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Israel experienced an outbreak of wild poliovirus type 1 (WPV1)
in 2013–2014, detected through environmental surveillance of the
sewage system. No cases of acute flaccid paralysis were reported,
and the epidemic subsided after a bivalent oral polio vaccination
(bOPV) campaign. As we approach global eradication, polio will
increasingly be detected only through environmental surveillance.
We developed a framework to convert quantitative polymerase
chain reaction (qPCR) cycle threshold data into scaled WPV1 and
OPV1 concentrations for inference within a deterministic, com-
partmental infectious disease transmission model. We used this
approach to estimate the epidemic curve and transmission dynam-
ics, as well as assess alternate vaccination scenarios. Our analysis
estimates the outbreak peaked in late June, much earlier than pre-
vious estimates derived from analysis of stool samples, although
the exact epidemic trajectory remains uncertain. We estimate the
basic reproduction number was 1.62 (95% CI 1.04–2.02). Model esti-
mates indicate that 59% (95% CI 9–77%) of susceptible individuals
(primarily children under 10 years old) were infected with WPV1
over a little more than six months, mostly before the vaccination
campaign onset, and that the vaccination campaign averted 10%
(95% CI 1–24%) of WPV1 infections. As we approach global polio
eradication, environmental monitoring with qPCR can be used as a
highly sensitive method to enhance disease surveillance. Our ana-
lytic approach brings public health relevance to environmental data
that, if systematically collected, can guide eradication efforts.

poliovirus | silent transmission | mathematical model |
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S ince the beginning of eradication efforts in 1988, incidence
of polio has decreased by more than 99% (1), and, as of

2017, polio was endemic in only three countries. The presence
of polio is often detected only through acute flaccid paralysis
(AFP) surveillance. However, because paralytic polio occurs only
in a small fraction of infections (2, 3) and that fraction is shrink-
ing as vaccination coverage improves, AFP will not be sensitive
enough to trigger the fast and robust responses needed as we
approach global eradication. The 2013–2014 polio outbreak in
Israel (4), which had no cases of AFP, underscores the need for
fast, sensitive methods of polio detection. Here, we describe the
epidemiology of this outbreak using methods we developed to
transform environmental quantitative polymerase chain reaction
(qPCR) time-series data into an epidemic trajectory.

The discovery of polio transmission in Israel received signif-
icant attention (5, 6), as Israel had been previously certified
as a “polio-free” country by the World Health Organization.
Laboratory genetic testing identified the virus as the South
Asian strain of wild poliovirus type 1 (WPV1) (7), and subse-
quent phylogenetic analysis has suggested that an introduction
from Pakistan in late 2012 (8) diverged into Egypt, Israel, and
Syria (5, 8). Routine environmental surveillance detected the

presence of the virus in Israel in late May 2013, and retrospec-
tive analysis showed that the virus had entered southern Israel
in February 2013 (4). Prior analysis indicated that Rahat, the
largest predominantly Bedouin city (9), sustained significant
transmission during the outbreak (10). Israel launched a supple-
mentary vaccination campaign with bivalent oral polio vaccine
(bOPV) at the beginning of August 2013 (4), and the outbreak
ended in early 2014. OPV contains live poliovirus, and vacci-
nated individuals can, therefore, transmit the vaccine strains,
effectively transmitting protection against WPV strains. The vac-
cine virus, however, has the potential to mutate to a virulent
form that can cause paralysis, known as vaccine-associated para-
lytic polio (VAPP) (11), and lead to circulating vaccine-derived
poliovirus (cVDPV) (12). Thus, countries usually switch from
OPV to inactivated polio vaccination (IPV) when the risk of
VAPP occurring is greater than the risk of WPV-associated AFP.
For countries with high rates of vaccination and good water, san-
itation, and hygiene (WASH) practices, the risk of acquiring wild
poliovirus is relatively low. Accordingly, Israel switched to solely
using IPV in 2005 (4). IPV provides protection against paralysis
by developing humoral immunity (13), but it does not prevent
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fecal–oral polio transmission, making control with IPV alone
difficult in areas with poor WASH conditions. Because IPV
allows transmission but suppresses AFP, early detection of polio
outbreaks becomes more difficult under these conditions (14).
Undetected outbreaks and silent circulation place unvaccinated
individuals at risk for AFP, particularly in areas where WASH
infrastructure is poor (15).

Environmental surveillance that tests for the presence of
pathogens in the environment is an important tool for detect-
ing silent circulation because it allows detection of low levels of
poliovirus before AFP cases appear (1). Israel has maintained a
sewage-based environmental surveillance system for polio since
1989, with monthly composite samples taken at sentinel sites.
With the onset of the 2013–2014 silent epidemic, these efforts
were intensified with more frequent sampling and expanded to
multiple locations across Israel, first in both Bedouin and non-
Bedouin cities and towns in southern Israel and later nationwide
(7, 16).

