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Abstract

One in ten infants born in the United States is born preterm, or prior to 37 weeks gestation. 

Exposure to elevated levels of metals, such as lead and arsenic, has been linked to higher risk of 

preterm birth (PTB), but consequences of lower levels of exposure and less studied metals are 

unclear. We examined the associations between 17 urinary trace metals individually and in 

mixtures in relation to PTB. The LIFECODES birth cohort enrolled pregnant women at <15 weeks 

gestation at Brigham and Women’s Hospital in Boston. We selected cases of PTB (n=99) and 

unmatched controls (n=291) and analyzed urine samples for a panel of trace metals (median: 26 

weeks gestation). We used logistic regression models to calculate the odds ratio (OR) for PTB and 

subtypes of PTB based on presentation at delivery. Subtypes included spontaneous and placental 

PTB. We used elastic net (ENET) regularization to identify individual metals or pairwise 

interactions that had the strongest associations with PTB, and principal components analysis 

(PCA) to identify classes of exposures associated with the outcome. We observed increased odds 

of PTB (OR: 1.41, 95% Confidence Interval [CI]: 1.12, 1.78) in association with an interquartile 

range difference in urinary copper (Cu). We also observed an increased OR for selenium (OR: 

1.33, 95% CI:0.98, 1.81). ENET selected Cu as the most important trace metal associated with 

PTB. PCA identified 3 principal components (PCs) that roughly reflected exposure to toxic 

metals, essential metals, and metals with seafood as a common source of exposure. PCs reflecting 
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essential metals were associated with an increased odds of overall and spontaneous PTB. Maternal 

urinary copper in the third trimester was associated with increased risk of PTB, and statistical 

analyses for mixtures indicated that after accounting for correlation this metal was the most 

important statistical predictor of the outcome.
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1. Introduction

Preterm birth (PTB), defined as birth prior to 37 weeks gestation, is one of the most 

important causes of neonatal morbidity and mortality and is associated with adverse health 

outcomes later in life (CDC 2017). The Centers for Disease Control and Prevention (CDC) 

estimated that in 2016, one in ten infants in the United States was born preterm (CDC 2017). 

Risk factors for PTB include, but are not limited to, maternal age, race, low socioeconomic 

status, illicit drug use, history of PTB, multiple pregnancy, pregnancy complications, and 

other medical disorders (Frey and Klebanoff 2016; Goldenberg et al. 2008). PTB can be 

further classified into subtypes based on presentation at birth, and risk factors as well as 

mechanisms may differ between these subtypes (McElrath et al. 2008).

A growing body of evidence suggests associations between exposure to chemicals during 

pregnancy and an increased risk of PTB (Ferguson et al. 2013; Ferguson and Chin 2017; 

Institute of Medicine (US) Committee on Understanding Premature Birth and Assuring 

Healthy Outcomes 2007; Simmons et al. 2010). For metals specifically, the evidence for the 

association between lead (Pb) and PTB is well-established (Cantonwine et al. 2010; Cheng 

et al. 2017; Jelliffe-Pawlowski et al. 2006; Perkins et al. 2014; Torres-Sanchez et al. 1999). 

Arsenic (As) and cadmium (Cd) exposure are also associated with increased risk of PTB 

(Ferguson and Chin 2017). Most of these studies have examined populations with 

historically high exposure to metals, such as As in Bangladesh and Pb and Cd in China; as 

such, the findings may not predict effects in populations with lower levels of 

exposure(Myers et al. 2010; Wang et al. 2016; Yang etal. 2016).

