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Suspected fractures are among the most common reasons for
patients to visit emergency departments (EDs), and X-ray imaging
is the primary diagnostic tool used by clinicians to assess patients
for fractures. Missing a fracture in a radiograph often has severe
consequences for patients, resulting in delayed treatment and poor
recovery of function. Nevertheless, radiographs in emergency set-
tings are often read out of necessity by emergency medicine clini-
cians who lack subspecialized expertise in orthopedics, and misdi-
agnosed fractures account for upward of four of every five reported
diagnostic errors in certain EDs. In this work, we developed a deep
neural network to detect and localize fractures in radiographs. We
trained it to accurately emulate the expertise of 18 senior sub-
specialized orthopedic surgeons by having them annotate 135,409
radiographs. We then ran a controlled experiment with emergency
medicine clinicians to evaluate their ability to detect fractures in
wrist radiographs with and without the assistance of the deep
learning model. The average clinician’s sensitivity was 80.8% (95%
CI, 76.7–84.1%) unaided and 91.5% (95% CI, 89.3–92.9%) aided,
and specificity was 87.5% (95 CI, 85.3–89.5%) unaided and 93.9%
(95% CI, 92.9–94.9%) aided. The average clinician experienced a
relative reduction in misinterpretation rate of 47.0% (95% CI, 37.4–
53.9%). The significant improvements in diagnostic accuracy that
we observed in this study show that deep learning methods are
a mechanism by which senior medical specialists can deliver their
expertise to generalists on the front lines of medicine, thereby
providing substantial improvements to patient care.
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C linicians lack the subspecialized expertise and experience
necessary to accurately identify fractures on radiographs,

particularly in busy clinical settings where experienced radi-
ologists or other practitioners may be unavailable. Clinicians
may also be subject to excessive workloads, which cause fatigue
and susceptibility to interpretational errors (1, 2). Radiographic
interpretation often takes place in environments without quali-
fied colleagues available for second opinions (2). Circumstances
like those increase the risk of inaccurate identification of frac-
tures on radiographs and often negatively impact patient care
(3–6), especially in emergency departments, where missed frac-
tures account for between 41 and 80% of reported diagnostic
errors (5, 7, 8). These errors can have a devastating impact on
subsequent function, resulting in malunion, osteonecrosis, and
arthritis, all with attendant morbidity.

Computer-assisted detection (CAD) systems are a potential
solution to this problem if they can quickly provide clinicians
with a reliable second opinion, identifying regions of radiographs
highly likely to contain pathology. However, the clinical use
of CAD in medical imaging has produced mixed results. For
instance, despite the use of CAD for the majority of mammog-
raphy readings in the United States (9), several large prospec-
tive studies have indicated that mammography CAD actually

decreases the specificity of radiologists without improving their
sensitivity, resulting in an increased incidence of unnecessary
diagnostic tests and biopsies with no improvement in cancer
detection rates (9–12). A contributing factor to the ineffec-
tiveness of early CAD systems is their underlying technology.
Many early CAD algorithms functioned by identifying regions
of an input image containing predefined texture patterns or
geometric shapes, with the expectation that alerting clinicians
to these visual features would be useful. Because of the limi-
tations in the image analysis algorithms on which early CAD
systems were based, they often would reliably mark pathologi-
cal regions of images at the expense of overzealously identifying
many nonpathological regions.

Recent advances in deep learning, a subfield of artificial intel-
ligence, have allowed for the creation of computer models that
can accurately solve many visual tasks involving object detection,
localization, and classification (13). Within medical imaging,
deep learning has shown immense initial promise at tasks, such
as predicting the severity of diabetic retinopathy from retinal
fundus images (14), classifying skin lesions (15), and analyz-
ing histopathology (16, 17). Deep learning models differ from
the technology used by early CAD systems in that they do not
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rely on predefined representations of low-level visual features
within images. Instead, they can learn to discover task-specific
visual features that support making accurate clinical interpre-
tations. Because the models learn by example, subspecialized
experts can train models to detect fractures by carefully label-
ing them in large datasets of radiographs. This is a unique
approach, centered on improving the diagnostic skills of clin-
icians and radiologists rather than replacing them by the use
of an algorithm. With a sufficient supply of expertly labeled
examples, an appropriately designed model can learn to emu-
late the judgments of those expert clinicians who provided the
labels. In this work, we hypothesized that a deep learning model
trained on a large dataset of high-quality labels would produce
an automated fracture detector capable of emulating the diag-
nostic acumen of a team of experienced orthopedic surgeons.
We further hypothesized that, when the model’s output is pro-
vided to less experienced emergency medicine clinicians, their
fracture detection sensitivity and specificity would be significantly
improved.