Although the standard for environmental surveillance for
poliovirus has been qualitative tissue culture challenges, the
intensified Israeli surveillance also used quantitative plaque
assays as well as a rapid, direct real-time qPCR assay that pro-
vided fast, sensitive poliovirus concentration data. The qPCR
approach, unlike quantitative plaque assays, could easily distin-
guish between WPV and OPV strains (7, 16, 17). However, it
has been unclear how to best use these qPCR data to inform the
outbreak epidemiology (10, 18). Environmental surveillance pro-
grams are being expanded around the globe, both for polio and
for other pathogens, so developing an inference framework that
can translate these data into public health outcomes is crucial,
particularly as case data will be sparse or nonexistent as we near
eradication. Here, we analyze the outbreak in Rahat, the epicen-
ter of the epidemic, by developing and implementing methods
that use qPCR data within an outbreak modeling framework to
estimate the epidemic trajectories.

Data
Environmental Surveillance. Environmental surveillance samples
were taken at the mouth of the Rahat sewage treatment plant
by an automatic, in-line sampler that collected and pooled sam-
ples over a 24-h period (16). The first WPV1-positive sample was
collected on March 11, 2013, and this date is designated time
t = 0 (note that the beginning of the outbreak is some unknown
time before t = 0, as there was likely a delay between initial infec-
tion and the first detection of pathogens in the sewage). WPV1,
OPV1, and OPV3 strains were separately quantified. Data are
available approximately weekly, and our analysis considers sam-
ples analyzed through the end of December 2013 (SI Appendix).
Some sewage samples are associated with multiple data points:
Genetic material was isolated in duplicate (or more) and sep-
arately assayed. These qPCR results are treated as distinct
data points.

Vaccination Campaigns. Israel conducted two bOPV campaigns
in the region. The first began on August 5, 2013 and reached
90% coverage in children under 10 y old. The second began
on October 7, 2013 and achieved 53% coverage (10). We
assume that the vaccination rate did not vary during the vac-
cination campaigns and estimated an exponential vaccination
rate of 0.074/d for both campaigns from the coverage time-series
data (with the vaccination rate set to zero when the campaign
was not occurring). We assumed the vaccination take rate was
80% (19).

Mathematical Modeling
Measurement Model: Connecting Concentration and Cycle Threshold.
The presence of poliovirus (WPV1, OPV1, and OPV3 sepa-
rately) in sewage samples was assessed by quantitative, real-time

PCR (7). Quantitative PCR targets a DNA sequence that is
copied in each PCR cycle. This method determines the num-
ber of amplification cycles needed for the number of copies of
the targeted DNA sequence, called the copy number, to reach
a threshold number τ (set by the test operator above the back-
ground noise). This number of doubling cycles needed for a
sample to achieve the threshold (in essence, become detectable
above the level of background noise) is called the cycle threshold
(CT), which we denote y . A higher CT value thus indicates a
lower concentration of virus in the original sample.

Connecting the measured CT data y to the concentration of
poliovirus W in sewage samples requires a measurement model.
Each qPCR cycle approximately doubles the copy number of
DNA segments (Fig. 1A), so that τ =W · (1 + ε)y , where τ is
the threshold copy number, W is the poliovirus concentration
(i.e., the initial copy number in the sample), ε is the reaction effi-
ciency [typically 90–110% (20)], and y is the CT value (Fig. 1B).
Rearranging, we see that y is linearly related to the log of the
concentration:

y =
ln τ

ln(1 + ε)
− 1

ln(1 + ε)
· lnW . [1]

We assume ε= 1 (i.e., 100% reaction efficiency or perfect
doubling), which simplifies Eq. 1 to
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Fig. 1. (A) Each qPCR amplification cycle doubles the number of targeted
DNA segments. (B) qPCR cycles are repeated until the number of copies of
the DNA sequence (copy number) crosses the threshold number τ . The num-
ber of cycles needed to cross this threshold is called the cycle threshold (CT),
denoted y. The initial copy number is denoted W .
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y =
ln(τ/W )

ln 2
= log2(τ/W ). [2]

In general, experimental information about the efficiency could
be used to change the logarithm base here.

The laboratory method used to obtain CT values for the 2013
outbreak has been described elsewhere (7, 21–23). The limit of
detection in this assay was on the order of 40 cycles, but the
experiments were run to 60 cycles to distinguish between neg-
ative samples and samples near the limit of detection. Samples
with CT greater than 45 were considered to be negative, while
samples with CT between 37 and 45 were reanalyzed (more
details are available in ref. 21). Here, samples with a CT value of
60 are considered negative for poliovirus. The results were not
sensitive to this choice of value under our inference framework
(details in Parameter Estimation). Although the threshold level
τ is typically knowable from the experimental setup, we treat it
as unknown in this analysis as it is often not recorded. Alterna-
tively, if a quantifying standard is available and run alongside the
samples, the CT values can be transformed into concentrations
directly for use in the model.

