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Post-transcriptional addition of poly(A) tails to the 30 end of RNA is one of

the fundamental events controlling the functionality and fate of RNA in all

kingdoms of life. Although an enzyme with poly(A)-adding activity was dis-

covered in Escherichia coli more than 50 years ago, its existence and role in

prokaryotic RNA metabolism were neglected for many years. As a result,

it was not until 1992 that E. coli poly(A) polymerase I was purified to hom-

ogeneity and its gene was finally identified. Further work revealed that,

similar to its role in surveillance of aberrant nuclear RNAs of eukaryotes,

the addition of poly(A) tails often destabilizes prokaryotic RNAs and their

decay intermediates, thus facilitating RNA turnover. Moreover, numerous

studies carried out over the last three decades have shown that polyadenyla-

tion greatly contributes to the control of prokaryotic gene expression by

affecting the steady-state level of diverse protein-coding and non-coding

transcripts including antisense RNAs involved in plasmid copy number con-

trol, expression of toxin–antitoxin systems and bacteriophage development.

Here, we review the main findings related to the discovery of polyadenylation

in prokaryotes, isolation, and characterization and regulation of bacterial

poly(A)-adding activities, and discuss the impact of polyadenylation on

prokaryotic mRNA metabolism and gene expression.

This article is part of the theme issue ‘50 and 30 modifications controlling

RNA degradation’.
1. Introduction
Polyadenylation refers to an enzymatic process carried out by poly(A) polymerase

to add adenine residues to the 30 extremity of RNAs. Following its discovery,

various poly(A) polymerases and their functional homologues were found in a

variety of pro- and eukaryotic cells and were partially purified and characterized

(reviewed in [1]). These findings and the detection of poly(A) sequences in

phylogenetically distant organisms [2] suggested the widespread presence of

polyadenylation in pro- and eukaryotic organisms. The poly(A) tails at the 30

end of mRNA were considered for a long time a characteristic feature of eukary-

otic mRNAs (except those encoding metazoan replication-dependent histone

mRNAs) and were known to stabilize eukaryotic mRNAs and promote their

translation. By contrast, polyadenylation in prokaryotes gained little attention

and was neglected until the pioneering work of Nilima Sarkar published in

1992 [3,4].

The polyadenylation story in prokaryotes began in 1962 [5,6], with the

partial purification and characterization of Escherichia coli poly(A) polymerase

I (PAP I). In the following years, polyadenylated RNAs were detected in

Caulobacter crescentus and E. coli and later in Bacillus brevis, Bacillus subtilis,

Rhodopseudomonas capsulata and Rhodospirillum rubrum (reviewed in [7,8]). By

analysing the length of poly(A) tracts in prokaryotic RNAs bound to oligo(dT)

cellulose, it was found that the median length of poly(A) stretches was between
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14 and 60 nucleotides and that only a small fraction of total

RNA was polyadenylated. Further progress in the study of

polyadenylation was achieved after the systematic analysis

of poly(A) tracts of E. coli trpA and lpp transcripts [3,9,10].

Then the E. coli pcnB gene, a non-essential gene previously

reported to control ColE1 plasmid copy number [11–14],

was identified as the gene encoding poly(A) polymerase I

[3,15], providing the first evidence of the biological function

of polyadenylation in E. coli. Namely, it was shown that poly-

adenylation promotes the rapid turnover of RNAI, a small

antisense RNA complementary to RNAII, which, in turn,

serves as a primer for DNA polymerase during replication

of ColE1-type plasmids [15–17]. Later, the elucidation of

the degradation pathways of both non-coding and protein-

coding RNAs demonstrated the involvement of E. coli
poly(A) polymerase I in the turnover of several RNAs, thus

reinforcing the idea that polyadenylation often destabilizes

bacterial transcripts and their decay intermediates. The desta-

bilizing role of polyadenylation is not restricted to bacteria.