Methods
Overview. For the purpose of model development, we retrospectively
obtained a collection of radiographs from a specialty hospital in the United
States. A group of senior subspecialized orthopedic surgeons provided clini-
cal interpretations for each radiograph in the collection. The interpretations
were provided through a web-based tool that allowed the surgeons to
draw bounding boxes around every fracture that they could identify in
the radiographs. We designed a deep learning model to detect and local-
ize fractures in wrist radiographs and then trained it on a subset of the
labeled dataset. We then clinically tested the trained model’s performance
on two test datasets: (i) a random subset of the development dataset’s wrist
radiographs that had been withheld from the model during training and
validation and (ii) a separate dataset of all wrist radiographs obtained from
the same hospital over a 3-mo period (which followed and did not over-
lap with the period in which the model’s training data were acquired). To
determine whether the trained model can help emergency medicine clini-
cians improve at fracture detection, we then ran a controlled experiment
with emergency medicine clinicians, in which we evaluated each clinician’s
ability to detect fractures in wrist radiographs both with and without the
availability of the model’s output while making their interpretations.

Datasets. Radiographs acquired between September 2000 and March 2016
at the Hospital for Special Surgery (HSS) were used for this study. The radio-
graphs were deidentified according to the Health Insurance Portability and

Accountability Act Safe Harbor before being provided to the investigators.
The dataset consisted of 135,845 radiographs of a variety of body parts.
Of these, 34,990 radiographs were posterior–anterior or lateral wrist views.
The remaining 100,855 radiographs belonged to 11 other body parts: foot,
elbow, shoulder, knee, spine, femur, ankle, humerus, pelvis, hip, and tibia.
The nonwrist body part with the maximum number of radiographs was
shoulder with 26,042 images, and spine had the least number of radiographs
with only 885 images.

Two datasets were used for clinical tests of the model. The first dataset
(hereafter, “Test Set 1”) consisted of 3,500 wrist radiographs, which were
randomly withheld from the above wrist dataset of 34,990 radiographs.
The second dataset (hereafter, “Test Set 2”) consisted of 1,400 deidentified
posterior–anterior- and lateral-view wrist radiographs from the HSS. These
radiographs were consecutively sampled over a 3-mo period in 2016 (July to
September) to ensure that the dataset was representative of a real-world
clinical environment.

In total, 132,345 radiographs were used for model development (i.e.,
model training and validation), which consisted of all the original 135,845
radiographs provided by HSS except for those withheld for Test Set 1. Of
these, the 100,855 radiographs corresponding to all of the body parts other
than wrist (hereafter referred to as “Pretraining Set”) were used for boot-
strapping the model training process. The 31,490 radiographs of the wrist
(hereafter referred to as “Wrist Training Set”) were used during the training
of the model.

Reference Standard. Ground truth labels were assigned to every radiograph
in the datasets for the purpose of training the model, evaluating its accu-
racy, and then evaluating the accuracy of the emergency medicine clinicians
with and without the model’s assistance. Each ground truth assignment was
made by one or more subspecialized orthopedic surgeons using an annota-
tion software tool. The tool allowed the surgeons to label the presence and
location of any fractures visible within each radiograph.

Development and Training of the Model. We used a deep convolutional neu-
ral network (DCNN) approach to fracture detection and localization. DCNNs
are a type of nonlinear regression model: they are composite functions
that transform their input variables (radiographs) into one or more out-
puts (pathology identified within radiographs). The equations specifying
the input–output relationship have free parameters. Training of the model
involves fitting these free parameters to a dataset of example input–output
pairings (called the “training set”). The model that we developed for frac-
ture detection poses the task as a simultaneous binary classification and
conditional semantic segmentation problem, meaning that one of the out-
puts is a single probability value for a yes or no decision and another output
is a dense conditional probability map, which we refer to as a heat map. The
single probability value represents the model’s confidence that the input

