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Diabetes mellitus is a wide spread disease with signifi-
cantly rising numbers so that health care budgets will see 
worldwide a greater part being spent for people with diabe-
tes in the future. There is need for an early diagnosis of this 
disease as the risk exists for the development of micro- and 
macrovascular complications with final appearance of 
blindness, kidney failure, heart disease, and nerve damage. 
Tight glycemic control has been proved for reducing the 
risk of these complications in people with either type 1 or 
type 2 diabetes mellitus. One of the recommended prac-
tices to achieve this objective is by self-monitoring of 
blood glucose (SMBG) levels with skin puncture for blood 
sampling. Self-management plans for glycemic control 
usually require a measurement of (finger) capillary blood, 
as performed by widely used blood glucose test systems;1 
see report on exemplary devices that were tested for their 
analytical performance.2 Alternate testing sites have also 
been suggested, but interferences from either intrinsic (eg, 
physiology related like different/delayed glucose concen-
tration changes depending on the measurement site)3 or 
extrinsic effects (such as environment related like a sudden 
temperature change) may lead to a biased value with devi-
ations from the true blood glucose concentration.

Advancements in diabetes technology can nowadays offer 
different sensor devices also for continuous glucose monitor-
ing (CGM), which are still minimal-invasive approaches for 
reaching the ambitious and challenging goal of normoglyce-
mia in such people. For devices without direct access to capil-
lary blood, as for needle-type CGM sensors that monitor the 
interstitial glucose level, effects from calibration to the inac-
cessible physiological skin site require additional attention.4 
Another category of devices will aim at noninvasive pain-free 
technologies, for example, based on optical techniques. So 
far, even for this category of devices, invasive blood measure-
ments may be required for the device calibration stage.
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Abstract
Noninvasive blood glucose assays have been promised for many years and various molecular spectroscopy-based methods 
of skin are candidates for achieving this goal. Due to the small spectral signatures of the glucose used for direct physical 
detection, moreover hidden among a largely variable background, broad spectral intervals are usually required to provide 
the mandatory analytical selectivity, but no such device has so far reached the accuracy that is required for self-monitoring 
of blood glucose (SMBG). A recently presented device as described in this journal, based on photoplethysmographic fingertip 
images for measuring glucose in a nonspecific indirect manner, is especially evaluated for providing reliable blood glucose 
concentration predictions.
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Progress in available and emerging glucose monitoring 
techniques and devices can be found in a recent report, 
downloadable from the website of the Institute of Health 
Economics (IHE);5 the authors cover the whole range of 
methods including CGM devices (for further reviews, see 
Cappon et al6 and Kim et al7) and noninvasive technologies, 
which have also been reviewed by other authors.8,9 In this 
issue of the Journal of Diabetes Science and Technology a 
device called TensorTip Combo Glucometer by Cnoga 
Medical Ltd is introduced by Segman,10 as an approach for 
noninvasive monitoring from color image sensor data that 
does not “focus on the glucose molecule”, but on “on real-
time color photography related to glucose concentrations in 
the capillary tissue” as a statement from him. In contrast to 
this, a concentration related chemical or physical property of 
the glucose molecule is otherwise an essential part of the 
measurement chain of most analytical methods or sensors 
suggested. The understanding of these properties and their 
interaction with intrinsic and extrinsic effects, as well as the 
calibration process is an important basis to identify and eval-
uate potential interference risks and to depend less on chance 
findings of potentially harmful impacts.

In this article, Segman’s approach to noninvasive glucose 
concentration estimation will be analyzed also in view of the 
glucose optical absorption features, which have been the 
basis of most noninvasive assays published so far. Our com-
ments are based on the available literature and the handbook 
of the TensorTip device.10-13 Segman’s article describes an 
initial stage of development, as mentioned under his general 
notes.10 For a more recent study,11 improvement over the 
described stage is claimed. It seems reasonable to conclude 
that the quoted incorporation of the time of measurement as 
feature for glucose prediction is part of this advancement.