It was later demonstrated in Archaea and chloroplasts, and

in mitochondria and nuclei of diverse eukaryotes including

yeasts, plants and humans [18–25].
2. Escherichia coli poly(A) polymerase I and
functionally related enzymes able to carry out
poly(A) addition in bacteria

A few years prior to the identification of the biological func-

tion of the E. coli pcnB gene, it was noted that the product of

this gene shares a high sequence similarity with tRNA

nucleotidyltransferase [14], an enzyme that catalyses the

addition of A and C residues to incomplete CCA termini of

tRNAs [26]. Both enzymes are members of the class II polym-

erase beta-superfamily of nucleotidyltransferases [27] and

poly(A) polymerase I, upon its overexpression, can partially

compensate for the absence of tRNA nucleotidyltransferase

by adding (although with a lower efficiency) a 3’-terminal

CCA sequence to defective tRNAs in E. coli [28]. Moreover,

it was demonstrated that the high sequence similarity of

these enzymes opens up the possibility to swap amino

acids within the evolutionarily conserved N-terminal cata-

lytic domain and to generate recombinant polypeptides

with altered specificities [29].

The difficulty in distinguishing poly(A) polymerases from

other closely related enzymes makes it challenging to identify

poly(A) polymerase genes in other bacteria, including

Gram-positive species. However, additional genetic tools

and functional assays have been used to assure the enzyme’s

identity. For instance, among three candidates tested for the

role of poly(A) polymerase in Streptomyces coelicolor, only

polynucleotide phosphorylase (PNPase) was found to be

responsible for RNA 30-tail synthesis in vivo [30]. PNPase,

known for its 30 –50 degradative activity of RNA, also

possesses a 3’-terminal oligonucleotide polymerase activity

at low inorganic phosphate concentrations. Namely, the

enzyme is able to add A, C and U residues to an RNA chain

in E. coli in the absence of PAP I [31]. Attempts to identify a

poly(A)-adding enzyme in another Gram-positive bacterium,

B. subtilis [32], showed that PNPase was not able to carry out

polyadenylation of RNA in vivo and also did not identify

any other enzyme(s) possessing a poly(A)-adding activity.
Therefore, it was proposed that polyadenylation in B. subtilis
was likely performed by a still unknown enzyme [30,32].
3. Biochemical properties of Escherichia coli
poly(A) polymerase I

PAP I is a monomer of approximately 53 kDa. The enzyme

requires divalent metal ions (i.e. Mg2þ or Mn2þ) for activity

and it uses ATP as a substrate to add adenosine residues at

the 30 end of RNA molecules. Moreover, in vitro PAP I prefers

to carry out polyadenylation of non-structured RNAs and its

activity is inhibited by 30-terminal stem–loop structures [33].

Although CTP can also be used by PAP I, the efficiency of

its incorporation is only 5% of that observed for ATP

[33,34]. These properties may explain why Cs are occasion-

ally incorporated in poly(A) tails [35]. In vivo poly(A) tails

were detected at the 30 ends of many (but not all) RNA,

including primary transcripts, processed RNAs and inter-

mediate products of exonucleolytic degradation [36–39].

However, folding predictions and searches for conserved

motifs potentially present in polyadenylated RNA could

not reveal any consensus sequence or structure that could

serve as a signal for PAP I to begin poly(A) addition [37].

Instead, in vitro studies suggested that PAP I activity is con-

trolled by more general features of RNA. Namely, it was

found that unpaired 50 and 30 termini, as well as the presence

of 50-monophosphate in substrate RNAs, could greatly

increase the rate of poly(A) addition [34,40]. These findings

are consistent with the well-documented role of polyadenyl-

ation in accelerating the decay of intermediate products of

RNA degradation that are produced in the initial steps of

RNA decay, i.e. after the removal of 50-diphosphate by the

combined action of RppH and an unknown enzyme [41]

followed by the initial RNase E cleavage (figure 1a) or after

‘direct entry cleavages’ made by RNase E or RNase III

(figure 1b) [43]. As the resulting decay intermediates carry

50-monophosphate groups and likely possess unstructured

50 and 30 termini, they are further targeted for polyadenylation

and hence rapid turnover (figure 1c).
4. Regulation of poly(A) polymerase I level
and activity

The intracellular level of E. coli PAP I is usually low, as its

overproduction is detrimental to cell growth [13,44]. Previous

work has shown that an increase in the abundance of this

enzyme beyond its normal level (e.g. by plasmid-dependent

overexpression) leads to polyadenylation of mature tRNA.

