP53, ESR1, ERBB4 and CREBBP.

On the other hand, the top 10 statistically significantly mutated genes identified by MutSigCVv.1.4 across the 
BC samples (n = 1087) in the Pan-Cancer Atlas were PIK3CA (34.7%), TP53 (34.7%), CDH1 (13.3%), GATA3 
(12.8%), MAP3K1 (9.1%), PTEN (6.1%), RUNX1 (4.8%), NF1 (4.6%), MAP2K4 (4.4%) and ARID1A (4.3%)65,66. 
The CS identified the 80% and the CNA analyzed the 40% of these genes.

Regarding the pathway enrichment analysis (k-clique 9) using David Bioinformatics Resource28, the most 
significant BC signaling pathways for the most relevant communities were ERBB, prolactin, mTOR, p53, FOXO, 
HIF-1, VEGF, PI3K-AKT and MAPK signaling pathways.

The ERBB signaling pathway members form cell-surface receptors with extracellular domains yielding 
ligand-binding specificity67. Downstream signaling from these receptors proceeds via tyrosine phosphorylation 
mediating signal transduction events that control cell proliferation, migration and survival. However, aberrant 
ERBB activation in BC can increase transcriptional expression44. Genes of the most relevant communities that 
make up this pathway were MAPK1, MAPK8, ABL1, SRC, AKT1, PIK3CA, EGFR, ERBB3, EGF, ERBB2, CBL, 
GRB2, PLCG1, ERBB4 and JUN.

The prolactin signaling pathway and its downstream JAK2/STAT5 pathway are involved in the mam-
mary gland development68. Furthermore, prolactin and its receptor were found to play a permissive role in 
oncogene-induced mammary tumors69. Genes of the most relevant communities that make up this signaling 
pathway were MAPK1, FOS, NFKB1, ESR1, RELA, MAPK8, MAPK14, SRC, CCND1, AKT1, INS, STAT3, 
PIK3CA, GRB2 and IRF1.

The PI3K-AKT-mTOR pathway plays a significant role in proliferation and cell survival in BC70. The PI3K 
heterodimer (p85 and p110) phosphorylates phosphatidylinositol 4,5 biphosphate to phosphatidylinositol 3,4, 
4-triphosphate, which in turn leads to the phosphorylation of AKT, which has impact on cancer cell cycling, sur-
vival and growth45. In addition, mTOR is associated with cell metabolism and cancer cell growth32,45. Regarding 
antitumor efficacy, Woo et al., suggests that both AKT and mTOR inhibitors have greater antitumor activity in 
BC71. Genes of the most relevant communities that make up the mTOR signaling pathway were MAPK1, AKT1, 
INS, IGF1, PIK3CA and GRB2; and that make up the PI3K-AKT signaling pathway were MAPK1, NFKB1, 

Communities Genes
Average 
ConsenScorei

Average 
Rank

Average 
Degree N pathogenic

Pathogenic 
genes/genes HPT* (p-value)