Optical Signatures of Glucose

There are various strategies, which make use of optical sig-
natures of glucose, which must certainly differ from those of 
other skin and body fluid components to reach the selectivity 
for quantification, despite of some existing cross-sensitivi-
ties. Approaches with molecular optical spectroscopy, either 
near- and mid-infrared or Raman spectroscopy, have been 
successfully implemented for clinical chemistry assays for 
blood components, in particular for glucose. The short-wave 
near-infrared (SW-NIR) range including some overlap to the 
visible red offers best opportunities due to the therapeutic 
window with deepest penetration depth into skin tissue, but 
suffers from a reduced selectivity due to overlap of compo-
nent chromophore absorption bands.

Several noninvasive assays presented in the past rely on 
optical parameters of glucose within the VIS/NIR spectral 
range, which influence absorption, but also radiation scatter-
ing within the probed skin tissue. This spectral interval has 
also been chosen for the TensorTip device. As water is the 
main constituent of tissue, the absorption spectrum and its 

temperature and solute dependencies are of great impor-
tance, which has its origin in drastic induced changes of the 
hydrogen-bonded network of the water molecules, which can 
be probed by absorption spectroscopy. For separating these 
effects from pure glucose absorptivities, deuterated water 
(D2O) is introduced. In Figure 1A, absorbance spectra of 
water samples of 1 mm thickness in comparison to the deu-
terated water isotope are presented, where the overtone and 
combination bands have been significantly shifted to longer 
wavelengths due to the mass effect on the molecular vibra-
tion frequencies and away from the glucose band of interest. 
In Figure 1B, quantitative absorption data is presented for 
glucose, either in (and hidden by) normal water or within 
D2O. For the latter solvent, the solute and temperature effects 
on the normal water spectrum have been eliminated. The 
spectra have been recorded versus a solvent filled cell and 
are shown with additional compensation of the displaced 
water, respectively. As obvious from the figure, the displace-
ment effect from D2O is much reduced compared with the 

Figure 1. (A) Absorption spectra of H2O and D2O at various 
optical pathlengths and 25°C within the VIS/NIR spectral range. 
(B) Glucose absorption spectra at 25°C with D2O as solvent 
with compensation of displaced deuterated water (a); solution 
spectrum measured versus a solvent filled cell (b). Glucose 
spectrum measured in normal water with compensation of 
displaced water (c) and as measured versus a solvent filled cell 
(d). Temperature effect on the water absorption spectrum is 
shown with trace (e). Water displacement factors were calculated 
by using solution density data from Haynes.15
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normal isotope, the spectrum of which contains also the 
interaction of the solute molecules with the water hydrogen 
network. Another known effect is from temperature changes, 
which is similar to the induced spectral solvent effect. The 
values of the glucose absorption coefficients, as measured in 
D2O can be favorably compared with spectral data published 
by Kohl et al.14 Figure 1 also shows the magnitude of intrin-
sic glucose features and those signatures, which can be also 
induced by other solutes found in body fluids or temperature 
changes.

TensorTip Combo Glucometer Device 
Description and Discussion

The optical system of the portable device contains several 
light emitting diodes (LED) for fingertip transillumination 
and a color image sensor for detection of photons from the 
probed skin tissue. The optical geometry is similar to the 
setup for side-scattered finger-photoplethysmography as 
published recently by Yamakoshi et al.16

For illustrating the basics of optical VIS/NIR technolo-
gies for noninvasive monitoring of tissue chromophores 
besides water and glucose, we compiled further relevant 
spectral intensity and absorbance data in Figure 2. Spectral 
data for eumelanin and pheomelanin are not given, as for the 
fingertips negligible absorption exists from these substances; 
for other skin areas these can influence the color of skin 
within the Vis/NIR spectral range significantly.17 The inset in 
Figure 2A shows two exemplary reflection spectra of a fin-
gertip and of forearm skin, providing information on tissue 
blood volume and hemoglobin oxygenation as measured by 
us. For Figure 2B the sum of four intensity normalized LEDs 
is shown with our assumption that the specified and reported 
LED center wavelengths were not just an example but actu-
ally implemented. Commercial LEDs emit a wider range of 
wavelengths (typically 20-60 nm full width at half maximum 
[FWHM]) within the considered spectral range18 than found 
for sources such as diode lasers. If explicit spectral resolu-
tion is not a priority, the simultaneous illumination by differ-
ent sets of LEDs, as realized for the TensorTip Combo 
device, instead of a sequential illumination, is advantageous 
when regarding time resolution.