This results in a dramatic decrease in the level of functional

tRNAs and a concomitant inhibition of translation, ultimately

leading to cell death [45].

The tight control of PAP I production is exerted at the

transcriptional and post-transcriptional levels. Transcription

of pcnB mRNA can be initiated from five distinct promoters

(figure 2a; [47]). The activities of at least two of them are in-

versely dependent on the growth rate, which is manifested by

an increase in the abundance of PAP I and higher levels of

RNA polyadenylation observed in slowly growing bacteria

[48,49]. The intricate regulation of pcnB transcription in E.
coli was shown to be dependent on two sigma factors, s70

and sS, responsible for promoter recognition by RNA
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Figure 1. RNA turnover in E. coli and its facilitation by polyadenylation. (a) The principal pathway for RNA turnover in E. coli. RNA decay begins with pyrophosphate
removal by the combined action of RppH and an unknown enzyme [41], followed by endonucleolytic cleavage(s) made by the 50-monophosphate-dependent endor-
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polymerase, and on ppGpp and DksA, two effectors of the

stringent response produced in response to amino acid star-

vation [46]. Moreover, transcriptional control of pcnB
expression in other bacteria seems to also involve additional

transcription factors [50]. The use of the non-canonical

initiation codon AUU to initiate the translation of pcnB may

be another way to limit the availability of PAP I. Moreover,

there are indications that PAP I activity could potentially be

regulated post-translationally. It was reported that a PAP I

variant, with a C-terminal His tag, can be phosphorylated

both in vivo and in vitro and that this modification impairs

its activity [48]. However, it remains unknown whether phos-

phorylation of the untagged enzyme occurs in vivo or in vitro
and can likewise impact PAP I activity.

Apart from the regulation of pcnB expression, polyadeny-

lation can be controlled by the RNA chaperone Hfq. The latter

was found to bind to poly(A) tails [34] and stimulate their

elongation in vitro by increasing the processivity of PAP I

(figure 2b; [51]). Moreover, inactivation of Hfq affects

recognition and polyadenylation of transcripts terminated

by Rho-independent terminators. For instance, the average

length, occurrence of polyadenylated transcripts and

percentage of poly(A) tails located at the 30 end of the rpsO
Rho-independent transcription terminator were considerably

higher in the wild-type strain than in the hfq mutants [51,52].

Therefore, it is possible that oligo(A) tails less than 10 nt

in length may be too short to form stable complexes with

Hfq, but seem to be long enough to be used by 30 –50
exoribonucleases which carry out the degradation of

structured RNAs [53]. When the tails are longer, Hfq binds

tightly to these oligo(A) sequences and may protect poly-

adenylated RNA from RNase II and PNPase-mediated decay

as shown in vitro (figure 2b [54]).
5. Poly(A)-dependent mechanisms and their role
in RNA metabolism and gene expression

An increasing number of studies indicate that polyadenyla-

tion is broadly used by bacteria to control RNA metabolism

(mRNA turnover, stable RNA surveillance and recycling of

small RNAs), thereby regulating gene expression at the

post-transcriptional level.