Furthermore, most studies that have assessed the relationships between multiple metals and 

PTB have focused on single-pollutant models only (Shirai et al. 2010; Tsuji et al. 2018; Wai 

et al. 2017). Since exposures in humans never occur in isolation, it is an important next step 

to investigate multiple metals simultaneously (Braun et al. 2016; Claus Henn et al. 2014; 

Taylor et al. 2016). However, there is a small but growing number of analyses using 

advanced statistical methodologies to analyze metal mixtures and health outcomes to better 

understand aggregate effects or to identify “bad actors” within a correlated set of exposures 

(Bobb et al. 2015; Deyssenroth et al. 2018; Horton et al. 2018; Sanders et al. 2015; Valeri et 

al. 2017). These previous studies have used methods, such as Bayesian kernel machine 

regression (BKMR) and weight quantile sums (WQS) to explore metal mixtures in relation 

to health outcomes, however they have not been utilized in the study of PTB.
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In the present study we analyzed a panel of 17 trace metals measured in urine samples from 

the 3rd trimester of pregnancy and estimated associations with PTB. In addition, because this 

study has the largest number of trace metal analytes to date to address this research question, 

we investigated the effects of mixtures using two approaches. First, we used elastic net 

(ENET) regularization to identify the individual metals and pairwise interactions from the 

mixture that are most strongly associated with PTB. Second, we used principal components 

analysis (PCA) to examine associations with correlated groupings.

2. Methods

The LIFECODES birth cohort, an on-going prospective cohort study originally designed to 

identify risk factors for preeclampsia, recruits pregnant women who are planning to deliver 

at Brigham and Women’s Hospital in Boston, Massachusetts, USA. Women are enrolled and 

consented at <15 weeks gestation and participate in four study visits (Cantonwine et al. 

2016). At the first visit, participants complete a questionnaire providing demographic 

information, tobacco and alcohol use, and pregnancy as well as medical history. Urine 

samples are collected at up to four timepoints for each participant (median 10, 18, 26, and 35 

weeks of gestation) and stored at −80°C. The present analysis utilizes participants from a 

nested case-control study of PTB that includes women who were recruited from 2006-2008 

(Ferguson et al. 2014). There were approximately 150 singleton preterm births and 1100 

singleton term births recruited into the LIFECODES birth cohort during that period, and 

demographic characteristics of the overall cohort were very similar to those of the 

participants who were included in the case-control study (Cantonwine et al. 2016). The 

nested case-control study selected nearly all the cases of preterm birth as well as unmatched 

controls in a 3:1 ratio. Individuals from the case-control study were included in the present 

analysis if they had available urine samples from the third study visit.

Gestational age to determine preterm birth was calculated using the last menstrual period 

verified by ultrasound and two maternal-fetal medicine specialists. Preterm birth was defined 

as delivery before 37 weeks completed gestation. In addition, previous research suggests that 

cases of PTB differ by presentation at delivery. In a previous study of newborns born before 

28 weeks gestation, deliveries with a spontaneous presentation (i.e., with preterm premature 

rupture of the membranes [PPROM] or spontaneous preterm labor) had similar placental 

characteristics indicative of inflammation (McElrath et al. 2008). Alternatively, PTB that 

occurred with presentation of intrauterine growth restriction or preeclampsia had evidence of 

poor placentation. Thus, in our study population, cases of PTB were further classified into 

spontaneous PTB (n = 46) and placental PTB (n = 22) for analysis based on these 

presentations at delivery. Cases that did not fall into either category were not examined 

separately, as we had no prior hypothesis about a unifying mechanism. The study was 

approved by the Institutional Review Board at Brigham and Women’s Hospital and was 

deemed exempt by the University of Michigan and the National Institute of Environmental 

Health Sciences (NIEHS).
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2.1 Urinary trace metals analysis

Urine samples from the visit at median 26 weeks gestation were analyzed at NSF 

International (Ann Arbor, MI, USA) as part of a pilot study for the Children’s Health and 

Exposure Assessment Resource (CHEAR), a program designed to expand resources for 

analyzing environmental exposures in NIH-funded studies on children’s health (Balshaw et 

al. 2017; NIEHS 2018). Seventeen trace metals were analyzed on a Thermo Fisher 

(Waltham, MA, USA) ICAPRQ inductively coupled plasma mass spectrometry (ICPMS) 

and CETAC ASX-520 autosampler, including As, barium (Ba), beryllium (Be), Cd, copper 

(Cu), chromium (Cr), mercury (Hg), manganese (Mn), molybdenum (Mo), nickel (Ni), Pb, 

selenium (Se), tin (Sn), thallium (Tl), uranium (U), tungsten (W), and zinc (Zn). A PFA-ST 

nebulizer, quartz spray chamber, quartz torch, quartz injector tube, and nickel sample and 

skimmer cones were utilized in the analysis. An in-house method was developed based on 

the CDC Laboratory Procedure Manual for Urine Multi-Element ICP-DRC-MS (method no. 

