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soldier crabs which can be based on the inference can
lead to the identification of a drastic phase shift-like
transition of gathering and dispersing.
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1. Introduction
As Ilya Prigogine proposed the notion of dissipative structure [1], biological structures as well
as the dynamics of population and collective motion drew an extensive and intense interest
for studies inspired by this approach. One of the early pioneers in uncovering the dynamical
characteristics of collective motion was one of his first students, Jean-Louis Deneubourg. His
seminal papers (see, for example, [2] and references within) viewed collective decision-making
in ants as a bifurcation process. Subsequently, he and his co-workers opened a wide area of
investigations uncovering the dynamical basis of self-organization in collective dynamics [3].
The influence of fluctuations and their complex interplay with structure and function, as it was
first pointed out in [1], has ever-since been a far reaching frontier of the research in dynamical
systems, including dynamical systems comprising many interacting elements, or ‘agents’. The
term ‘agent’, as it has now been established in the literature, can be any entity which is endowed
by specific rules of motion; it can mean a particle, a bacterium, a cell, an animal or even
a robot [4,5].

Decision-making, in biology, the motion it induces and the resulting aggregation patterns
brings together collective motion of animals (agents) and the dynamical interplay between
individuals and groups. At the same time, it brings together nonlinear dynamics, statistical
mechanics, probabilistic methods and the physics of complex systems under a new paradigmatic
thinking. This approach to complex systems, to which this work also subscribes, was indeed
inspired by the original ideas of Prigogine, Deneubourg and their co-workers. Phase-transitions,
dissipative structures and their dynamical bifurcations underlying collective motion are now
established as a widespread area of study. For a short statement article, one might refer to [6],
where the multi- and inter-disciplinary fashion of the subject is highlighted.

While the swarm movements mentioned herein can be expressed as a nonlinear dynamical
system coupled with perturbation, real swarm movements can be beyond a sole, specifically
deterministic, rule because the swarm movement can rapidly and drastically change its
behaviour. It looks as if the swarm movement sometimes follows a specific rule, but sometimes
it does not follow the same rule at all. Therefore, it becomes evident and realistic that one has to
extend the ideas coming from dissipative structures to such a dynamical system. We hope our
work contributes to this direction, using real swarm data and ideas coming also from probability
theory that provide a link with this kind of complex dynamics, especially their phase-like
transitions.

Does a swarm, flock or school have one sociality and/or one unity? This question is being
addressed by modelling collective decision-making using computer models [7–9], including
BOIDS [10] and Self-Propelling Particle [11]. Recent developments in image analysis have made it
possible to obtain kinetic data on how real organisms move [12,13], revealing internal dynamical
structures within a group such as topological distance [14], scale-free correlation [15] and inherent
noise [16]. It has also been suggested that inherent turbulence could play an essential role in
collective motion [17–20]. Thus, the problem still remains on the relationship between sociality
and inherent noise.

A swarm, flock and school can be typically explained by a computer model based on
local neighbourhood interactions coupled with external noise [21–23]. In this sense, sociality
implemented by local neighbourhood interaction could conflict with noise which can be
compared to the freedom of individuals in a society. It seems to be difficult to coexist sociality
with freedom because freedom or noise could come outside of the social rule.

We have previously shown that sociality and freedom of individuals could coexist in animal
groups under the mechanism of mutual anticipation and asynchronous updating. We have also
shown how inherent noise can actively contribute to the establishment and maintenance of a
robust swarm acting as one unity by comparing a computer model based on an organism’s
mutual anticipation with kinetic data from soldier crabs [24–28] and fish schools [29]. Both in
the model and real data, a swarm can be characterized as having high density and a wide variety
of polarization. It shows coexistence of sociality and freedom. Mutual anticipation could explain
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temporal deviation of social rule and demonstrates that a swarm of soldier crabs can enter and
cross the water while they never enter the water under normal conditions [18,20,21]. Both our
model and kinetic data reveal the scale-free correlation of which correlation function is linearly
decays independently on the swarm size [24,30]. It strongly suggests that a swarm acts as one
body. The model should have wide applicability to biological collective phenomena in general.