Figure 2B shows absorbance data of fully and 95% oxy-
genized hemoglobin and water as main chromophores. The 
oxygenated hemoglobin amount in tissue changes in a pulsa-
tile manner during a heartbeat due to blood volume modula-
tions and causes detectable spectral changes. For many years, 
the well-known pulse oximeters make use of so-called pho-
toplethysmography (PPG) in a skillful way,19,20 based in part 
on the fact that many interfering effects (except motion arti-
facts) are slow enough to be negligible during a heartbeat. A 
common choice of LEDs for these devices is 660 nm and 940 
nm. In Figure 3A, subsecond fiber-optic reflection measure-
ments are presented, illustrating the pulsatile spectra of a fin-
gertip. In Figure 3B, the average skin spectrum is given in 

addition to the spectral amplitudes, as obtained from Fourier 
analysis of the individual wavelengths at heartbeat fre-
quency. The inset in Figure 3B, shows part of the frequency 
power spectrum of the equidistantly sampled time series 
measurement at 580 nm with maximum Fourier coefficient 
at the fundamental heartbeat frequency.

Unfortunately, very little information is provided about the 
digital camera of the TensorTip. As Segman states, it uses a 
real-time color image sensor, which allows one to analyze tis-
sue pigmentation over spatial-temporal-color domain. Further 
information given is on sensor sensitivity to be within 380 to 
1000 nm.

Regarding the spectral characteristics of the image sensor, 
the article mentions a red, green and blue color plane. 
Conventional camera sensors use patterned color filter arrays 
(CFA) based on dyes and pigments over otherwise identical 
silicone photodiodes21 with some transparency in the infrared, 

Figure 2. (A) Absorptivity data for oxy- and deoxy-hemoglobin 
(downloaded from https://omlc.org/spectra/hemoglobin/); 
the inset shows two diffuse reflection spectra of fingertip and 
forearm skin as measured with a fiber optic probe. (B) Spectra 
of hemoglobin at different oxygenation rates; included is the 
absorbance spectrum of water at 10 mm pathlength. Also shown 
is the illumination irradiance (intensity normalized) for four LEDs 
with indicated halfwidths from Hamamatsu Catalog18 at selected 
center wavelengths, as mentioned by Segman.10

https://omlc.org/spectra/hemoglobin/
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as shown in Figure 4. For digital (off-the-shelf) cameras, the 
resulting infrared sensitivity would cause color degradation, so 
it is usually blocked by a single, shared IR cut-off filter. Without 
such filter, a common image sensor can produce useful signals 
(in a technical sense, outside the domain of human vision) in all 

channels, although the illumination by discrete LEDs is only 
marginal green, red and near-infrared (see also Figure 2B). The 
pattern of colors in the CFA can be arranged in several ways, 
for example, as Bayer,21,22 multispectral,23 or sparse with pan-
chromatic pixels.24 A less common technology is the vertically 
stacked sensor that does not require a separate CFA.22 In prin-
ciple, also a completely custom pattern with custom filter dyes 
is technically possible, but may be economically infeasible for 
low order volumes. The spectral color response is the integral 
of the product of the spectral distribution of the illuminant (ie, 
LED at certain current value), the spectral transmittance of the 
finger under the experimental geometry conditions and the 
respective camera sensor color filter function over all wave-
lengths within the detector spectral sensitivity.

The boundary conditions, as mainly introduced by the 
requirements from the predominant markets for integrated 
image sensors, we suppose may explain why Segman talks 
about the red, green, and blue color plane on the image side. 
For the TensorTip MTX device, which is given as reference 
for the hardware description, it is stated that the sensor array 
uses 12 bit resolution per channel;13 however, resolution, 
frame rate, and spectral sensitivity are not specified, which 
impedes an analysis what physiological effects could be 
detected at all.