Infectious Disease Model. We extend a susceptible, exposed, infec-
tious, and recovered (SEIR) model (SI Appendix) to account
for infection by WPV1, vaccination, and subsequent transmis-
sion of OPV1 (as part of bOPV) reflected in the 2013 Rahat
polio sewage data (Fig. 2, Eqs. 3 and 4, and Table 1). Individ-
uals may be latent, infectious, or recovered with either WPV1
(subscript w) or OPV1 (subscript o) strains. We differentiate
between individuals who have the OPV1 strain from vaccina-
tion (superscript v) and from transmission (superscript t). OPV3
is modeled analogously to OPV1 (details and equations in SI
Appendix).

The susceptible compartment includes people who have not
previously received OPV and those whose gut immunity has
waned. Because Israel transitioned from OPV to IPV in 2005,
the target population is predominantly children under age 10 y
(24). The size of our target population is unknown and cannot be
determined from environmental surveillance alone (and could
not be determined even with case data without immunological
profiles and movement patterns). Hence, compartments S , E , I ,
and R are scaled to represent the fraction of this (unknown total)
population. Our target population consists only of people who
are susceptible at the start of the outbreak. Accordingly, there
are no recovered individuals in the target population at the start

Susceptible Latent Infectious Recovered

Measurement

Measurement
ξ

ξ

ρ

Fig. 2. An SEIR-type model for poliovirus, incorporating vaccination and
environmental surveillance. The model represents infection by two strains of
poliovirus (OPV1 as part of bOPV, with subscript o, and WPV1, with subscript
w). Individuals infected with OPV1 acquire it through vaccination (super-
script v) or transmission (superscript t). Model equations are given in Eqs. 3
and 4, and parameters are in Table 1.

Table 1. Parameters for the polio outbreak model (Fig. 2 and
Eqs. 3 and 4)

Parameter Definition

β WPV1 transmission rate, 1/d
ρ Ratio of OPV1 to WPV1 transmission rates
ϕ Vaccination rate, 1/d
σ Rate of transition from latent to infectious state, 1/d
γ Rate of recovery from poliovirus infection, 1/d
αw Shedding rate for WPV1, copies per sewage volume per day
αo Shedding rate for OPV1, copies per sewage volume per day
ξ Rate of removal of poliovirus from sewage, 1/d
τ Copy number threshold, copies per sample volume

of the outbreak (R(0) = 0). Our simulation spans less than 1 y,
so we neglect waning immunity and vital dynamics (25).

Susceptible individuals can be vaccinated at a rateϕ, becoming
latently infected with the vaccine strain (E v

o ), or can be infected
via transmission, becoming latent with the WPV1 (E t

w ) or OPV1
strain (E t

o). Although individuals in any compartment can be vac-
cinated, we assume that there is no effect on individuals already
infected with either strain. Latent individuals progress to the cor-
responding infectious compartment (I v

o , I t
o , or Iw ). Infectious

individuals are those who can directly transmit pathogens to
other individuals, through fecal–oral or oral–oral transmission.
Once infectious, individuals shed virus to the sewage compart-
ments (Ww and Wo) through their stools. Recovered individuals
(Rv

o , Rt
o , and Rw ) do not shed and do not transmit virus. We

assume that the latent and infectious periods for the WPV1 and
OPV1 strains are the same.

The Ww and Wo compartments model the concentration of
WPV1 and OPV1 in sewage where environmental samples are
taken, given in copy number per sample volume. Infectious indi-
viduals increase the environmental concentration with rates αw

and αo , which take into account the rate at which virus is shed,
the fraction of shed virus that is deposited into the sewage, and
the total volume of the sewage. We assume that virus is removed
from sewage at rate ξ for both strains, accounting for both sewage
flow and pathogen die-off.

Although this model is inspired by other models with environ-
mental compartments, such as the susceptible, infectious, water,
and recovered (SIWR) model (26, 27) and the environmen-
tal infection transmission system (EITS) model (28, 29), this is
not a model of environmentally mediated transmission; i.e., we
assume that there is no transmission resulting from ingestion
of pathogens from the environment (in this case, sewage). The
W compartments solely represent reservoirs for environmen-
tal surveillance. If the environmental surveillance is analyzed by
qPCR, the sample concentration W (Eq. 2) corresponds to the
concentration of model compartment W (Eq. 4) when concen-
tration is given in number of viral genomes per qPCR sample
volume.

The equations governing the dynamics of people are

Ṡ =−ρβS(I v
o + I t

o )−βSIw −ϕS ,

Ė v
o =ϕS −σE v

o ,

Ė t
o = ρβS(I v

o + I t
o )−σE t

o ,

Ėw =βSIw −σEw ,

İ v
o =σE v

o − γI v
o , Ṙv

o = γI v
o ,

İ t
o =σE t

o − γIo , Ṙt
o = γI t

o ,

İw =σEw − γIw , Ṙw = γIw

[3]

and the equations governing poliovirus concentration in the
sewage are
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Ẇo =αo(I v
o + I t

o )− ξWo

Ẇw =αw Iw − ξWw .
[4]

The basic reproductive number, R0 (i.e., the number of sec-
ondary infections produced from one infected individual in a
completely susceptible population) for this model is the R0 of
the WPV1 submodel,R0 =β/γ.