46 CREBBP MAPK14 AKT1 SRC ESR1 JUN RAC3 CCND1 
NFKB1 RELA 0.939 147.4 138 4 0.400 0.007783988

45 AKT1 MMP9 BCL2 VEGFA JUN TP53 TGFB1 IL6 FGF2 
MMP2 0.924 181.8 181.8 7 0.700 3.25867E-06

47 MAPK14 CTNNB1 MAPK8 RAC1 SRC ABL1 MAPK1 JUN 
RAC3 STAT3 TP53 CCND1 FOS 0.899 240.62 45.62 3 0.231 0.098109212

42 AKT1 VEGFA JUN LEP TGFB1 IGF1 IL6 INS SERPINE1 0.887 269.89 101.3 6 0.667 2.72754E-05

44 CDH2 CTNNB1 AKT1 RAC1 SRC CDC42 CDH1 PIK3CA 
CCND1 0.885 275 141.11 4 0.444 0.00500697

30 RPA1 RPA3 CDK4 RAD51C ATM ATR DMC1 NBN MRE11 
RBBP8 H2AFX RAD51 0.862 328.83 42.67 5 0.417 0.002288344

37 CREBBP PPARA MED1 NCOA1 CARM1 NCOA6 YAP1 
CTGF WWTR1 NCOA2 0.862 330.1 60.6 0 0.000 N/A

41 MMP9 VEGFA JUN STAT3 CXCL8 IL6 TIMP1 MMP2 IL1B 0.853 352 80.2 5 0.556 0.000452371

43 CDH2 MAPK14 CTNNB1 MAPK8 RAC1 SRC CDC42 ABL1 
CCND1 0.849 365.56 124.67 2 0.222 0.182829173

38 PIK3CA EGF EGFR GRB2 ERBB2 ERBB3 ERBB4 CBL 
PLCG1 0.848 362.33 89.3 3 0.333 0.037259742

48 MAPK14 MAPK8 RAC1 SRC ABL1 MAPK1 LCK STAT3 
FYN 0.841 379.33 127.11 1 0.111 0.562833095

32 CDK2 RPA1 RPA3 CDK4 ATM DMC1 MLH1 MRE11 BLM 
TOP3A H2AFX RAD51 0.824 421.25 48.75 2 0.250 0.080438401

5 CREBBP SRA1 CITED2 PPARGC1A EP300 PPARA MED1 
NRIP1 NCOA1 0.8 423.2 76.8 0.0 0.000 N/A

20 CREBBP JUN TP53 ATF2 KAT2B SMARCB1 IRF1 NR3C1 
SMARCE1 HMGB1 ARID1A 0.8 398.7 85.4 1.0 0.091 0.636520998

Table 4.  Genes present in the most relevant communities in k-clique 9. *HPT: Hypergeometric probability test.
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RELA, FGF2, BCL2, RAC1, CCND1, AKT1, IGF1, INS, IL6, VEGFA, PIK3CA, GRB2, EGFR, EGF, CDK2, CDK4, 
TP53 and ATF2.

The p53 tumor suppressor holds distinction as the most frequently mutated gene in human cancer72. Acting as 
a transcription factor, p53 plays a critical role in growth-inhibition, angiogenesis, apoptosis and cell migration73. 
Genes of the most relevant communities that make up this pathway were CCND1, IGF1, SERPINE1, CDK2, 
CDK4, ATM, ATR and TP53.

FOXO transcription factors play a critical role in pathological processes in BC. Those transcription factors 
regulate phosphorylation, acetylation and ubiquitination74. Genes of the most relevant communities that make 
up this pathway were CREBBP, EP300, MAPK1, MAPK8, MAPK14, CCND1, TGFB1, AKT1, IGF2, INS, STAT3, 
IL6, PIK3CA, EGFR, EGF, GRB2, CDK2 and ATM.

Hypoxic conditions increase levels of HIF-1 signaling pathway in BC, inducing the expression of genes 
involved in angiogenesis, resistance to oxidative stress, cell proliferation, apoptosis and metastasis75. Genes of 
the most relevant communities that make up this pathway were CREBBP, EP300, MAPK1, NFKB1, RELA, BCL2, 
AKT1, SERPINE1, IFG1, INS, STAT3, VEGFA, IL6, TIMP1, PIK3CA, PLCG1, EGFR, EGF and ERBB2.

The VEGF signaling pathway not only contributes to angiogenesis and vascular permeability but also contrib-
utes in BC tumorigenesis76. Genes of the most relevant communities that make up this pathway were MAPK1, 
RAC3, MAPK14, RAC1, SRC, CDC42, AKT1, VEGFA, PIK3CA and PLCCG1.

MAPK signaling pathway is involved in cell growth, proliferation, differentiation, migration, and apopto-
sis77–79. Genes of the most relevant communities that make up this pathway were MAPK1, FOS, RAC3, NFKB1, 
RELA, FGF2, MAPK8, MAPK14, RAC1, CDC42, TGFB1, AKT1, IGF1, INS, VEGFA, EGFR, EGF, GRB2, TP53, 
JUN and ATF2.