The next question arises how mutual anticipation can be implemented in the perspective
of animals. In our previous model, it is assumed that an animal can anticipate swarm mates’
subsequent moves with each other. It suggests that an animal can infer the swarm mates’
subsequent moves and behaviours. One of the most hopeful candidates for the mechanism of
anticipation is Bayesian inference [31–33]. Since future moves of other individuals cannot be
observed from each animal, future moves can be estimated with probability [34,35]. The classical
probability theory, however, contributes less efficiently to an animal’s decision-making because
possibilities of events are too large to compute probability. Bayesian inference can, however,
reduce redundant possibilities which have nothing to do with actual experiences. That is why
Bayesian inference is regarded as an intrinsic mechanism of cognition and/or perception not only
for human brain [36–39] but also for various animals [40–46].

A shortcoming of Bayesian inference was recently pointed out [47,48]. In Bayesian inference,
there is a set of hypotheses in advance, and the probability of the distribution of hypotheses
is perpetually changed. The agent employed to Bayesian inference can make a decision by
using the probability of hypotheses. Although the probability of hypotheses can be changed in
Bayesian inference, a set of hypotheses cannot be changed. Since a set of hypotheses is prepared
in advance and is fixed, the agent cannot deal with unexpected events which are not prepared
in the hypotheses [49,50]. If another external stimulus invades the inference process in keeping
on inference, a set of hypotheses could be influenced by the stimulus and could be modified
qualitatively [47,51]. Therefore, due to the external and internal reason, a set of hypotheses is
destined to be changed.

We recently introduced an idea in which a set of hypotheses is perpetually changed in
Bayesian inference into the process of Bayesian inference, and call such a process inverse Bayesian
inference [48–50,52]. Bayesian inference can be compared to an exploitation process, whereas the
inverse Bayesian process can be compared to an exploration process. A pair of exploitation and
exploration processes could contribute to an essential property of animal behaviour such as the
Lévy walk [53]. A pair of Bayesian and inverse Bayesian (BIB) inference can contribute to animals’
inference process under open environments.

In this paper, first we show how inverse Bayesian inference can contribute to Bayesian
inference. Secondly, we show that our model animals, soldier crabs, could employ BIB inference.
Finally, through simulating studies of the model based on BIB inference, we show that phase
transition-like temporal change of polarization found in the swarm of soldier crabs could be
explained by switching of approaching or avoiding a swarm resulting from BIB inference.

2. Bayesian and inverse Bayesian inference
Bayesian inference is now interpreted as an essential cognitive mechanism to an external stimulus.
Evidence of Bayesian (B) inference is found not only in human cognition but also in various
animals. An agent employing B-inference has multiple hypotheses and changes the distribution
of probability of hypotheses dependent on empirical data. The probabilities of useless hypotheses
are decreased dependent on the agent’s experience, and those of hypotheses consistent with
the agent’s experience are increased and to be used for decision-making. If the environment is
fixed, there can be one optimal solution. An agent employing B-inference can immediately reach
the optimal solution. Because the natural environment, however, changes perpetually, an agent
must prepare various hypotheses to cope with unknown conditions. Nevertheless, B-inference
has only finite numbers of hypotheses which are invariant through inference. Inverse Bayesian
inference is, therefore, added to B-inference to change the hypotheses dependent on empirical
conditions.
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First, we sketch B-inference in the following. The agent has a hypothesis set, {h0, h1, . . . , hm−1}
and identifies the state of the environment as data in a dataset, {d0, d1, . . . , dn−1}. The probability
of hypothesis, h, data, d, and conditional probability of hypothesis, h, under given data, d,
are expressed as P(h), P(d) and P(h|d), respectively. Each hypothesis, h, is defined by the
likelihood of which the distribution of the probability of data is determined, such as P(d|h), the
conditional probability, d, of data under the hypothesis, h. Because of the definition of conditional
probability, P(h|d) = P(h, d)/P(d) and P(d|h) = P(d, h)/P(h), and P(h, d) = P(d, h), one can obtain
P(h|d)P(d) = P(d|h)P(h). As P(d) =ΣkPt(d|hk),

Pt(h|d) = Pt(d|h)Pt(h)∑
kPt(d|hk)Pt(hk)

. (2.1)