Identifiability Analysis. Identifiability analysis is a necessary pre-
cursor to parameter estimation from data. Structural identifi-
ability is a theoretical analysis that determines whether model
parameters can be uniquely estimated from perfectly observed
output trajectories; this analysis reveals inherent barriers to
parameter estimation in the model structure. When parame-
ters are not individually identifiable, we can find groups of
parameters that can be uniquely determined, called identifiable
parameter combinations (30). Once the parameter identifiability
is known in the idealized case, practical identifiability analy-
sis then asks whether there are additional barriers to uniquely
estimating parameters when real-world data, and the associated
variability, are considered (31). Observability is analogous to
identifiability but concerns whether the trajectories of state vari-
ables, rather than model parameter values, can be recovered
from the observed quantities (32, 33).

In this analysis, we are fitting a disease transmission model to
a form of data not previously used in this context, i.e., qPCR CT
data. It is not a priori clear which infectious disease transmission
model parameters are estimable from this kind of data. Hence,
we first consider the structural identifiability of this model and
the observability of its states, given this kind of data. Second,
we use practical identifiability methods to estimate the identi-
fiable parameters or parameter combinations in the context of
the Israel polio outbreak. All of the identifiability details and
results are in SI Appendix. In brief, we are able to recover the
transmission and recovery rates, fractions of the population in
each disease stage, and scaled WPV1 and OPV1 concentrations
in the sewage. Without additional assumptions or data, we are
not able to recover the numbers of individuals in each disease
stage, the absolute polio concentrations, or the pathogen shed-
ding or decay rates from the qPCR environmental surveillance
data in this modeling framework.

Model Reparameterization. One important implication of our
identifiability analysis is that the concentration of poliovirus W
can be determined only up to a constant; i.e., we determine the
scaled concentrations,

W̄o = ξWo/αo ,

W̄w = ξWw/αw .
[5]

This result is due in part to the ratio W /τ in the measurement
equation (Eq. 2). The data determine only the ratio W /τ , so the
actual values of W and τ could be proportionally higher or lower.
Moreover, τ and α are in an identifiable combination (details in
SI Appendix). After the rescaling, we have

˙̄Wo = ξ(I v
o + I t

o − W̄o),

˙̄Ww = ξ(Iw − W̄w )
[6]

for the full outbreak model. The scaled concentrations take
values between 0 and 1 and represent the fraction of the the-
oretical maximum concentration that would result if the entire
population was shedding.

A second implication of the identifiability analysis is that the
pathogen decay rate ξ can be arbitrarily large and still fit the data

well. Dynamically, this means that W̄o and W̄w closely follow the
values of Io and Iw , respectively, and

W̄o ≈ Io = I t
o + I v

o ,

W̄w ≈ Iw .
[7]

Consequently, we use the measurement equations

yo = log2((ξτ/αo)/Io),

yw = log2((ξτ/αw )/Iw )
[8]

to relate the cycle threshold data y to the infection prevalence
I . Even when the individual parameters are not separately iden-
tifiable, the parameter combinations ξτ/αo and ξτ/αw may be
identifiable (and are in this analysis).

Simulation. We fitted the full model (Eq. 3) to the WPV1 and
OPV1 qPCR CT data with the scaled measurement equation
(Eq. 8); we also fitted to the OPV3 data, as discussed in SI
Appendix. At time t = 0 (March 11, 2013), we assume no vac-
cination (i.e., ϕ= 0, E v

o (0) =E t
o(0) = I v

o (0) = I t
o (0) = 0) and, as

previously discussed, that there are no recovered people in the
modeled population (Rv

o (0) =Rt
o(0) =Rw (0) = 0). The vaccina-

tion rate becomes a fixed, nonzero constant ϕ during the two
vaccination campaigns, which began August 5 and October 7,
2013 and are modeled as lasting 31 d and 10 d, respectively,
and is set to zero at all other times. Parameters ρ and σ are
fixed, whereas parameters ξτ/αo , ξτ/αw , β, and γ are esti-
mated. The initial condition Iw (0) is estimated. To determine
Ew (0), we simulate a model trajectory with the same param-
eters but initial conditions I ∗w (0) = 0.001, E∗w (0) = γ/σ · I ∗w (0),
S∗(0) = 1− I ∗w (0)−E∗w (0). Ew (0) is set to the value of E∗w at the
time when I ∗w = Iw (0); i.e., Ew (0) is chosen to be consistent with
Iw (0). All simulations and analyses were done in R (v.3.4.1); we
used deSolve for ordinary differential equation model simulation
and the David–Fletcher–Powell algorithm in the Bhat package
for maximum-likelihood estimation (34, 35).