(a) Effects of polyadenylation on mRNA and stable
RNA metabolism

Polyadenylation of prokaryotic transcripts is best known for

its ancillary role in RNA turnover. Although the rate-limiting

step in the degradation of prokaryotic mRNA usually

involves an endoribonucleolytic cleavage at the 50 end of

the transcript subsequently resulting in its functional inacti-

vation (figure 1a), the remaining steps that are responsible

for further fragmentation of the primary cleavage products

and their ultimate conversion to nucleotides often involve

the combined action of endo- (RNase E/G, RNase III,
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RNase Y or RNase J1/J2) and exonucleases (e.g. PNPase,

RNase II, RNase R and oligoribonuclease) [55]. Moreover,

the three major exonucleases (i.e. PNPase, RNase II and

RNase R) were shown to play different roles in the PAP

I-dependent pathway in E. coli (figure 1c). In contrast to

PNPase and RNase R, which initiate and efficiently degrade

polyadenylated structured RNAs [56–60], RNase II appears

to play a protective role. RNase II is unable to degrade struc-

tured RNAs, but because it can eliminate poly(A) tails from

polyadenylated decay intermediates, it thereby inhibits their

exonucleolytic degradation by PNPase and RNase R [34,61].

In addition to the above mechanism, polyadenylated primary

transcripts and their decay intermediates can also be stabil-

ized by Hfq (see above), which binds to their poly(A) tails

and thus protects them from exonucleolytic decay [54].

The efficiency of mRNA turnover is often regulated by

additional cis- and trans-acting factors differentially affecting

the susceptibility of transcripts to the components of the

translation apparatus or the RNA decay machine (reviewed

in [62]). In vivo studies have shown that stable RNA

structures (e.g. transcriptional terminators or repetitive extra-

genic palindromic (REP) sequences [63,64]) at the 30 end of

decay intermediates or processed transcripts [35,36,65] can

confer resistance to degradation by 30 –50 exonucleases and

therefore can protect the adjacent upstream regions from

exonucleolytic decay in vivo. Analysis of this resistance mech-

anism in vitro has revealed that E. coli can employ at least

two different strategies to overcome the stabilizing effect of

secondary structures.

The first one is associated with the formation of the E. coli
degradosome, a multienzyme ribonucleolytic complex,

whose major components include RNase E, PNPase, the

RNA helicase B (RhlB) and enolase [66,67]. It has been

shown that the interaction of RhlB and PNPase in the context

of the degradosome enables their functional cooperation in

the degradation of structured RNAs [67,68]. Namely, the
RNA-unwinding activity of RhlB partly unfolds structured

RNAs, yielding single-stranded 30 ends, thereby facilitating

30 –50 degradation by exonucleases.

An alternative mechanism involves the action of poly(A)

polymerase I (figure 1b). PAP I adds poly(A) tails, thus

providing a toe-hold for 30 –50 exoribonucleases unable to

bind in the absence of such single-stranded stretches of nucleo-

tides downstream of stable stem–loop structures. However,

once exonucleases become attached to free 30 ends, they can

progressively digest structured RNAs [42,68,69]. As the

processivity of exonucleases such as PNPase on highly

structured RNA is low, they cannot finish digestion of

RNA during a single round owing to their dissociation from

substrates [42]. Nevertheless, consecutive cycles of polyadeny-

lation and exonucleolytic degradation are believed to ensure

the complete degradation to mononucleotides (figure 1c
[42]). In principle, the physical interaction of PAP I and the

degradosome detected in vivo [70] suggests that E. coli can

likely orchestrate mRNA turnover by coordinating the action

of the degradosome- and poly(A)-dependent pathways.

Although polyadenylation of stable RNA precursors

in vivo was discovered a long time ago, its biological signifi-

cance remains largely unknown, in particular for 5S and 23S

RNAs [71,72]. As to the contribution of polyadenylation to

tRNA metabolism, it is proposed to be linked to the role of

PAP I in a quality-control mechanism. The latter helps to

eliminate defective tRNAs by targeting them for 30 –50 exonu-

cleolytic decay [37,73], apparently independent of an

interaction between PAP I and the degradosome.