3018.3 and 3018A.2; revised 2012 March 19). The LOD was determined by calculating 

three times the standard deviation of the background level of the blanks. Additional methods 

on the analysis of trace metals are provided as Appendix 1 in the supplemental material.

Some metal concentrations below the limit of detection (LOD) were reported by the ICP-

MS. These machine-reported values were kept as is and concentrations not reported by the 

ICP-MS were replaced with the LOD divided by the square root of two (Hornung and Reed 

1990). If a metal had >70% of the participants below the LOD (i.e., either machine-reported 

or imputed), it was treated as detect versus non-detect in subsequent analyses. To account for 

urine dilution, we corrected for urinary specific gravity using the formula MSG = M 

[(1.015-1) / (SG-1)], where MSG is the specific gravity-corrected metal concentration, M is 

the measured metal concentration in urine, 1.015 is the median specific gravity of all 

participants, and SG is the specific gravity for the individual sample (Ferguson et al. 2014).

2.2 Statistical analysis

We examined population characteristics and pregnancy-related variables of the cases and 

controls individually and overall, including maternal age, race/ethnicity, education, health 

insurance provider, prepregnancy body mass index (BMI), self-reported tobacco use during 

pregnancy, self-reported alcohol use during pregnancy, parity, use of assisted reproductive 

technology (ART), self-reported multivitamin use during pregnancy, and sex of the neonate.

We analyzed trace metal distributions by calculating geometric mean (GM) concentrations 

as well as 25 th, 50th, 75 th, and 95 th percentiles. In addition, we calculated the median, 25 
th, and 75 th percentile of the specific gravity-corrected metals concentrations in cases and 

controls separately. For those treated as detect versus non-detect, we calculated the number 

and percentage detected within each group. In addition to looking at the distribution of 

metals by case status, we calculated the GM by levels of demographic covariates and tested 

for differences between the groups using general linear models.

In our primary analysis, we used logistic regression models to calculate odds ratios (OR) and 

95% Confidence Intervals (CI) for overall PTB in association with each urinary trace metal 

concentration. To account for specific gravity, we compared associations across four models: 
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1) metals uncorrected and models unadjusted; 2) metals specific gravity-corrected and 

models unadjusted; 3) metals uncorrected and models adjusted for specific gravity; and 4) 

metals specific gravity-corrected and models adjusted for specific gravity (O'Brien et al. 

2016). Because results were consistent across models and because approach 4) removes the 

potential collider between covariates and specific gravity (O'Brien et al. 2016), all final 

models were presented with specific gravity-corrected trace metal concentrations with 

specific gravity additionally included as a covariate.

We selected other covariates for the adjusted models using a forward stepwise selection 

procedure, examining the effect of including covariates that were associated with urinary 

trace metal concentrations and keeping those variables that changed effect estimates by 

>10%. All final models were adjusted for maternal age (continuous), race (white, black, and 

other), education (≤ high school graduate, technical school, junior college/some college, ≥ 

college graduate), pre-pregnancy BMI (continuous), and gestational age at time of sample 

collection (continuous). History of PTB, smoking during pregnancy, health insurance 

provider, sex, parity, use of ART, and multi-vitamin use in pregnancy were also considered 

as covariates, but had no significant effect on the estimates and were not included in the final 

models. As a secondary analysis, we recreated the same statistical models but examined 

spontaneous and placental PTB separately, with other types of PTB excluded from each 

model. Additionally, we examined associations with tertiles of exposure to examine 

deviations from linearity. Since many of these trace elements are also essential nutrients (Cu, 

Mn, Mo, Ni, Se, Zn), we set the second tertile as the reference level for those metals (Bauer 

et al. 2017). For those that are non-essential (As, Ba, Cd, Hg, Pb, Sn, Tl), we set the 

reference level at the first tertile. These analyses were performed using SAS version 9.4 

(SAS Institute, Cary, NC).