The superscript of t in Pt(hk) represents the probability of hk at tth step, because the probability
is changed step-wisely. In B-inference, the probability of hypothesis under a given data, P(h|d),
is interpreted as ‘a posteriori probability’ of hypothesis, where the probability of hypothesis
before obtaining data, P(d), is interpreted as ‘a priori probability’ of the hypothesis. Iterative
inference makes preceding a posteriori probability subsequent to a priori probability. To distinguish
‘preceding’ from ‘subsequent’ probability in the iterative inference, the probability of the
hypothesis at tth step is represented by Pt(h). Thus, replacing subsequent a priori probability of
the hypothesis with preceding a posteriori probability is expressed as follows:

Pt+1
(h) = Pt(h|d). (2.2)

If the likelihood of hypothesis, P(d|h), is invariant, i.e. Pt+1(d|h) = Pt(d|h), any hypothesis
is not changed and only distribution of the probability is changed dependent on data. By
contrast, inverse Bayesian inference (IB inference) changes the likelihood of a specifically chosen
hypothesis, hs, in the form of

Pt+1
(d|hs) = f t(d), (2.3)

where f t(d) represents a normalized frequency of the occurrence of data, d, at the time interval,
M. Let a dataset {d1, d2, d3} and M = 4. Given a time series of data at t − 5, t − 4, . . . , t as d0, d1, d1,
d2, d3, f t(d0) = 0.0, f t(d1) = 0.5, f t(d2) = 0.25 and f t(d3) = 0.25. Similarly, f t−1(d0) = 0.25, f t(d1) = 0.5,
f t(d2) = 0.25 and f t(d3) = 0.0. A specific hypothesis, hs, is chosen as the least optimal hypothesis
(i.e. for any h ∈ {h0, h1, . . . , hm}, Pt(hs) ≤ Pt(h)) with the probability of 1 − Pt(hs). As Pt(hs) ≤ Pt(h),
hs can be chosen as the least optimal hypothesis with the highest probability. As f t(d) represents
the temporal probability of data, like Pt(d), it is easy to see that equation (2.3) is symmetric to
equation (2.2). That is why the inference equipped with equation (2.3) is called IB inference.
If an agent employs both B-inference and IB inference, the system is called the BIB inference
system.

Figure 1 shows a schematic diagram of BIB inference. Given a bag containing 10 balls
consisting of either red or white balls, one ball is taken from the bag, is identified as either red
or white and is returned to the bag. This process is repeated. The agent is asked to infer the
content of a bag, where he has a finite number of hypotheses (bags, drawn as a diagram). A set
of data is defined by {d0, d1} and d0 (resp. d1) represents red balls (resp. white balls), and a set of
hypotheses is defined by a possible bag containing balls. Time proceeds from top to bottom. Given
the data at each time step, the agent replaces the probability of hypotheses with the conditional
probability of hypothesis under the given data, which is B-inference. This leads to the change of
the distribution of the probability of hypothesis. In figure 1, the size of the bag represents the
probability of hypothesis. At the fourth step, the time series of data, d0, d0, d1, d0, constitutes
f (d0) ∼ 3/4 and f (d1) ∼ 1/4. These probabilities of data are substituted for the likelihood of the
least optimal hypothesis, h2, which is IB inference.

Figure 2a shows how IB inference contributes to the inference. Under this condition, the
number of data is the same as the number of hypotheses and is 4 (d0, d1, d2, d3) or 20 (d0, . . . ,
d19). The probability of d0, P(d0), is temporally changed along the sin-curve, and is represented
by black lines. Decision-making of an agent is estimated by P(d0|hmax), where hmax represents the
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Bayesian inference

noise

P1 (hk) = P0 (hk|d0)

P2 (hk) = P1 (hk|d0)

P3 (hk) = P2 (hk|d1)

P4 (hk) = P3 (hk|d0)

inverse
Bayesian
inference

P4 (d0|h2) = f 4 (d0)
P4 (d1|h2) = f 4 (d1)