Fig. 1. A, Left shows a typical radiograph, which is provided as an input to the model. A, Right depicts a heat map overlaid on the radiograph. When the
model determines that a fracture is present, the heat map represents the model’s confidence that a particular location is part of the fracture, with yellow
and blue being more and less confident, respectively. (B) Close-up views of four additional example inputs and heat map overlays.
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Fig. 2. A schematic of how radiographs are processed to detect and localize fractures. An input radiograph is first preprocessed by rotating, cropping,
and applying an aspect ratio preserving rescaling operation to yield a fixed resolution of 1,024 × 512. The resulting image is then fed to a DCNN. The
architecture of this DCNN is an extension of the U-Net architecture (18). The DCNN has two outputs: (i) the probability that the radiograph has a visible
fracture any place in the image and (ii) conditioned on the presence of a fracture, a heat map indicating for each location in the image the probability that
the fracture spans that location. When the probability of a fracture is high enough to render a clinical decision in favor of a fracture being present, the CAD
system shows users the heat map overlaid on the preprocessed image. More information about the model design and training process can be found in SI
Appendix.

radiograph contains a visible fracture. In the heat map, each pixel location
represents the confidence that the corresponding pixel location in the input
radiograph is part of a given fracture. This factored approach of having dual
outputs allows us to disentangle the model’s diagnostic decision-making
capabilities (i.e., how often the model will make the correct diagnostic rec-
ommendation) and its localization ability (i.e., how precisely it can identify
the location and extent of a fracture). Fig. 1A shows a typical input radio-
graph and the corresponding heat map overlaid on the radiograph. When
the model produces a “yes” decision for the presence of a visible fracture,
the overlay is shown to clinicians (Fig. 2).

The training of the model was done in two stages. The first stage
involved the bootstrapping stage, in which the parameters of the model
were randomly initialized and the model was trained on all of the 100,855
radiographs in the Pretraining Set (ankles, knees, spines, etc.). The goal of
the bootstrapping stage was to better initialize the parameters of the model
before starting to train it for wrist fracture detection, since better initializa-
tion of the parameters results in faster training and reduces overfitting. In
the second stage, we took the model obtained from the first stage and used
31,490 wrist radiographs (Wrist Training Set) to specialize it to the task of
detecting and localizing wrist fractures. The training of the model’s param-
eters was accomplished by a variant of the standard stochastic gradient
descent algorithm called Adam (19). Because the model had a large number
of parameters and a relatively small number of labeled wrist radiographs to
train with, we used a number of techniques to prevent overfitting, includ-
ing early stopping and data augmentation. To perform early stopping, we
split the Wrist Training Set into two disjoint subsets: 90% of the radiographs
(28,341) were used to optimize the model parameters, and the remaining
10% (3,149) were used as an internal validation set. We stopped training the
model parameters after the performance of the model on the validation set
had not improved for five epochs. Data augmentation was performed and
involved simulating having a larger labeled dataset by synthetically generat-
ing randomly altered versions of the radiographs on the fly during training.
The alterations included random rotations, cropping, horizontal mirroring,
and lighting and contrast adjustments. Performing data augmentation in
this manner is intended to make the resulting model more robust to irrel-
evant sources of variability, including suboptimal positioning of patients
within the radiograph and suboptimal exposure settings.

Evaluation of the Model. The trained model’s ability to detect the presence
of fractures in wrist radiographs was evaluated on the test datasets by calcu-

lating receiver operating characteristic (ROC) curves and measuring the area
under the curve (AUC). AUC is a standard way to summarize an ROC curve,
where an AUC of 1.0 would indicate that the CAD system perfectly predicts
the reference standard and an AUC of 0.5 would indicate that the CAD sys-
tem is no better than chance. An operating point for the model was fixed by
choosing the threshold estimated to yield 95% sensitivity on the Wrist Train-
ing Set, and the resulting sensitivities and specificities on Test Sets 1 and 2
are also reported; 95% CIs for each statistic were estimated using bootstrap
sampling via a bias-corrected and accelerated percentile method (20).