In addition to modeling single chemicals, we examined the exposures as a mixture using two 

methods: ENET regularization and PCA. ENET was used to determine which element(s) of 

the mixture were driving the association with PTB and its subtypes while adjusting for 

covariates (Zou and Hastie 2005). ENET is a regularization and variable selection method, 

which can handle high dimensional data. It is a combination of the least absolute shrinkage 

and selection operator (LASSO), which drives the coefficients of irrelevant variables to zero, 

and ridge regression, which penalizes the square of the regression coefficients and shrinks 

the coefficients of highly correlated variables proportionally toward but never to zero 

(Friedman et al. 2010). Thus, ENET selects a group of variables by shrinking some effect 

estimates and allowing others to be shrunk to zero. A timing parameter α controls the 

balance between the LASSO and ridge penalties. We used cross validation to optimize the α 
We performed a second ENET in which we allowed for inclusion of all possible pairwise 

interactions in the model, and we did not mandate that main effects be included for those 

interaction terms. After the ENET procedures, we refit generalized linear models (GLMs) to 

produce ORs and 95% CIs adjusting for covariates. For these analyses, we used the 

“glmnet” package in R version 3.4.1.

PCA is a variable reduction method that produces components, called principal components 

(PCs), without considering the outcome of interest (O'Rourke and Hatcher 2013). These PCs 

are linear combinations of observed variables that are weighted by loadings corresponding to 
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each variable. Loadings are produced via an eigenequation to satisfy the principle of least 

squares, and a higher loading indicates that the variable is represented more in the given 

component. The number of PCs is equal to the number of variables, however only the first 

few will be meaningful. There are several approaches to determine the cutoff for the number 

of components. We used a combination of: 1) the “Eigenvalue-one” method where only 

components with an eigenvalue ≥1 are selected; 2) the Scree test, which uses a plot of the 

eigenvalues; and 3) keeping the components that account for a specified proportion of the 

variance (O'Rourke and Hatcher 2013). We used a varimax rotation, which is an orthogonal 

rotation used to maximize the variance in the factor pattern matrix. In the first estimation of 

the PCs, we included the 14 metals with >80% values over the LOD, excluding the metals 

that were treated as detect/non-detect in single-pollutant models. Ba and Tl loaded onto 

multiple components, indicating that they were complex items (O'Rourke and Hatcher 

2013). Thus, we re-created PCs without Ba and Tl. We then fit the PCs into a logistic 

regression model adjusting for covariates. We used SAS 9.4 for PCA analysis.

3. Results

Table 1 displays the distribution of demographic characteristics for all participants and by 

case status. Participants were mostly over the age of 30 years, with a median of 32.7 years in 

the full population. Most participants were White (60.0%) and had private health insurance 

providers (83.2%), with only minor differences noted between cases and controls. The 

distribution of education levels was similar between groups, with 39% of all participants 

reporting they were college graduates or higher. Slightly more than half of the participants 

had a normal BMI prior to pregnancy (58.0%) with both groups having similar distributions. 

There was little self-reported tobacco use (6.4%) or alcohol (3.8%) consumption during 

pregnancy in our population. Approximately 9.0% of participants reported using ART with 

no difference between groups. Most participants took multivitamins during pregnancy 

(70.8%) and there was no significant difference in multivitamin use between case and 

control participants.

Most analytes were detected in a high proportion of urine samples (Table 2). The percentage 

below the LOD was greater than 80% for Be, Cr, U, W. These metals were subsequently 

treated as detect versus non-detect in all the statistical models. In comparison to women 

from the 2007–2008 National Health and Nutrition Examination Survey (NHANES), some 

urinary trace metals in this study population were higher while others were lower (CDC 

2018). The most notable differences were the higher concentrations of As (GM 18.5 ppb) 

and Mn (GM 0.85 ppb) in our population compared to the NHANES population (GM 7.14 

ppb and 0.13 ppb, respectively; Table 2). Urinary Cu, Ni, Se, Zn, and Cr were not measured 

by NHANES; however, all but Cr were measured by the Canadian Health Measures Survey 

Cycle 1 (2007-2009). The women in our study had higher concentrations of Cu, Ni, and Zn 

compared to the women from the Canadian survey. In that study population, females aged 

20-39 years had a GM of 7.82 ppb for urinary Cu which was slightly lower compared to 

what was observed in our study population (9.65 ppb) (Health Canada 2010).