f (d0) ~ 0.8
f (d1) ~ 0.2

Figure 1. Schematic diagram of Bayesian and inverse Bayesian inference. In this system, a set of data consists of white and red
balls, and a hypothesis is expressed as a bag containing 10 balls which are red or white. Time proceeds downwardly, and a set of
hypotheses is represented by a collection of bags at each row. The size of a bag represents the probability of a hypothesis, which
is temporally changed dependent on experience, resulting from Bayesian inference. The frequency of occurrence of data could
substitute into the likelihood of a specific hypothesis, which is inverse Bayesian inference. (Online version in colour.)
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Figure 2. Comparison of decision-making based only on Bayesian inference and that on Bayesian and inverse Bayesian
inference (BIB inference) with a given time series of the probability of data controlled by the sin-curve. The number of data
and hypotheses are represented by the number (a). Comparison of decision-making based on BIB inference (orange lines) with
a given time series of the probability of data (blue lines) where the interval of the frequency (M) is changed for each graph (b).
(Online version in colour.)
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optimal hypothesis such that P(hmax)>P(h) for any hypothesis h. Red lines represent P(d0|hmax)
obtained only by B-inference, and blue lines represent P(d0|hmax) obtained by BIB inference. Only
B-inference cannot follow the drastic change of P(d0) and traces the cumulative frequency of
P(d0). By contrast, BIB inference can immediately trace the change of P(d0), which is controlled
by the sin-curve. Because the likelihood of a chosen hypothesis is perpetually replaced by the
normalized frequency of data, the new hypothesis can contribute to decision-making so far as the
probability of data is temporally changed. Under this simulation M for the normalized frequency
is set as 100.

Figure 2b shows how the value of M can influence the error between P(d0) controlled by the
sin-curve and P(d0|hmax) obtained by BIB inference. If M is too small (e.g. M = 40), normalized
frequency of data, f (d), is too sensitive to estimate the stochastic change of P(d0). Thus, the
probability of data controlled by the sin-curve can be traced with large error. By contrast, if M is
too large, f (d) cannot reflect the change of P(d0). Thus, P(d0|hmax) consistent with P(d0) is always
delayed. This results in perpetual large amounts of error between P(d0) and P(d0|hmax). In a broad
region of M, the small error can be achieved between M = 50 and 300. As a result, we can choose
optimal M in a broad region.

As BIB inference can follow the drastic change of data, i.e. the temporal change of environment,
it suggests that animals seem to infer the environment using not only the B-inference but also the
IB inference system. In the next section, we adopt a model animal, soldier crabs, Mictyrus guinotae,
and show that they could use BIB inference.

3. Bayesian and inverse Bayesian inference in a swarm ofMictyrus guinotae

(a) Material and methods
We use soldier crabs, M. guinotae, as a model organism to compare kinetic data on swarming
with the computer model because they live in lagoons and form a huge swarm composed
of several hundred to hundreds of thousands of individuals. Individuals for the experiments
were collected from a large colony of M. guinotae at Funaura Bay on Iriomote Island, Okinawa
Prefecture, Japan (123°48′ E; 24°24′ N) during the day from 1.5 h before to 1.5 h after low tide
in September 2016. Individuals (10, 20, 40 and 100 individuals at each trial) were released in
the experiment arena of (0.8 × 1.4 × 0.2) m, in which the substrate was covered by muddy sand
collected from Funaura Bay of 1 cm depth. The wall of the arena was covered by flat black tape,
which appeared to relax the crabs. The experiment was conducted at Iriomote Station, Tropical
Biosphere Research Center, University of the Ryukyu. Soldier crabs were left in the arena for 2 h
at 28°C. All experiments were recorded from above using a Panasonic HDC-TM700 camcorder
(1920 × 1080 pixels, 30 frames s−1) fitted with a Panasonic VW-W4907H-K wide conversion lens
(0.75×) on a steel frame, resulting in a recording area of 1 × 1.7 m.

From the obtained greyscale images, time series of identified individuals’ positions were
tracked by using image-processing software (Library Move-tr/2D v. 8.31; Library Co. Ltd, Tokyo,
Japan) in which each crab’s positions were identified by the white paper-made marker attached
to the crab’s back, which appeared lighter than the surrounding area; the crab trajectories were
constructed by tracking individuals from one frame to the next. When crabs overlapped or were
in contact with others, we separated them using the manual tracking mode of the software. As
a result, we obtained all individuals’ x – y coordinates as a single pixel whose side length was
4.76 mm, for each observed time duration. In this study, the time interval between two consecutive
reconstructions of individuals’ coordinates was dt = 0.1 s (12 frames).