According to Li et al. and Ivanov et al.37,38, the integration of cancer genes into networks offers opportunities to 
reveal PPi with therapeutic significance. The PPi mediates the regulation of oncogenic signals that are essential to 
cellular proliferation and survival, and thus represent potential targets for drug discovery. However, only a small 
portion of the PPi landscape has been described37. The OncoPPi BC network was conformed by 94 genes and 170 
PPi experimentally analyzed in BC cell lines37,38. We carried out the validation of our String Database and our 
BC integrated network by comparing the degree centrality of both networks with the OncoPPi BC network37,38. 

Figure 2.  Communality network analysis for k-clique 9. Red nodes represent genes that are part of several 
communities. The other colors correspond with the most relevant communities obtained.
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The degree centrality allowed to establish a significant correlation (p < 0.001) between the OncoPPi BC network 
and genes of this network present in our String Database. Similarly, the degree centrality allowed to establish a 
significant correlation (p < 0.05) between the OncoPPi BC network and our BC integrated network. Finally, the 
sub-network that shares 62 breast cancer-associated PPi between the OncoPPi BC network and our BC inte-
grated network is shown in Fig. 4 and Table S12. The 20 genes of the most relevant communities present in this 
sub-network were CBL, NFKB1, STAT3, CTNNB1, INS, MAPK8, MAPK14, FYN, JUN, PIK3CA, AKT1, FOS, 
RELA, TP53, RAC1, CDC42, CDK4, CCND1, SRC and ERBB3.

The CS was effective in the prioritization of genes involved in the expression of BC intrinsic molecular sub-
types. The CS identified 31 of 50 (62%) PAM50 genes. The best average ranking corresponded to HER2-enriched 
(98), followed by luminal B (106.2), normal-like (624.8), luminal A (637.1) and basal-like (738.6). The correlation 
between average rankings and intrinsic molecular subtypes could be observed in the heatmap dendogram of the 
centroid models of subtype of Parker et al.3. On the other side, our String network allowed to identify 26 of 50 
(52%) PAM50 genes. Of these, 8 were tier 1 in the Cancer Gene Census and 7 were cancer hallmarks61–63.

Figure 3.  Circular chord diagram of the BC integrated network. PPi among the most relevant communities 
(k-clique 9), pathogenic genes (G1 + G2), PAM50 genes and genes of the most relevant KEGG signaling 
pathways in BC.
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Table S11 details the PPi between PAM50 and genes from the most relevant communities. These interactions 
could be a guide to enrich future experimental studies related to find breast cancer-focused PPi per each molec-
ular subtype. Finally, the circular chord diagram of the BC integrated network showed that PAM50 was most 
associated with the PI3K-AKT, ERBB, HIF-1, p53 and MAPK signaling pathways.

According to McDonald et al., DRIVE is the larger-scale gene knockdown experiment to discover functional 
gene requirements across 398 cancer cell lines and 24-25 BC cell lines39. The sensitivity score analysis was per-
formed on the genes that make up the Consensus, communities, BC integrated network, pathogenic genes and 
OncoPPi BC network (Fig. 5a,b). In all these groups, a higher percentage of genes with significant sensitivity 
score (≤−3) could be observed in BC cell lines than in all cancer cell lines. This means that the CS and CNA in 
BC pathogenesis have been effective and corroborated by DRIVE. Hence, the 4.15% (54 genes) of the Consensus 
has significant sensitivity score in >50% of BC cell lines and 6.33% (5 genes) of genes from the most relevant 
communities has significant sensitivity score in >50% of BC cell lines.

Figure 4.  Significant correlation of degree centrality between the OncoPPi BC network and our BC integrated 
network (p < 0.05), (r2 = 0.23688). This sub-network is conformed by genes of the most relevant communities 
(k-clique 9), pathogenic genes (G1 + G2), PAM50 genes, and genes of the ERBB, PI3K-AKT, FOXO, and HIF- 
signaling pathways in BC.
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CCND1, CDC42, RAD51, RPA1 and YAP1 were genes with significant sensitivity score in >50% of BC cell 
lines present not only in the communities but also in the Consensus, BC integrated network, pathogenic genes 
and OncoPPi BC network (Fig. 5c)37,38. Regarding those genes, high expression of the CCND1 oncogene is asso-
ciated to high proliferation rate and increased risk of mortality in ER-positive women80. CDC42 is a protein 
kinase that controls cell migration and progression through G1 to S phase for DNA synthesis81. RAD51 is a key 
player in DNA double-strand break repair. Lack of RAD51 nuclear expression is associated with poor prognostic 
parameters in invasive BC82. RPA1 is upregulated in BC tumors and plays an essential role in DNA replication 
and repair83. Finally, YAP1, a major downstream effector of the Hippo pathway, has an important role in tumor 
growth. Elevated oncogenic activity of YAP1 contributes to BC cell survival84.