Parameter Estimation. It is reasonable to expect lower CT values
to be associated with higher variance given that viral particles
might be Poisson distributed in sewage samples. Alternatively,
higher CT values might have greater variance as differences are
magnified and errors are accumulated with each PCR cycle.
Regardless, there is no natural variance structure for qPCR
CT data, which is a log-transformation of concentration. Fur-
ther, values are capped at 60, which corresponds in this study
to absence of the virus. Consequently, a least-squares approach
to parameter estimation is problematic. We found that a sum
of absolute differences (L1) approach on the CT scale was a
sensible alternative, heuristically resulting in the median trajec-
tory instead of the mean trajectory, eliminating the sensitivity
of the results to the choice of 60 as the “absence of poliovirus”
value. We confirmed that the choice of the CT value of negative
samples does not change the model fit or parameter estima-
tion results, as long as the model trajectory does not cross
this value; i.e., setting the negative value to a CT of 45 or
higher here gives equivalent results. This approach is equiva-
lent to maximum-likelihood estimation under the assumption
that errors are Laplace distributed, and we minimize the negative
log-likelihood,

NLL(θ) =

√
2

ς

∑
i

|yi − ŷi(θ)| , [9]

where {yi} are the CT data, ς is the variance of the error dis-
tribution of the data, {ŷi} are the modeled CT values, and θ is
the vector of model parameters. We estimate ς = 0.98 from the
multiple qPCR tests of sewage samples collected on certain days.
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Uncertainty Quantification. Likelihood-based 95% CIs for param-
eter estimates were determined by parameter profile likelihoods
(details in SI Appendix). These profile likelihoods are transects
through the 95% confidence region of parameter space. We sim-
ulated trajectories for each parameter vector in each profile and
estimated the 95% CIs for the maximum-likelihood trajectory to
be the maximum and minimum at each time point in this set of
simulated trajectories.

Results
Polio Epidemic Dynamics in Rahat, Israel, 2013. Our analysis esti-
mates that peak concentration of WPV1 occurred in late
June (Fig. 3A), while the peak concentration of the OPV1
strain occurred shortly after introduction of the bOPV vac-
cine in August (Fig. 3B), with a moderate rise for WPV1
and a rapid, steep rise for OPV1 following onset of vaccina-
tion. We plot CT data on an inverted axis because a higher
CT value indicates a lower concentration. Corresponding fig-
ures on the linear scale are provided in SI Appendix. Both
model fits follow the observed trends in CT values over the
outbreak.

Based on these estimated concentration values, our model
simulations predict a peak in WPV1 infections around June
26, approximately 6 wk before the bOPV vaccination campaign
began on August 5 (Fig. 4). By August 5, 56% (95% CI 9–75%)
of the susceptible population was infected with WPV1. Infec-
tion from OPV1 was more rapid and peaked in late August,

B

A

Fig. 3. PCR CT data and model fits for (A) WPV1 and (B) OPV1 strains
in sewage. The PCR detection limit corresponds to about a CT of 40, and
experiments were run to 60. The ribbons give the CIs for the maximum-
likelihood trajectory using likelihood-based estimates of the 95% confi-
dence parameter region. The gray bars give the approximate time periods
of the bOPV campaigns.

0.00

0.05

0.10

0.15

0.20

0.25

04−2013 06−2013 08−2013 10−2013 12−2013
Date

Fr
ac

tio
n 

in
fe

ct
io

us

OPV1, from transmission

OPV1, from vaccine

WPV1

Fig. 4. Modeled fractions of the population that were infected with WPV1,
OPV1 through vaccination, and OPV1 through transmission. The ribbons
give the CIs for the maximum-likelihood trajectory using likelihood-based
estimates of the 95% confidence parameter region. The gray bars give the
approximate time periods of the bOPV campaigns.

midway through the first vaccination campaign. Most OPV1
infections were from direct vaccination, and there was compara-
tively little person-to-person transmission of the vaccine strain to
susceptible individuals.

We estimated five model parameters (Table 2; parameter pro-
files quantifying the CIs are provided in SI Appendix). From the
model fit, we estimate R0 was 1.62 (95% CI 1.04–2.02) for this
outbreak.

Comparison with Stool Sample Data. The previous estimate of the
trajectory of the Israeli polio epidemic was based on convenience
stool samples of children under 10 y old who had not been
vaccinated with OPV before the outbreak (10). Stool sampling
occurred in two phases—between July 2 and 24 and between
September 1 and June 26 of the following year—and resulted
in 2,196 nonduplicate samples of children under 10 y old in total.
Stools were collected from healthy children in daycares, health
clinics, and other convenience locations across the Negev region
of southern Israel (24). Children in the first phase were OPV
naive but many or most children in the second phase would
have been vaccinated in the bOPV campaign. The surveys were
intended to detect the presence or absence of WPV1 and esti-
mate poliovirus excretion rates but were not designed to assess
infection prevalence [in particular, older children and adults
were underrepresented in the original stool sample and were not
included in the previous transmission analysis (10)]. The number
of samples collected daily varied widely, with a median number
of 38 in the first phase and 12 in the second phase. Despite the
limitations of the dataset for estimating population-level preva-
lence, it is the only direct measure of wild poliovirus infection for
this epidemic.

The previous modeling analysis of these stool samples indi-
cated that the outbreak peaked in mid-August (10), but there
is considerable uncertainty because of the variability and con-
venience sampling nature of the samples and because there
are no samples in the crucial late summer period (Fig. 5A; a
plot scaled to show the full data uncertainty is provided in SI
Appendix).