(b) Swarming behaviour in experimental condition
Figure 3 shows snapshots of trajectories for each population, where the number represents the
population size. Orange circles represent the position of each crab at a certain time, and the
black curves accompanying the orange circles represent the trajectories to reach the current
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n = 99 n = 40

n = 10 n = 20

Figure 3. Snapshots of the real soldier crabs, Mictyris guinotae, wandering in a tank under the laboratory condition. An
individual is represented by a circle accompanied by its previous trajectory. (Online version in colour.)

position within 60 s. When soldier crabs were kept in a plastic container under light experimental
conditions, they randomly and rapidly moved, tried to escape from the container independent of
other individuals and there was no swarming behaviour. Soldier crabs in our experimental arena,
however, were calmed down, moved slowly and showed schooling behaviour. They moved in
alignment with other individuals not only along the wall but also in the central region of the arena.
Schooling behaviour was easily observed independent of population size. While most individuals
gathered together, and constituted a dense swarm, delayed crabs followed the swarm. There were
some exceptions that some crabs avoided the swarm and moved independent of the swarm. The
character of the avoiding swarm never resulted from the character of the individual, because
crabs which previously avoided the swarm could be attracted by the swarm and vice versa. It
suggests that an individual soldier crab determines whether it goes toward or avoids the swarm
dependent on its own experience.

Figure 4a shows polarization of the swarm against time, where the population consists of 100
individuals. Polarization, ψ , is defined by

ψ =
N∑

k=1

(Vk/‖Vk‖), (3.1)

where Vk represents a velocity vector of the kth individual, and ‖V‖ represents the norm of the
vector. The population consisting of 100 individuals changed polarization drastically. This reveals
that a swarm-satisfying alignment was autonomously collapsed, dispersed and then dispersed
individuals gathered together to constitute a swarm. An individual sometimes was attracted to,
and sometimes avoided a dense area of individuals. The timing of gathering and dispersing
seems to be synchronized, resulting from collective behaviour. It suggests that an individual
could anticipate another individual’s moves and mimic neighbours’ behaviour with each other.
Figure 4b also shows polarization of the population of soldier crabs plotted against time, where
the population consists of 40 individuals. This small population also shows temporal changing
of the polarization, while the duration in which an alignment of swarm maintains is shorter than
the duration of alignment in a bigger swarm. As well as the population consisting of 100 or 40
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Figure 4. Polarization of the real soldier crabs, Mictyris guinotae, plotted against time. Hundred individuals (a) and 40
individuals (b). (Online version in colour.)

individuals, any other smaller populations (N = 10, 20) show a drastic change of the polarity
against time.

If the swarming behaviour is based on alignment rule and/or flock centring, once the swarm
is generated, then the swarm moves with perfect alignment and cannot be collapsed. Although
perturbation for the alignment rule can play a role in alternation of gathering and collapse, such
perturbation can make the boundary of a dense swarm vague. It results in vague gathering and
vague dispersing, and never produces a drastic change in the collapse of alignment and sudden
gathering as shown in figure 4. Therefore, the clear alternation of gathering and dispersing,
and/or drastic change of polarization against time, could suggest individual anticipation and
adjustment of moving under asynchronous updating. That is the only way to coexistence
of gathering and dispersing. Reciprocal anticipation can give rise to synchronized gathering;
however, it can amplify errors in anticipation and then give rise to synchronized dispersing
because of asynchronous updating.

The next question arises, how an individual could anticipate other neighbours’ behaviours
with each other. It can be based on BIB inference. In the next section, we estimate whether soldier
crabs are employed to BIB inference or not.

(c) Approaching or avoiding swarm based on Bayesian and inverse Bayesian inference
We here assume that individuals of soldier crab are employed to the following decision-making
system based on BIB inference (figure 4). Coordinate of the ith individual at tth time step is
expressed as (xi

t, yi
t). A set of data, D = {0, 1, 2, 3}, where each data represent relative density in the

neighbourhood. Let wi
t the number of individuals at tth step in neighbourhood of ith individual

at tth step with radii, r, and wi
t that with radii, 2r, where the centre of the neighbourhood is the

same as(xi
t, yi

t). The data, d ∈ D, which represent the ith individual’s state at tth step, are expressed
as follows:

dt
i =

⎧⎪⎨
⎪⎩

3 if wt
i = Wi

t;

INT
(

4wi
t

Wi
t

)
otherwise,

(3.2)

where for real number x, INT(x) is an integer part of x.
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A set of hypothesis, H = {η0, η1, η2, η3}, is defined by the likelihood in the form of P(d|h). If an
agent is employed to only Bayesian inference, the likelihood of a hypothesis is time invariant. In
BIB inference, the likelihood is temporally changed. Thus, we define the likelihood of ηk by

P(d|ηk) =

⎧⎪⎨
⎪⎩

0.2(k + 1) if d = 0;

1 − 0.2(k + 1)
3

otherwise.
(3.3)

In only Bayesian inference, ηk defined by the above equation is used for any individual
through time; however, in BIB inference, ηk would be used only for initial conditions. Therefore,
the likelihood of hypothesis is determined per individual at each time step.