Evaluation of the Clinicians. We conducted an experiment to evaluate the
utility of our trained model by measuring its effect on the diagnostic
accuracy of a group of emergency medicine clinicians. The experiment fol-
lowed a within-subjects design to evaluate the performance of a number
of practicing emergency medicine clinicians on a sequence of 300 radio-
graphs randomly chosen from Test Set 2, where the independent variable
was whether or not the clinician could view the model’s predictions when
interpreting the radiograph. All the clinicians were shown the same set
of 300 radiographs, although the order of the radiographs was random-
ized per clinician; 266 of 300 radiographs had no disagreements among the
three clinicians used to define the reference standard about the presence
or absence of a fracture. We recruited 40 practicing emergency medicine
clinicians, of whom 16 were physician assistants (PAs) and 24 were medical
doctors (MDs). Any clinician who had an across-condition sensitivity index
(d′ score) of 0± 0.05 was dropped from the analysis. This resulted in one PA
being dropped for having an across-condition d′ of 0.005. Ethics review and
institutional review board exemption were obtained using the New England
Institutional Review Board, informed consent was obtained from clinicians,
and clinicians were deidentified during analyses.

For each radiograph shown, the clinicians were asked whether or not
a fracture was present. After a clinician made a response, the model’s
semantic segmentation prediction was shown overlaid on the radiograph;
the model’s clinical determination was shown as text (either the statement
“CAD Estimate: Fracture Present” or “CAD Estimate: Fracture Not Present”),
and the clinician was asked the same question again. The clinical determi-
nation was produced from the model’s probability estimate by thresholding
at the predetermined operating point. An experimental advantage of this
design is that every clinician interpreted every radiograph without and
with the model’s assistance (back to back), and therefore, the expertise
of the clinicians and the diagnostic difficulties of the radiographs were
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balanced across conditions. A disadvantage of this design is that it did
not counterbalance for condition order, meaning that the aided presenta-
tion of a radiograph always followed the unaided. This sequential reading
methodology is standard for evaluating many CAD systems.

We report the sensitivity and specificity of clinicians for 266 radiographs
on which there was no uncertainty about the reference standard. We also
report the across-clinician average sensitivities and specificities stratified by
the clinician’s training (MD vs. PA), and we compare them against the model
on the same imagery. Finally, we report an analysis of diagnostic accuracy as
a function of the time that it took the clinicians to read the radiographs.

Results
ROC curves for the trained model on the two test sets are
shown in Fig. 3. On Test Set 1, the model achieved an AUC
of 0.967 (n = 3,500; 95% CI, 0.960–0.973). On Test Set 2,
the model achieved an AUC of 0.975 (n = 1,400; 95% CI,
0.965–0.982). On the subset of images in Test Set 2 where
there is no uncertainty about the reference standard (no inter-
expert disagreement), the model achieved an AUC of 0.994 (n =
1,243; 95% CI, 0.989–0.996). This indicates a very high level of
agreement between the model’s assessment of each radiograph
and the senior subspecialized orthopedic hand surgeons who
created the reference standard. Examples of the model’s local-
izations are shown in Fig. 1. Qualitatively, the model is generally
able to precisely identify the presence and location of visible
fractures.

The sensitivity and specificity of the emergency medicine MDs
were significantly improved with the assistance of the deep
learning model (one-sided, two-sample Wilcoxon signed rank
test for sensitivity: P < 10−4, d =1.17; specificity: P < 10−5,
d =1.24) as was the sensitivity and specificity of the emer-
gency medicine PAs (sensitivity: P < 10−4, d =1.24; specificity:
P < 10−4, d =1.19). The average emergency medicine MD’s
sensitivities were 82.7% (95% CI, 78.1–86.6%) unaided and
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Fig. 3. The model accurately detects the presence of visible fractures in
wrist radiographs on two separate test datasets. When given a radiograph,
one of the model’s outputs is a probability that the patient has a fracture
visible in the radiograph. A decision threshold t has to be chosen such that,
for any probability value greater than the threshold, the CAD system alerts
the clinician. The above curves show, for all possible values of t∈ [0, 1], what
the corresponding sensitivity (true positive rate) and specificity (true nega-
tive rate) of the system would be on that test dataset. The dashed black
line restricts the analysis to the subset of Test Set 2, on which there was no
interexpert disagreement about the presence or absence of a visible fracture
(1,243 of 1,400 radiographs).