On the other hand, the qPCR environmental sample data rep-
resent a different population that experienced the same outbreak
(all initially susceptible, not just under 10-y olds, but only those in
Rahat, rather than across the Negev). Our analysis of the qPCR
environmental surveillance data, which spans the entire period,
suggests different outbreak dynamics, with the outbreak peak-
ing approximately 7 wk earlier than previous analysis of the stool
samples suggested (Fig. 5B).
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Table 2. Fixed and estimated model parameter values

Parameter Value (source or 95% CI)

Fixed
Ratio of OPV1 to WPV1 transmission

rate, ρ 0.37 (36)
Vaccination rate, ϕ 0.8 × 0.074/d (10, 19)
Rate of progressing from latency, σ 0.25/d (37, 38)

Estimated
WPV1 transmission rate, β 0.151/d (0.108, 0.174)
Recovery rate, γ 0.93/d (0.078, 0.108)
OPV1 sewage scaling parameter, ξτ/αo 2.02 (1.1, 4.2) × 107

WPV1 sewage scaling parameter, ξτ/αw 1.07 (0.03, 1.66) × 107

Fraction infected at t = 0, I0 4.34 (0.39, 14.4) × 10−3

Alternative Vaccination Campaign Timing. We estimate that the
cumulative incidence (i.e., attack ratio) without any vaccination
campaign would have been 0.65 (95% CI 0.10–0.80) (Fig. 6).
This estimate is consistent with final size calculations using our
estimate ofR0 = β/γ = 1.62 (39, 40). For the true August 5 vac-
cination start date, we estimate that cumulative incidence was
0.59 (95% CI 0.09–0.77) and that approximately 10% (95%CI
1–24%) of infections were averted by the vaccination campaign.
Simulations of earlier implementation of the bOPV campaign
resulted in a lower attack ratio.

Discussion
Using high-quality, time-series environmental surveillance data,
we provide epidemiological insight into the 2013–2014 polio
outbreak in Israel, demonstrating the promise for direct qPCR
analysis of environmental samples as a rapid, sensitive means
of public health surveillance. To this end, we developed a
framework to incorporate qPCR data into a compartmental,
deterministic SEIR-type infectious disease transmission model
and reanalyzed the 2013–2014 polio outbreak in Israel with
environmental surveillance data alone.

Epidemiological Implications. In the short time between the intro-
duction of WPV1 into Rahat (February–March 2013) and the
start of the vaccination campaign (August 2013), Rahat experi-
enced substantial transmission of WPV1. Because of the vari-
ability and early sparseness of the PCR CT data, there is consid-
erable uncertainty in the exact epidemic curve; small differences
in trajectories through the CT data translate to substantial differ-
ences on the population scale. Moreover, while we have captured
the uncertainty given our choice of model and likelihood struc-
ture, there is additional epistemological uncertainty that is not
captured, surrounding both the model structure and the choice
of error structure and scale. Nevertheless, while the exact impact
of the vaccination campaign is uncertain, our analysis of the data
indicates that the epidemic peaked in midsummer and therefore
was in decline when vaccination began.

From environmental sampling data in other Bedouin commu-
nities in the region, we know that polio transmission was not
limited to Rahat, which is the largest predominantly Bedouin
community in the region. Indeed, movement patterns likely
contributed to sustained regional transmission. Moreover, a
large percentage of the Bedouin population in the Negev live
in unrecognized communities with little-to-no WASH infrastruc-
ture (9). Because these communities have no centralized sewage
system, they are outside of the scope of the Israeli environmen-
tal surveillance system but likely had high polio transmission.
A full regional epidemiological analysis of the spatiotempo-
ral and cultural patterns of the outbreak is a natural next
step, which will require an analysis of sewage samples collected
throughout Israel.

This epidemic further highlights the complexities and diffi-
culties of polio vaccine policy as we approach eradication. The
decision to replace OPV with IPV balances the risk of wild
polio importation with the risk of VAPP. Because IPV prevents
adverse neural outcomes (AFP) but does not prevent fecal–oral
transmission, poliovirus can circulate, particularly when fecal–
oral transmission is enhanced by poor WASH infrastructure.
Moreover, because IPV prevents AFP, AFP surveillance systems
will not catch the outbreak early, allowing silent circulation to
put a greater number of unvaccinated people at risk for paral-
ysis. However, use of OPV elevates the risk of strain mutation
to a neurovirulent form. Localized poor WASH conditions and
the greater proportion of children in Bedouin communities, com-
bined with unexpected outbreaks in neighboring countries, led to
the 2013–2014 outbreak in Israel. Fortunately, the early environ-
mental detection and subsequent vaccination campaigns ensured
that there were no cases of AFP. Additionally, we cannot know
how many cases of VAPP were prevented since the switch from
OPV to IPV in 2005 and previous use of IPV followed by OPV
(during which periods there were no cases of VAPP).