First, an estimate of the impact of a glucose concentration 
change within the spectral range presumed for the TensorTip 
Glucometer is presented. Based on our spectral data of aqueous 
glucose for 10 mm pathlength (Figure 1B), an absorbance sig-
nal change of 25 µA.U. (micro absorbance units) within the 
spectral interval between 950 and 990 nm is equivalent to a 
glucose concentration change of 1 mmol/l. This band is the 
most significant spectral contribution of glucose with overlap 
to the 940 nm LED (Figure 2B). However, this is for an integral 
water measurement, with the consequence that an absolute 
determination would require a digital system with a change of 
1 bit in a 14 bit representation for distinguishing differences of 
1 mmol/l in signal intensity, which clearly shows the advan-
tages of differential measurements if feasible.

Such estimates have been supported by simulations based 
on experimental tissue, water and glucose data, which have 
been carried out by Qu and Wilson for wavelengths of 800 
and 960 nm.25 They used a Monte Carlo simulation of the 
“photon random walk” based on wavelength-dependent 
absorption and scattering coefficients. The difficulty of 
obtaining accurate analytical results could be summarized by 
stating the optical equivalence for a change of 1 mmol/l glu-
cose concentration, considering just water content, tempera-
ture and protein concentration, as estimated to be +0.2%, 
–0.1°C, and +0.1%, respectively. A by a factor of seven 
more sensitive temperature cross-sensitivity could be experi-
mentally verified by us (Figure 1B), which is important also 
in view of the existing temperature gradients in skin. The 
variation of other chromophores such as oxy- and deoxy-
hemoglobin had not even been taken into account (blood vol-
ume change due to contact pressure or temperature stimulus, 

Figure 3. (A) Subsecond recording of fingertip diffuse reflection 
spectra using an integrating sphere. (B) Average spectrum 
including the scaled pulsatile spectrum at heartbeat frequency 
as obtained from Fourier analysis of the wavelength-dependent 
time series vectors; shown as inset is the power spectrum of the 
time series data at 580 nm wavelength up to the fundamental 
frequency of the transformed PPG waveform.

Figure 4. Spectral sensitivity of a camera sensor with Color 
Filter Array (CFA) modified from Park and Kang,23 original 
image by C. Park and M. G. Kang, licensed under CC-BY (http://
creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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different hematocrit values), which can have additional 
influences on the photometry. Similar simulations have been 
published by Kohl et al,14 who presented simulated and 
experimental data based on light transport in a tissue phan-
tom for the interval of 650 to 1050 nm.

In case, the pulsatile component is exploited for glucose 
concentration estimate, a further signal decrease of two 
orders of magnitude needs consideration (we noticed a factor 
of about 40 for our fingertip measurements with absorption 
bands below 600 nm; see Figure 3A). If the spectral interval 
around 940 nm again is considered with diffuse reflection, a 
blood volume change of 5% provides a pulsatile signal dif-
ference of approximately 20 µA.U. (downscaled data taken 
from Monte Carlo simulation in Petrov et al17 with blood vol-
ume changes from 35 to 70 %). Another confounding param-
eter is hemoglobin oxygenation, where a decrease from 
100% to 95% leads to an additional signal change of 5 µA.U. 
(see also data in Figure 2B). Beyond that, any disturbance, 
for example, of the pathlength through water/tissue or tem-
perature variations, which are especially pronounced where 
the solvent (water) has own spectral absorption bands, would 
require compensation. This might give a coarse idea, why 
direct optical measurement of glucose with common and 
thus affordable detector technology based on silicon diodes 
(photosensitive below about 1100 nm)23 has not achieved the 
required accuracy for glucose self-monitoring and why the 
TensorTip device approach does not try to “focus on the glu-
cose molecule” as assured by Segman. On the other hand, 
Segman does not really clarify what phenomenon the device 
is exploiting or where to look for a (physiological) relation-
ship between real-time color imaging and blood glucose con-
centration. The term “tint” is not helpful information to 
elucidate the measurement principle.