92.5% (95% CI, 89.8–94.0%) aided, and specificities were 87.4%
(95% CI, 84.5–89.9%) unaided and 94.1% (95% CI, 92.8–95.2%)
aided. The average emergency medicine PA’s sensitivities were
78.0% (95% CI, 71.5–83.7%) unaided and 89.9% (95% CI,
86.5–92.5%) aided, and specificities were 87.5% (95% CI, 84.4–
90.3%) unaided and 93.6% (95% CI, 91.5–95.0%) aided. The
average clinician experienced a relative reduction in misinter-
pretation rate of 47.0% (95% CI, 37.4–53.9%). Almost every
clinician showed an improvement in both sensitivity and speci-
ficity. Additionally, the unaided accuracies observed are consis-
tent with the limited literature for clinicians in controlled studies
of radiographic wrist fracture detection (21) and with retrospec-
tive studies of fracture detection (2, 4, 22, 23). For comparison,
on the same images, the model operated at 93.9% sensitivity
(95% CI, 83.2–98.0%) and 94.5% specificity (95% CI, 90.6–
97.2%) under its predetermined decision threshold and at 0.990
AUC (95% CI, 0.971–0.997) (Fig. 4).

Fig. 5 shows the relationship between reading time and diag-
nostic accuracy in the aided and unaided conditions. Radio-
graphs that took little time on average to read unaided were
generally read accurately. The longer that it took to read a radio-
graph, generally the worse the diagnostic accuracy became for
both conditions. However, the difference in accuracy between
the aided and unaided reading conditions increased with the
unaided reading time. This suggests that emergency medicine
workers with relatively hard, time-consuming caseloads would
benefit more from the CAD software.

Discussion
This study showed that a deep learning model can be trained
to detect wrist fractures in radiographs with diagnostic accu-
racy similar to that of senior subspecialized orthopedic sur-
geons. Additionally, this study showed that, when emergency
medicine clinicians are provided with the assistance of the
trained model, their ability to detect wrist fractures can be sig-
nificantly improved, thus diminishing diagnostic errors and also
improving the clinicians’ efficiency.

Misinterpretation of radiographs may have grave conse-
quences, resulting in complications including malunion with
restricted range of motion, posttraumatic osteoarthritis, and
joint collapse, the latter of which may require joint replacement.
Misdiagnoses are also the primary cause of malpractice claims or
litigation (1, 3–6). There are multiple factors that can contribute
to radiographic misinterpretations of fractures by clinicians,
including physician fatigue, lack of subspecialized expertise,
and inconsistency among reading physicians (2, 4, 5, 24). The
approach of this investigation is to apply machine learning algo-
rithms trained by experts in the field to less experienced clinicians
(who are at particular risk for diagnostic errors yet responsible
for primary patient care and triage) to improve both their perfor-
mance and efficiency. The learning model presented in this study
mitigates these factors. It does not become fatigued, it always
provides a consistent read, and it gains subspecialized exper-
tise by being provided with labeled radiographs from human
experts. The experiments described in this paper showed that the
proposed model can be used to assist practicing clinicians and
help improve their performance in identifying fractures in radio-
graphs. Every measure that we used to characterize clinician
performance showed a statistically significant improvement in
clinician performance with a large effect size. Notably, the misin-
terpretation rate of the practicing emergency medicine clinicians
was reduced by approximately one-half through the assistance of
the model.

A common criticism of CAD systems in oncology is that
they increase sensitivity at the expense of lowering specificity,
which results in unnecessary procedures and increased costs.
Importantly, the increased sensitivity observed in this study did
not come at the expense of a lower specificity. This is likely
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Fig. 4. Performance of the emergency medicine clinicians in the experi-
ment. Each clinician read each radiograph first unaided (without the assis-
tance of the model) and then aided (with the assistance of the model). The
average clinician’s sensitivities were 80.8% (95% CI, 76.7–84.1%) unaided
and 91.5% (95% CI, 89.3–92.9%) aided, and specificities were 87.5% (95%
CI, 85.3–89.5%) unaided and 93.9% (95% CI, 92.9–94.9%) aided. The model
operated at 93.9% sensitivity and 94.5% specificity (shown as the star) using
a decision threshold set on the model development dataset.

attributable to the high standalone diagnostic accuracy of the
model. To further mitigate the specificity–sensitivity tradeoff,
a soft highlighting visualization method has recently been pro-
posed (25). This method modulates the heat map according to
the model’s probability that a fracture is present somewhere in
the image instead of making a hard present/absent decision. This
method could easily be incorporated into our paradigm.