The model parameter estimates are largely reasonable, al-
though the estimated mean infectious period of 11 d (corre-
sponding to γ = 0.09) is lower than values reported in the litera-
ture, even if much of the population has received IPV (41). This

A

B

Fig. 5. (A) Prevalence of WPV1 in stool of a convenience sample of under
10-y olds in Southern Israel, where point size is scaled to sample size, with
weekly weighted moving average and 95% Clopper–Pearson CIs for the data
points and the weekly average. (B) Modeled fraction of infectious people
(with 95% CI for the maximum-likelihood estimate) based on environmen-
tal surveillance data in Rahat, Israel (WPV1 CT values transformed by the
model) and the stool sample prevalence (CIs faded for readability). The envi-
ronmental surveillance data suggest an earlier peak than the stool samples
do. The stool samples and environmental surveillance represent different
populations during the same outbreak.
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Fig. 6. Simulated cumulative incidence (fraction) of the population
infected with WPV1 and OPV1 virus strains over the course of the outbreak
as a function of the vaccination campaign start date. The relative campaign
timing and rates are held constant while the start date changes. The gray
bars give the dates of the bOPV campaigns. Earlier vaccination dates result
in a larger fraction of individuals infected with the vaccine strain and a
smaller fraction with the wild strain.

estimate may be a consequence of variable shedding intensity
over time, as viral concentrations in stool drop off after the first
week of infection (41, 42). Since infectious individuals are mea-
sured through their shedding into the sewage, a drop in shedding
intensity will be interpreted by the model as a shorter duration of
infection; i.e., individuals shedding low levels of the virus will be
treated as recovered, even if they still harbor the infection. Thus,
we consider the parameter estimate to be an estimate of the
duration of peak shedding rather than true infection duration.

Yaari et al. (10) previously analyzed the 2013–2014 Israel polio
outbreak using a combination of a subset of stool surveys (24)
(from healthy children and infants at daycare centers or routine
visits to healthcare clinics) and supplementary vaccination and
demographic information to fit a disease transmission model.
From these data, the authors estimated the outbreak occurred in
mid-August, and they estimated the basic reproduction number
for the outbreak to be 1.77 (1.46 –2.30). The environmental and
stool sample data suggest different outbreak timing, which has
led to the different analyses and interpretations. There are sev-
eral possible explanations for these differences. The stool sample
data may not be a reliable measure of population infection preva-
lence: These data came from small, convenience samples that
were not designed to be fully representative either of the whole
population [older children (10+ y old) and adults were underrep-
resented in the original sample and not included in Yaari et al.’s
(10) analysis] or of the likely susceptible population. Alterna-
tively, the stool data may be an accurate, if noisy, reflection of
infection prevalence in the under 10-y-old population. In that
case, our analysis of the environmental surveillance data suggests
an alternative shape with which to interpret the stool data: The
data in the first survey may represent the time following peak
prevalence rather than a ramp up (Fig. 5B). In some sense it
is not surprising that there is a higher prevalence of WPV1 in
the stool data than predicted by our analysis since the underly-
ing populations differ: Our analysis is of the initially susceptible
population of Rahat (with unknown age distribution), while the
stool sample data represent only under 10-y olds sampled from
across the region. Finally, because our model may treat people
who are still infected but are shedding minimally as recovered, as
discussed above, the true epidemic curve may have a longer tail
than our analysis suggests, which is consistent with the existence
of positive stool samples in October and November.

A number of assumptions were used in our analysis. First, we
assume that sewage trunk lines are well-mixed representations

of the population’s sewage as a whole. Consequently, the sewage
scaling parameter ξτ/α also accounts for discrepancies between
the population captured by the sewage and the true population,
like a reporting rate does. Ultimately, microbiologists may need
to take an epidemiological perspective when developing their
sampling plans for grab samples that are not well mixed. Second,
we did not consider the possibility of partial immunity. Individu-
als with partial immunity would have different transmission rates
and would change the number of susceptibles in the popula-
tion (43). Since we relied on environmental data alone, we do
not know the immune status or other characteristics of individu-
als, such as age. Finally, the assumption that WPV1, OPV1, and
OPV3 have the same duration of infectiousness (36) was impor-
tant for this model, because it allowed the model to use the OPV
data to add confidence to the model fit of the decline in WPV1
CT values, which, on its own, is influenced by the negative tests
late in the year.

In the prevaccination era, cases of polio were strongly seasonal
in temperate areas; the cause of this seasonality is unknown,
but may be related to temperature or humidity (3). The aver-
age monthly high temperature in this region of Israel ranges
from 16.6 ◦C (62 ◦F) in January to 33.3 ◦C (92 ◦F) in July,
while the relative humidity ranges from 35% in May to 50%
in January (https://www.weather-atlas.com/en/israel/beer-sheva-
climate). It is unclear whether these climatic variations would
substantially impact poliovirus transmission. We modeled sea-
sonal variation in transmission with a periodic function (model
fits and parameter estimates are included in SI Appendix). How-
ever, the improvement in fit was negligible and did not greatly
affect the other parameter estimates, suggesting that seasonality
was not an important factor driving transmission. We, therefore,
did not include seasonal variation in our final analysis.