Discussion Based on Competing 
Technology

In part, integral tissue measurements have been presented, 
where the vascular compartment is only a fraction of the 
probed tissue volume. If PPG technology with information 
on the arterial vascular space could be implemented with a 
stable and high enough signal-to-noise ratio, as routinely 
nowadays used in pulse oximetry, also blood glucose con-
centration could be analyzed by using optical difference 
spectroscopy (see also Figure 3).

This idea has been taken up by several research groups. 
However, the complexity and variations of the waveform can 
be problematic. As described by Elgendi,26 the main PPG 
waveform reflects the cardiac synchronous volume changes 
of arteries and arterioles as caused by the rhythmic blood 
pressure changes. However, there is also evidence that the 
PPG waveforms are also influenced from the dermal capil-
lary density due to pressure variations from the larger blood 
vessels.27,28 Lower frequency components are usually super-
imposed, which can be attributed to respiration, vasomotion, 

sympathetic nervous system activity, and thermoregulation. 
Various physiological and pharmacological factors exist, 
which influence the systolic amplitude owing, for example, 
to poor finger perfusion, dysrhythmia, and others.26

To round up the discussion of physiological parameters 
that are detectable in general by SW-NIR measurements, it is 
evident that hemoglobin chromophores in both redox states 
and melanin are dominating all skin-color contributions. 
Petrov et al17 investigated the color of fingertip skin by Monte 
Carlo simulations using a multilayered skin model including 
their different vasculature structures within the VIS/SW-NIR 
spectral range. Wavelength dependent photometry based on a 
set of optical data for each layer with corresponding chromo-
phore concentrations allowed a subsequent projection into 
color space using the digital camera specification. Certainly 
also pulsatile volume changes including the effect from glu-
cose, water displacement and temperature could be simulated 
by such sophisticated photometric tissue model for estimating 
dynamic color changes.

Using color images in combination with PPG signal pro-
cessing, the determination of blood concentration, oxygen 
saturation or the spatial distribution of melanin in the skin 
based on a digital imaging video has been reported in the past 
(see, eg, Nishidate et al29,30), with blood concentration based 
on the direct (DC) signal, while the oscillating, two orders of 
magnitude smaller alternating (AC) signal provides pulse 
information that can be related to blood flow and hemody-
namics. PPG imaging of the palm of the hand at 30 frames per 
second, with optics for reflection measurements, has been 
recently applied to detect spatial distribution of blood pulsa-
tions (amplitude and phase).27 Fingertip imaging was applied 
for normal conditions with skin contact and compression with 
significant impact on PPG amplitudes and phases.28

Regarding the wavelength range reported for the 
TensorTip, Yamakoshi et al16 published PPG studies using a 
similar measurement arrangement for fingertip illumination 
and detection of tissue penetrated radiation with a single 
photodetector, coining the term of “pulse glucometry.” Initial 
fingertip measurements were with three LEDs at 808, 1060, 
and 1600 nm, but a more advanced arrangement with six 
LEDs within the spectral range of 1550 to 1749 nm was 
favored, aiming at glucose-related PPG signals.

Using PPG signals from LEDs at 935, 950, and 1070 nm, 
relevant for glucose absorption measurements (see Figure 1), 
pulsatile SW-NIR signals were analyzed by Ramasahayam 
et al31 using a portable device for continuous glucose moni-
toring. The PPG signals had been motion artefact reduced by 
a neural network-based on an adaptive noise cancellation fil-
ter with subsequent training of an artificial neural network 
(ANN) for blood glucose concentration estimation. Results 
from clinical trials with 100 subjects were reported with 
Clarke error grid analysis, while 95.4% were found within 
region A, which covers predictions with a maximum of 20% 
relative deviation to the reference values, and all remaining 
values found within region B.
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Furthermore, based on PPG analysis, Monte-Moreno32 
contributed an approach toward noninvasive blood glucose 
and pressure monitoring using a pulse oximeter equipped 
with two LEDs, emitting at 660 and 935 nm and a self-mon-
itoring blood glucometer. A total of 4500 measurements over 
one minute were recorded for 410 subjects. Features from 
the PPG waveform were extracted by a signal processing 
module after preprocessing for motion artefact elimination. 
Subsequently, a machine learning algorithm of either imple-
menting ridge linear regression, a multilayer perceptron neu-
ral network, support vector machines or random forests 
regression was used for calibration. The method does not 
measure differences in time intervals or in light absorption, 
but exploits the effect of physiological changes on the shape 
of the PPG waveform and on the heart rate. The author claims 
that these measurements are related to the subject’s hemody-
namics and the blood glucose level. As physiological factors 
that are relevant for the method, blood viscosity and vessel 
compliance have been listed and claimed, while blood vis-
cosity is mentioned to rely also on blood pressure and glu-
cose level, altering the flux of blood in the corresponding 
vessels and the shape of the PPG pulse (see discussion on the 
PPG origin above).32