A differentiator of the modeling and experimental approach
presented in this paper is the reliance on senior subspecial-
ized experts to provide the ground truth labels. The purpose
of building CAD software is to use it to improve the diagnostic
accuracy of practicing clinicians, not simply to report the highest
AUC possible in the CAD system’s underlying model. A model
trained on labels provided by less experienced clinicians might
be able to achieve a very high AUC when evaluated on those
clinicians’ labels (i.e., it might accurately predict what clinical
interpretations the less experienced clinicians would provide),
but its clinical expertise and relevance would be limited based
on the expertise of the labeling clinicians. Whatever subtle find-
ings that the inexperienced clinicians would have systematically
missed, the model would have learned to miss too, and yet, these
misses would not be reported as errors. Hence, we argue that it is
important to train and evaluate deep learning models on datasets
that have ground truth labels worth emulating, ones in which the
hardest cases have not been systematically mislabeled.

One of the keys to the success of our proposed approach is the
establishment of the rigorous “ground truth” for the presence and
location of a fracture. We used the expertise of multiple orthope-
dic hand surgeons with many years of experience to establish the
ground truth with which the model was trained. An alternative
approach might be to take large numbers of radiographic reports
from busy trauma centers and extract the ground truth from those
reports. Within such reports, however, there exists a distribu-
tion of accuracy and expertise. On the lower end of the curve
are the junior radiology trainees interpreting emergency depart-
ment radiographs under the tutelage of attending radiologists
who are not specialized in orthopedics but rather, contribute to

the interpretation of emergency radiographs based on a rotating
assignment. On the upper end of the performance curve are the
fellowship-trained musculoskeletal radiologists who are experts
in the area. One could argue then that the “noise” of a less accu-
rate standard is provided to such algorithms, which are based on
simply the input of radiographic reports. Based on our results, we
speculate that our model would have lower noise based on a more
rigorously established ground truth.

There are several limitations of this study. First, the experi-
ment was a retrospective evaluation conducted through a web
interface resembling a Picture Archiving and Communication
System (PACS) used by clinicians for medical imaging. A
prospective study in a real-world clinical environment with a real
PACS system would need to be conducted to know the exact
unaided and aided accuracies of practicing emergency medicine
clinicians. Second, the diagnostic accuracy of clinicians and the
model in this study is limited to determining what is visible
within a radiograph. A more clinically valid study end point
would instead be based on the clinician’s overall assessment of
the patient, taking into account information available outside
the one radiograph (e.g., other radiographs, physical examina-
tion). Third, performance in the aided condition was driven not
only by the diagnostic accuracy of the deep learning model but
also by the way in which the model’s output was displayed (i.e.,
as a green heat map and a text recommendation). The experi-
ment’s design does not allow for these factors to be separated
during analysis; however, the fact that the average aided clini-
cian’s performance is slightly worse than the model’s standalone
performance suggests that the way that the model’s output was
presented was suboptimal.

As a proof of concept, we focused our evaluations on wrist
fractures, but the models are not limited to learning from wrist
radiographs. Given enough training data and a suitably designed
model, they can in principle be taught to detect any condition
on radiographs that a human clinician could identify. This study
shows that deep learning models offer potential for subspecial-
ized clinicians (without machine learning experience) to teach
computers how to emulate their diagnostic expertise and thereby
help patients on a global scale. Although teaching the model
is a laborious process requiring collecting thousands of radio-
graphs and carefully labeling them, making a prediction using the
trained model takes less than a second on a modern computer.
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Fig. 5. Each point represents a bin containing one-10th of the radiographs
used in the experiment. The horizontal location of a point indicates the
median unaided response time in seconds for the radiographs within the
bin. The vertical location of a point indicates the across-clinician average
diagnostic accuracy on the radiographs within the bin. The difference in
accuracy between the aided and unaided reading conditions increases with
unaided reading time, which is a proxy for the radiograph’s difficulty. The
dashed horizontal black line indicates the accuracy that a clinician would
have achieved had he or she reported “no fracture” on every radiograph.
The aided reading condition never has an average accuracy worse than
baseline guessing.
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Thus, we speculate that, someday, technology may permit any
patient whose clinician has computer access to receive the same
high-quality radiographic interpretations as those received by the
patients of senior subspecialized experts.
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