Environmental Surveillance and qPCR. Since the 2013–2014 Israeli
epidemic, the World Health Organization and the Global
Polio Eradication Initiative have added additional environmen-
tal surveillance sites in the remaining polio endemic countries
(Nigeria, Afghanistan, and Pakistan) to help detect poliovirus
circulation (44, 45). The Israeli epidemic highlighted the value
of a highly sensitive environmental surveillance program during
the final phases of global eradication. Areas with poor WASH
infrastructure—where enteric pathogens such as poliovirus can
contribute to sustained transmission (46, 47)—are particularly
good candidates for environmental surveillance programs. Envi-
ronmental surveillance is also well suited to highly vaccinated
populations, where paralytic polio is unlikely. Although AFP
surveillance remains the standard for polio detection (48), as we
approach eradication, silent polio circulation will increasingly be
detected through environmental surveillance before AFP cases
occur (49, 50). Indeed, early detection is critical to interrupting
silent poliovirus circulation by allowing for earlier mobilization
of public health responses and vaccination campaigns before the
first case of AFP is identified. Environmental surveillance may
also be warranted in certified polio-free countries. The recent
outbreak of vaccine-derived poliovirus 1 (VDPV1) in Papua New
Guinea was detected only by polio case surveillance (51).

However, the current standard method of environmental
surveillance of polio is the tissue-culture–based intratypic dif-
ferentiation (ITD) assay, which is slower than direct qPCR and
not quantitative (52, 53). Although presence/absence data are
valuable, we should move to quantitative assays as we approach
eradication. Because direct qPCR is fast and relatively cheap,
the frequency and extent of environmental surveillance could
be amplified and used to fit spatial models of transmission. Fre-
quent sampling is essential if we are to understand the underlying
dynamics with confidence, as our analysis highlights. With well-
planned environmental surveillance, these models may help, for
example, to assess the various hypotheses of sustained WPV1
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transmission in Pakistan (49). Additionally, initial results suggest
that there is a strong correlation between plaque assay and qPCR
results, and an analogous modeling and inference framework to
incorporate plaque assay data could be developed when those
data are available.

Modeling Framework and Identifiability. Previous environmentally
mediated infectious disease modeling work has demonstrated
that quantitative environmental surveillance data can improve
parameter identifiability and estimation for environmentally
mediated infectious disease transmission models when they are
used in combination with incidence or prevalence data (27, 29,
54, 55). However, this previous work has considered only simu-
lated environmental surveillance data or environmental surveil-
lance in conjunction with prevalence or incidence data. Since
there were no paralytic cases in the 2013–2014 Israeli out-
break, the only case data are stool data that are temporarily
limited, are uncertain, and may not be representative of the
population at large (24). As a result, this outbreak provided an
opportunity to fit a model to time-series PCR data from the
environment and an ideal situation to test the potential use of
environmental surveillance data alone for model-based predic-
tion and estimation. Because polio transmission will increas-
ingly be detected only through environmental surveillance, a
strong modeling and parameter estimation framework for trans-
mission modeling with only environmental surveillance data
is necessary. The methods used in this analysis provide such
a framework and can be used to understand future disease
outbreaks.

The framework presented here may also be modified to exam-
ine, for example, surveillance from nonsewage environments
(such as environmental water sources, sewage canals, etc.) and
could be used in a stochastic setting to examine smaller outbreaks
as we approach eradication (potentially using estimation meth-
ods better suited for stochastic models, such as refs. 56–58). The
methods are also not limited to polio. Many other pathogens can
be detected in stool or other environmental reservoirs. There
is particular interest in implementing environmental surveil-
lance for panels of enteric pathogens, and methods of detection

are being developed (59–61). If the pathogens are transmitted
through the environment, the model we developed here will need
to be extended to include that transmission pathway (26–29).

Conclusion
Importations of wild and vaccine-derived poliovirus are expected
to continue to occur sporadically. Environmental surveillance
is particularly useful for detecting silent circulation of the dis-
ease in these situations. Our modeling and parameter estimation
framework can be used to transform environmental surveillance
data into estimates of incidence. Enhancement of environmental
surveillance in the remaining polio-endemic countries—and the
use of quantitative PCR, in particular—could hasten eradication.

Supporting Information
SI Appendix . The SI Appendix (i) includes proofs of the iden-
tifiability and model reparameterization results, including the
practical unidentifiability of the pathogen removal rate; (ii) pro-
vides the profile-likelihood plots and parameter estimate CIs;
(iii) provides details on the modeling and results for OPV3; (iv)
gives model fits on the linear rather than log scale; (v) pro-
vides the stool data with the plot scaled to view the full data
uncertainty; and (vi) provides details on a model with seasonal
variation in polio transmission.

Datasets S1–S4. The WPV1, OPV1, and OPV3 qPCR CT data
used in this analysis are included. The relevant stool sample data
for children under 10 y old, available from ref. 10, are included
for the reader’s convenience.
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