Other PPG waveform confounders were due to the meta-
bolic syndrome, which causes changes in glucose and blood 
pressure levels as well as the general hemodynamics. 
Therefore, individual factors were included such as age, 
weight and body mass index, the relationship between diabe-
tes and heart rate (HR), which results in HR variabilities, the 
emotional state as well as the blood pressure regulating respi-
ratory frequency, which can be extracted from the low fre-
quency PPG energy components.32 For taking breathing and 
effects from the autonomic nervous system into account, low 
frequencies of the PPG signal had also been implemented. The 
device and method performance was rather poor (R2 < 0.64) 
unless random forests regression was applied. Final results 
were achieved for the subject population with 10-fold cross-
validation, that is, 90% of the data were used for training, leav-
ing 10% for testing with 10 times repetition (R2 = 0.90). A test 
for overfitting was included that consisted of training with a 
random permutation of the glucose reference values. As 
required, the system was unable to predict these meaningless 
reference values (R2

training = 0.017).32

Calibration and Blood Glucose 
Prediction by the TensorTip Device 
Software

Whether any information beyond image sensor data and time 
of measurement is currently used as raw input data is not clear 
and is missing from his publication. After the sensor signal 
has been sampled and converted to digital data, a software has 
to calculate glucose concentrations from that data. This is 
done by a “proprietary mathematical NBN” (neural brain net-
work). Its description is vague and no literature references 

about the used terminology or the working principle are 
given. In general, we would classify the technique as an asso-
ciative memory and reserve the (neural) brain network term 
to biological systems instead of the dual use by Segman. 
Implementation independent properties of such networks are 
summarized by Kohonen.33

Principally, pairs of input and (desired) output vectors are 
learned. In the application, the memory shall “recall” the out-
put vector if its associated input vector is presented. Such 
vectors are for example images. If input and output are dif-
ferent (eg, a person’s image and his name) recalls are named 
heteroassociative, if they are the same the system performs 
autoassociative recalls. Due to the ability to recall a complete 
output even if the input is incomplete or distorted, autoasso-
ciative memories can be used for correction or reconstruc-
tion. Both types may be amended to show invariances to 
some degree, for example, in case of images to shifts, scal-
ing, rotation or brightness of the input, which might be rele-
vant for images of the fingertip with fingerprint surface 
structures and the related underlying dense capillary network 
(for the anatomy of microvasculature of the palmar digital 
skin, see Sangiorgi et al34). Associative memories also show 
the capability to interpolate and extrapolate. Information 
storage and retrieval by presentation of (large) sensory inputs 
are similar to (and derived from/inspired by) human memo-
rization of information from the environment.

The associative network of the TensorTip device uses 
“feature vectors” as inputs. In general, feature vectors may 
simply be a concatenation of all raw pixel values of all 
images and all other utilized information (like the time of 
day of the measurement), or a processed version of that data 
(eg, to introduce invariances, orthogonality or a beneficial 
coding). An example for a simple feature extraction (in com-
bination with a model based evaluation instead of a neural 
network) is given for the blood pressure monitoring by the 
TensorTip MTX device13 that operates on histograms (ie, the 
numbers of pixels in each color channel with the same value) 
of the acquired images instead of the images themselves. 
This representation eliminates all spatial information (pixel 
coordinates) and makes further processing invariant to shifts 
and rotations (as long as the same kind of skin is viewed). 
The histograms are then analyzed, and features, for example, 
the magnitude of the maximum height/pixel count or the cor-
responding pixel value are calculated. These features are 
then processed by an algorithm to calculate the output like 
the pulse rate. Another method would be to use, for example, 
the Fourier transform. The global invariant transforms (if 
any implemented) and the extracted features used by the 
TensorTip Glucometer are not documented in any way.