We assume that individual soldier crabs obtain the data as equation (3.2), and that dependent
on these data, it calculates conditional probability of hypothesis by

Pi
t(h|di

t) = Pi
t(di

t|h)Pi
t(h)∑

kPi
t(di

t|hk)Pi
t(hk)

. (3.4)

Then, by B-inference, conditional probability of hypothesis under di
t is substituted into the

probability of hypothesis itself by

Pt+1
i (h) = Pi

t(h|di
t). (3.5)

After that IB inference changes the likelihood of a hypothesis hs in the form of

Pt+1
i (d|hs) = fi

t(d), (3.6)

where fi
t(d) represents normalized frequency of d observed for ith individual in the interval

between t and t − M step. It is assumed that by using Pi
t(d|hmax), a soldier crab determines

whether they approach or avoid a dense area of swarm mates where hmax satisfies Pi
t(hmax)>

Pi
t(h) for any hypotheses h.
To estimate the efficiency of BIB inference in a swarm of soldier crabs, we compare Pi

t(d|hmax)
with Fi

t(d) that is a normalized frequency of d in a subsequent time interval between t − M/2
and t + M. We call Fi

t(d) the probability of d in future. If the difference between Pi
t(d|hmax) and

Fi
t(d) is small, it suggests that an individual would use Pi

t(d|hmax) and data d can appear in a
subsequent time.

Figures 5 and 6 show comparison of Pi
t(0|hmax) obtained only by B-inference and by BIB

inference with Fi
t(0) for some individuals. It is easy to see that decision-making based only on

B-inference cannot follow perpetual change of Fi
t(0), and that decision-making based on BIB

inference can be consistent with Fi
t(0). As Fi

t(0) is temporally changed from very high to very
low, it shows that individuals sometimes avoided swarm mates (high Fi

t(0)) and sometimes
approached a dense part of the swarm (low Fi

t(0)). As Pi
t(0|hmax) obtained by the BIB inference is

always correlated with Fi
t(0), it suggests that solder crabs use not only Bayesian but also inverse

Bayesian inference to make a decision to move.
Figure 7 shows comparison of Pi

t(d|hmax) obtained only by B-inference and by BIB inference
with Fi

t(d) with respect to the average of all individuals in a population consisting of 99
individuals. Each graph shows the conditional probability of the data, 0, 1, 2 or 3. While Fi

t(1)
and Fi

t(3) moved almost at 0.25, which is expected by random probability, Fi
t(0) is higher than

and Fi
t(2) is lower than the random average. It implies that an individual often moved to

homogeneously dense parts in the swarm and avoided the dense part. That is why the dense
swarm appeared, was kept for a while and then members of the swarm were dispersed. This
process was repeated, and that could give rise to dynamic changing of polarization as shown in
figure 4. Figure 8 shows another time sample of a time series of the population consisting of 100
individuals. Figure 8a shows Pt(d|hmax) (d = 1, left and d = 2 right) based only on B-inference, BIB
inference and Ft(d) for the average of all individuals plotted against time. Especially for Pt(2|hmax),
it is easy to see that decision-making based on BIB inference is much more consistent with Ft(d).
It shows that a soldier crab could use BIB inference for moving in a swarm.
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Figure 5. Schematic diagram of data and hypothesis adopted by a time series of real soldier crabs. (Online version in colour.)
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Figure 6. Comparison of decision-making (P(0|hmax)) based only on Bayesian inference and that on BIB inference with a given
time series of the probability of data in the subsequent time series, for an individual.

The average of making decisions based only on B-inference, however, did not reveal dynamic
changing Pi

t(d|hmax). Thus, it cannot explain dynamic polarization of the swarm. In the next
section, we propose a swarm model based on BIB inference and evaluate whether the swarm
model can lead to dynamic changing of polarization of the swarm.