The expanded integrated metabolic network (Model 3) (Fig. S4) incorporates 66 compounds that act as 
connectors according to the Human Metabolome Database85, giving us more information related to pharma-
cogenomics86. The metabolic species with the highest connectivity in our network were biophosphate, deoxy-
guanosine diphosphate (dGDP), cyclic GMP (cGMP), phosphatidate, glutathione (GSH), hydrogen carbonate 
(HCO3-), lecithin and benzo[a]pyrene-4,5-oxide. Biophosphate participates in phosphatidylinositol biosynthesis. 
According to Clarke et al., phosphatidylinositol is critical for intracellular signaling and anchoring of carbohy-
drates and proteins to outer cellular membranes87. dGDP is involved in pyrimidine and purine metabolisms. 
cGMP acts on the purine metabolism. According to Fajardo et al., altered cGMP signaling has been observed in 

Figure 5.  Oncogenomics validation with the DRIVE project. (a) Percentage of essential, active and inert genes 
in all cancer cell lines. (b) Percentage of genes with sensitivity score ≤−3 in >50%, 1–40%, and 0% of BC cell 
lines. (c) Venn diagram of genes with significant sensitivity score in >50% of BC cell lines.
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BC88. GSH and benzo[a]pyrene-4,5-oxide are involved in glutathione metabolism. According to Lien et al., onco-
genic PI3K-AKT stimulates glutathione biosynthesis in mammary human cells by activating Nrf2 to upregulate 
the GSH biosynthesis genes89. HCO3- is involved in propanoate and pyruvate metabolisms. According to Zhu 
et al., the dysfunction of propanoate and pyruvate metabolisms can trigger the BC progression90. Finally, phos-
phatidate and lecithin are involved in the glycerophospholipid metabolism. According to Huang and Freter, the 
glycerophospholipids are the main component of biological membranes91.

The contribution of each individual approach on the whole consensus was analyzed according to the patho-
genic genes G1 + G2 as shown in Fig. S5. The CS was evaluated between several prioritization strategies guiding 
us to genes with pathogenic involvement in BC. Subsequently, the PPi network and the communality network 
analyses allowed us to obtain a group of genes increasingly associated with BC. For instance, 0.074 was the ratio 
between the 145 pathogenic genes (G1 + G2) and the CS genes (n = 1842), 0.083 was the ratio between the 124 
pathogenic genes and the PPi network (n = 1484), 0.127 was the ratio between the 63 pathogenic genes and all 
communities (n = 496), and 0.262 was the ratio between the 22 pathogenic genes with the 14 most relevant com-
munities (n = 84 genes). On the other hand, 0.235 was the ratio between the 22 pathogenic genes and the OncoPPi 
BC network (n = 51), 0.116 was the ratio between the 45 pathogenic genes and the active genes (n = 387) of the 
DRIVE BC cell lines, lastly, 0.093 was the ratio between the 5 pathogenic genes and the essential genes (n = 54) of 
the DRIVE BC cell lines. The oncogenomics validations showed that BC is a complex disease whose development 
and progression is due in large part to the alteration of genes, metabolites and pathways analyzed in this research 
and leading us towards reasonable discussion in agreement with our scientific knowledge of the disease. However, 
the proposed strategies need to be further improved in several topics: 1) the inclusion of other network processing 
methods to reduce the gene lost, 2) the inclusion of prioritization algorithms based on learning strategies, and 3) 
the differentiation among BC intrinsic molecular subtypes by bioinformatics tools. Finally, overlapping the bar-
riers previously mentioned we would improve the gene prioritization strategy and the validation of the predicted 
subtype-specific drug targets such as Zaman et al. study92.

Data Availability Statement
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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