(b) Polyadenylation and its role in the regulation
of gene expression

Apart from its contribution to recycling of structured RNA

decay intermediates and surveillance of tRNA, polyadenyla-

tion also plays an important role in the regulation of gene



Table 1. Role of polyadenylation in global RNA turnover [39]. Indicated are
the numbers of genes that were up- or downregulated in the pcnB mutant
when compared with the wild-type (wt) strain. Their functional
classification is provided according to the Gene Ontology database. The first
number represents the number of regulated transcripts with log2 fold
change (log2FC) greater than 2, whereas the second one corresponds to the
transcripts with log2FC between 1.5 and 2.

functional categories

pcnB versus wt

up down

membrane proteins 7/7 9/12

prophage proteins 1/4 2/0

RNA metabolism 2/2 1

ammonium metabolism 3/1 1/4

motility (flagella proteins) 0 11/15

cell adhesion (fimbriae) 1/5 0

catabolism 0 2/5

miscellaneous 10/22 9/10
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expression. The regulatory function of polyadenylation can

affect the steady-state levels of mRNAs available for trans-

lation either positively or negatively (figure 3 and table 1)

[37,39,74–77].

Besides its apparently direct role in the regulation of mRNA

abundance, polyadenylation can also indirectly influence gene

expression controlled by numerous cis- and trans-encoded

small RNAs. Previous studies have shown that the addition

of poly(A) tails has a destabilizing effect on several cis-encoded

antisense RNAs known for their role in the control of plasmid

replication (e.g. RNAI [17,56] and CopA [78] controlling the

copy number of ColE1-type and R1 plasmids, respectively),

bacteriophage lambda development (Oop RNA [79]), bacterio-

phage P4 immunity (CI RNA [80]) and expression of Type I

toxin–antitoxin systems (Sok, [81], and others [39]).

Likewise, polyadenylation is known to lead to destabiliza-

tion of trans-encoded sRNAs. Recent studies have shown that

polyadenylation destabilizes the small RNA GlmY involved

in the GlmZ-dependent control of glmS expression [82,83].

Besides controlling the level of GlmY, polyadenylation also

affects the steady-state levels of RyjA, RybB, SroH [84] and

many other sRNAs [39] that become more abundant in

pcnB mutant strains. Nevertheless, the actual impact of

poly(A) tails on the biological functions of most of these

riboregulators remains unknown and merits further analysis.

(c) Perspectives
Despite the significant progress recently achieved in revealing

the multifaceted role of polyadenylation in the regulation of

prokaryotic RNA metabolism and gene expression, there

are still many open questions that have to be addressed

in future.

In particular, more work needs to be done to characterize

the positive effect of polyadenylation on prokaryotic gene

expression. Namely, in contrast to the well-known examples,

in which the addition of poly(A) tails to the 30 end of prokar-

yotic RNAs or their decay intermediates promotes RNA

turnover and reduces the level of functional RNA, the pres-

ence of an active poly(A) polymerase in certain cases can

enhance the steady-state transcript level (e.g. those expressed

from the E. coli flagellar operon [76] and others [39]). The

mechanisms, direct or indirect, by which polyadenylation

can increase RNA levels and whether this also enhances

gene expression are poorly understood and warrant further

analysis.

In addition, future studies should reveal more details

regarding the complex regulatory networks used by E. coli
and other bacteria to coordinate and modulate the action of

poly(A) polymerase I and its interaction with known (e.g.

the degradosome and Hfq) or still unknown interacting part-

ners to exert post-transcriptional control of gene expression.

Moreover, although the pcnB gene per se is not essential

for sustaining E. coli survival and growth under laboratory
conditions, the gene might play a more critical role in cell

survival in adverse environments. Therefore, it is of particu-

lar interest to compare the regulation of PAP I expression

and activity along with its impact on gene expression under

normal and various stress conditions. This might yield

particularly interesting results by testing the effect of major

stress factors (such as limitation of iron and nutrients, oxi-

dative stress, etc.) faced by bacterial pathogens in their hosts.

Finally, as the main findings regarding the role of poly-

adenylation in gene expression and cell physiology were

obtained by using E. coli as a model organism, there is little

known about the actual mechanisms controlled by poly-

adenylation in other bacteria. In this regard, the recently

reported function of the Pantoea agglomerans YS19 pcnB
gene in the indole regulatory pathway [85] found to be

involved in host–pathogen interactions is intriguing and

clearly demonstrates the merits of using phylogenetically

distant organisms to discover new biological functions.
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