(d) The swarmmodel implemented by Bayesian and inverse Bayesian inference
We here modify the swarm model implementing the alignment rule by adding BIB inference, as
shown in figure 9. When the coordinate of an individual is expressed as(xi

t, yi
t), di

t in D = {0, 1,
2, 3} is obtained by equation (3.2). Hypothesis, h in H = {η0, η1, η2, η3}, is initially (or in only
B-inference) defined by

P(d|ηk) =

⎧⎪⎨
⎪⎩

p if d = k;

(1 − p)
3

otherwise.
(3.7)
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Figure 7. Comparison of decision-making (P(0|hmax)) based only on Bayesian inference and that on BIB inference with a given
time series of the probability of data in the subsequent time series, in terms of the average of the population.

From di
0, a posteriori probability of h, any hypothesis, is obtained by

Pi
t(h|di

t) = Pi
t(di

t|h)Pi
t(h)∑

kPi
t(di

t|hk)Pi
t(hk)

. (3.8)

Owing to B-inference, Pi
t(h) = Pi

t(h|di
t) is obtained for any h, and then hmax such that

Pi
t(hmax)> Pi

t (h) for any h. Thus, the optimal data, dmax, for ith individual at tth step is obtained
such that for any d

Pi
t(dmax|hmax)> Pi

t(d|hmax). (3.9)

The anticipated coordinate, (xi
∗, yi

∗), is obtained via alignment (figure 9). The alignment rule is
applied to the velocity of an individual such that

x∗
i =

⎛
⎝ ∑

j∈Γ (i)

V t
j

⎞
⎠

x

+ xt
i , yi

∗ =
⎛
⎝ ∑

j∈Γ (i)

V t
j

⎞
⎠

y

+ yi
t, (3.10)

where V i
t = (xt

i − xt−1
i , yi

t − yt−1
i ), Γ (i) represents the circular neighbourhood with radii, R, whose

centre is(xi
t, yi

t), and (V)x represents x-component of vector V . Around (xi
∗, yi

∗) candidates of the
next position are calculated such that

xi
∗θ = xi

∗ + u cos θ , yi
∗θ = xi

∗ + u sin θ , (3.11)

for discrete θ = 0, π/36, 2π/36, . . . , 2π , where u is a norm of the unit vector. For each (xi
∗θ , y∗θ

i ),
di

∗θ is calculated. The most optimal position is obtained such that

|d∗ϕ
i − dmax| ≤ |di

∗θ − dmax|, (3.12)

for any θ = 0, π/36, 2π/36, . . . , 2π . If there are some ϕ satisfying (3.12), one of them is randomly
chosen and the next position of ith individual is determined as follows:

xt+1
i = x∗ϕ

i , yt+1
i = y∗ϕ

i . (3.13)
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Figure 8. Comparison of decision-making (P(0|hmax)) based only on Bayesian inference and that on BIB inference with a given
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t+1)

(xi
t–1, yi
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Figure9. Schematic diagram for the swarmmodel based onBIB inference. Anticipated velocity,which is (xi∗ − xi t , yi∗ − yi t),
results fromaveraging of the velocities of neighbours (inΓ (i)). Simultaneously, data for ith individual at tth step, dit is obtained
in a broken circular neighbourhood inWi

t. If the position around (xi∗, yi∗) which is as same as di t is found, the ith individual
moves to that position at t+ 1th step.

After the transition of the position, the likelihood of a hypothesis, hs, in the form of

Pt+1
i (d|hs) = fi

t(d). (3.14)

All control parameters of this model are r, the radii of the neighbourhood for calculating density
(data); p, the probability of P(d|ηd) employed to initial condition or only B-inference; R, the radii of
the neighbourhood for alignment; u, the norm of unit velocity and N, the number of individuals.