The same is true for the associative memory implementa-
tion. However, the concepts indicated in this article and in 
previous work of Segman35 resemble each other (vectors are 
“correlated”, the “model is based on response of synchro-
nized group of neurons” and other similarities shown later), 
thus a comparison should be appropriate. The previous work35 
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is highly interdisciplinary, but we are only concerned with the 
possible implementation of one of these concepts in a digital 
computer/digital signal processor, like the TensorTip device 
in this analysis.

An associative memory implementation called “HNeT” 
(likely an abbreviation for holographic neural technology) 
that is cited as an emulation of the functions described,35 has 
been presented in articles by Sutherland.36,37 The latter article 
is a superset of the preceding one, as it is more extensive and 
also contains new aspects not mentioned before. There is 
also an extended variant38 that allows an interesting encoding 
of color images.39 Our intention is to focus just on the paral-
lels to and implication for Segman’s presentation.

The basic characteristic of Sutherland’s system is that it 
encodes features (real values) in the phase terms of complex 
numbers. The magnitudes can be used to indicate an indi-
vidual confidence in the value or simply kept constant. The 
name holographic neural network is an analogy that lies “in 
the form of the constitutive equations and some general oper-
ating characteristics”36 to (digital) holography, that is, the 
encoding of information as phase differences of light and the 
abstract phase of a complex number.

The network stores its training state in a so called correla-
tion matrix (the memory). For the TensorTip it is reported 
that “new vectors” are “correlated” to the “basic learning 
set” (we will analyze the meaning of the latter below).

As demonstrated by Sutherland the statistical distribution 
density of the encoded phases of the feature vector elements 
is required to be uniform and symmetric. If the distribution 
of the underlying value (before phase encoding) is known, 
for example, due to a good physical model, a suitable encod-
ing formula can be found, and associative memory shows a 
high storage capacity and an acceptable error. However, dis-
tribution estimation based on empirical data can be problem-
atic if that data originates from measurements on a biological 
organism as complex as a human person. Even if a personal 
calibration is used to reduce the influence of individual dif-
ferences, there may be extreme states with drastic influence 
on the measured glucose values. With the indirect and 
unspecified measurement principle without knowing about 
its physiological origin, the medical expert might not have 
the information to give appropriate advice to his patients 
about the limitations and pitfalls of the TensorTip Glucometer 
(see section above about possibly detectable effects). The 
techniques proposed by Sutherland37 to equalize phase distri-
bution, also have an impact on the generalization ability and 
may thus just exchange problems.

Even after evaluation of the terminology hints about the 
network, the components, as mentioned by Segman (the 
branches and loops), cannot be clearly identified. Taking a 
look at his Figure 2,10 it stands out, that vectors may be part 
of multiple branches due to similar glucose values, but there 
seems to be only one “optimal loop.” There is also a group 
mentioned with either an open or closed loop. The purpose of 
these loops might be to efficiently apply reinforcement 

learning, that improves stability, in case of too similar feature 
vectors37 that are allowed and possible, in case of similar glu-
cose values. But this is purely speculative, and we do have 
enough information on his work to further interpret the net-
work components.

Critical Evaluation of the Calibration 
and Validation Design

In general a personal calibration with at least 25 prescheduled 
sensor measurements at a daily routine is recommended cov-
ering the entire personal concentration range over several 
days, as advised by Segman10 and the device handbook.12 
Recalibration is required in cases where the glucose prediction 
is outside the calibration range, which may refer to extreme 
cases, or just indicate a vector too distant to other vectors in a 
loop. Another not further specified time for recalibration is 
according to an internal plan of the device, which possibly 
depends on the daily glucose dynamics as being different for 
people with diabetes of type 1 and type 2 (expressed as illness 
severity by Segman). Further calibration updates are realized 
for any measurements including invasively obtained blood 
glucose concentration data, if not actively rejected by the user.