Figure 10 shows some snapshots of the simulating results of the swarm model based on BIB
inference, where r = R = 20, p = 0.7, u = 1 and N = 100. Figure 10a shows a swarming phase in
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(a) (b)

Figure 10. Snapshots of the swarmmodel basedonBIB inference. Swarmingphase (a) anddispersingphase (b). (Online version
in colour.)

which polarization is very high and all individuals are aligned together. Figure 10b shows a
dispersing phase in which polarization suddenly decreases by collapse of the swarm. In BIB
inference, perpetual alternation of two phases of swarming and dispersing could occur due to
the perpetual switching of approaching and avoiding dense parts of individuals resulting from
inverse Bayesian inference. By contrast, the population employed only to B-inference cannot
show alternation of two phases. If p is large enough to stable data, each hypothesis can inhibit
switching between different data (i.e. switching between approaching and avoiding a dense part).
It implies that once a swarm is generated, it cannot be collapsed. By contrast, if p is small enough
not to stabilize specific data (e.g. p ∼ 0.25), the hypothesis continuously changes avoiding and
approaching a dense part of the individuals, and then rigid dense swarm cannot be generated.
Thus, the population employed only to B-inference, population shows either swarming with
high polarization or dispersing population with low polarization. The population employing
BIB inference can show phases shift between swarming and dispersing even if p is large
enough.

Figure 11a,c shows polarization of the population employed only to B-inference plotted against
time, where p = 0.7, u = 1, r = R = 30 (a,b), r = R = 50 (c,d) and N = 100. Soon after the initial
condition, the swarm with high polarization is generated, it cannot be collapsed. Figure 11b,d
shows polarization of the population employed only to BIB inference plotted against time, where
the parameters are the same as the population employed only to B-inference. Even if the p is large
enough to stabilize swarming, the effect of inverse Bayesian inference can introduce the possibility
of dispersing and implement a newly generated hypothesis to collapse swarm. Therefore, even
rigid and stable swarm is collapsed, while stable swarm is regenerated because inverse Bayesian
inference can implement newly generated hypothesis to stabilize swarm.

Figure 12a,c shows polarization of the population employed only to B-inference plotted against
time, where p = 0.99, u = 1, r = R = 20 (a,b), r = R = 40 (c,d) and N = 100. Figure 12b,d shows
polarization of the population employed only to BIB inference plotted against time, where the
parameters are the same as the population employed only to B-inference in figure 12b,d. It is easy
to see that even if p is extremely high, the effect of inverse Bayesian inference can collapse and
regenerate rigid and stable swarm. Such behaviours are found in natural swarms of soldier crabs
as shown in figures 3 and 4.

From these results, we conclude that soldier crabs use not only Bayesian but also inverse
Bayesian inference which can lead to switching between approaching and avoiding a dense part
of individuals, and that the switching can give rise to perpetual alternation of swarming phase
and dispersing phase.
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r= R= 20 (a,b), r= R= 40 (c,d) and N= 100 (a,c). Polarization of the population employed only to BIB inference plotted
against time (b,d). (Online version in colour.)

4. Conclusion
As mentioned at first, freedom in a society might conflict the norm of society itself. Such a conflict
might be artefact because the norm of society could be implemented as a deterministic rule.
Even in the swarm model, if the norm of swarm is expressed as an alignment rule, freedom
in a swarm is expressed as autonomously generated perturbation that can be implemented by
random generator. By contrast, we investigated coexistence of freedom and norm of society under
the assumption of mutual anticipation and asynchronous updating. If the time slice is assumed,



15

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170370

........................................................

then mutual anticipation and asynchronous updating can be implemented by inference equipped
with probability. This can be expressed as a pair of BIB inference.

By Bayesian inference, an individual in a swarm can arrange the distance among individuals
in moving and generate dynamic dense swarm, while by inverse Bayesian inference an individual
can introduce possible dispersing and regenerating swarm and generate alternation of swarming
and dispersing. Thus, not only Bayesian inference but also inverse Bayesian inference can
contribute to dynamic swarming of animals. That is BIB inference.

In this paper, we show the swarming of soldier crabs, M. guinotae, and analyse the swarming
behaviour with respect to polarization and performance of BIB inference. Polarization of soldier
crabs is altered between swarming phase and dispersing phase. The performance of BIB inference
is much more consistent with the actual probability of soldier crabs rather than only Bayesian
inference. It shows that BIB inference can give rise to an individual’s switching between
approaching and avoiding a dense part of individuals, and then entails alternation of swarming
with high polarization and dispersing with low polarization.

Dynamic coexistence of freedom and sociality in the animal group could be achieved by
probabilistic inference opened to the external environment, which can be implemented by BIB
inference.
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