For studies 1 and 2, a universal/general calibration was 
used, collected from several ambulatory patients of the first 
trial. It is not clear whether all 76 patients, who later contrib-
uted to this validation study, had been taken into account for 
setting up the general calibration manifold. After the exten-
sive calibration stage, only one or two measurements (in total 
only 112 paired measurements for 76 subjects!) have been 
provided for validation with a date of measurement unknown, 
compared to the last calibration testing, which is highly criti-
cal for the performance assessment of the system.

Based on the general calibration model of study 1, 77 sub-
jects were tested in study 2, with only one validation mea-
surement provided. If we look at the range of the invasively 
obtained glucose concentration values of 97-226 mg/dl with 
a population mean and standard deviation of 147 ± 29 mg/dl 
and a MARD value of 14.9% leads to a deviation of 21.9 mg/
dl for the population mean value, which is not significantly 
reduced compared to the glucose standard deviation of the 
tested population. With statistical calibrations in mind, such 
validation results are not meaningful for a performance test 
of the calibration model.

For the home study (study 3) all participants had under-
gone the extensive personal calibration. No personal infor-
mation on disease status or physical conditions is provided. 
If we interpret the information given by Segman for the 
home study, we can assume that on average 38 measure-
ments have been carried out after personal calibration. There 
is no information on daily schedule of measurements, the 
time gap between last calibration and follow-up validation 
measurement and the duration of validation tests. If we 
assume six tests per day, the end of the measurement cam-
paign could be after one week. If the validation stage has 
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been extended over a longer period (one to three months), it 
is to be expected that many more calibration readings, com-
pared to the initial personal calibration, have been imple-
mented for updating the calibration manifold. For each 
validation measurement an invasive blood reference test has 
been carried out. If the add-on device was used, this would 
have triggered an admission of the result to the learning set, 
as part of the described recalibration procedure each time. In 
particular, points in the C, D, and E regions of the error grid 
must be explained specifically, including the determining 
factors of these extremely dangerous scenarios for events 
with results in zones D and E.

For the postmarketing evaluation no information on the 
whole duration of the 52 measurements has been carried out. 
The same problem with regard to calibration update using 
invasive blood glucose tests exists as discussed for study 3. 
In principle, the calibration and validation measurements 
should be separated in time and most independent as possible 
from each other. It is plausible that this condition has not 
been fulfilled for the home and postmarketing studies. These 
scenarios are different from studies 1 and 2, where a general 
calibration model had been set up from patients of the first 
study and used for one validation test only of each individual 
patient.

Conclusion

We could show that a direct measurement of glucose, based 
on its spectral characteristics, is not possible in the short-
wave near-infrared region. Thus, the TensorTip Glucometer, 
in its current stage of development, requires an extensive 
individual calibration and additional recalibration at 
unknown frequency. The user guide recommends a basic 
usage on a daily measurement schedule similar to that used 
for calibration.12 There are indicators that the time of day 
is used as a feature for glucose prediction. No results are 
presented regarding the long term stability of the calibra-
tion, the ability of the device to detect if a recalibration is 
necessary and thereof achieved improvement. If frequent 
calibrations are required to achieve accuracy, this might 
indicate an unstable method. The impact of recalibration or 
a wrong time setting (eg, in case of a user that often travels 
between time zones), should also be reported before more 
comprehensive studies are started. Without a better under-
standing of the numerous possible physiological effects 
with correlations to glucose, which have been measured 
and used for concentration prediction, the device safety 
and calibration stability properties cannot be assessed, 
because there is too little information to design appropriate 
studies. The results presented in Segman10 and Pfützner 
et al11 are of low value, if basic information, for example, 
on the recalibration history before and during the study is 
missing. As recalibration is an automatically triggered pro-
cess, the user might be unaware of it.
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