In crude comparisons of specific-gravity corrected trace metal concentrations (Table A), we 

observed higher levels of urinary Cu in cases (median 10.0 ppb) compared to controls 
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(median 8.99 ppb). Also among cases, we observed lower levels of Ba (median 1.88 ppb vs. 

1.95 ppb in controls) and higher levels of Se (median: 39.8 ppb vs 38.8 ppb in controls). 

Detection of Cr was higher in cases (21.2%) compared to controls (13.4%) as well.

We noted several differences in GM urinary metal concentrations by demographic 

characteristics (Table B). Some notable differences included higher concentrations of Se and 

Zn in African-American women compared to White women. Those who graduated from 

college had much lower concentrations of Zn compared to women with a high school degree 

or less. Cu and Zn were higher for women with BMI ≥25 kg/m2 compared to women with 

BMI <25 kg/2. Women who smoked during pregnancy also had higher Cu and Zn in their 

urine compared to women who did not smoke during pregnancy, along with higher Cd and 

Pb; this is expected as Cd, Cu, Pb, and Zn are some of the metals found in cigarette smoke 

(Bernhard et al. 2005; Pappas 2011).

Adjusted ORs for PTB in association with 3rd trimester urinary trace metals were mostly 

elevated (Table 3). We observed an elevated OR of 1.41 (95% CI 1.12, 1.78) in association 

with an interquartile range (IQR) increase in Cu. Ba (OR 1.27, 95% CI 0.90, 1.77) and Se 

(OR 1.33, 95% CI 0.98, 1.81) had elevated ORs that were suggestive as well. Sn (OR 0.89, 

95% CI 0.65, 1.22) and Be detection (OR 0.48, 95% CI 0.18, 1.29) were protective for PTB 

but had wide confidence intervals. When we analyzed by the phenotypes of PTB, i.e., 

spontaneous and placental, the association for Cu appeared for both spontaneous (OR 1.52, 

95% CI 1.14, 2.03) and placental (OR 1.50, 95% CI 0.99, 2.27) PTB. The association we 

observed for Se appeared to be driven by an association with spontaneous (OR 1.69, 95% CI 

1.11, 2.57) rather than placental PTB (OR 0.83, 95% CI 0.53, 1.29). Associations between 

Ba and PTB were similar across subtypes. We also observed several additional associations 

among subtype analyses that were not apparent when examining overall PTB. Detection of 

Cr in urine samples was associated with an increased OR for placental PTB (OR 4.19, 95% 

CI 1.16, 15.1). We also observed positive associations between spontaneous PTB and U (OR 

2.05, 95% CI 0.88, 4.80) as well as W (OR 1.94, 95% CI 0.95, 3.97).

Figure 1 highlights the results from the tertile analysis, separated by essential vs. non-

essential trace metals. Among essential metals, we observed the anticipated U-shaped 

response curve for Mn and Mo; however, with Cu, associations appeared to be linear. For 

non-essential metals, we observed positive trends between Cd and spontaneous PTB (ptrend 

= 0.03) and a non-significant trend between Pb and placental PTB (ptrend = 0.16).

Urinary trace metals displayed low to moderate correlations with one another (Figure A). In 

ENET analyses of individual urinary trace metals, Cu was the only metal selected, and effect 

estimates for all other trace metals were shrunk to zero. Note, the optimal tuning parameter, 

selected via crossvalidation, was 0.9 which favors shrinkage to zero rather than including 

multiple parameters in the model. When we included all pairwise interaction terms, the 

tuning parameter was more relaxed (alpha=0.1). In this model ENET selected Cu only for 

main effects, as well as several interaction terms (e.g., Cu*Cd). OR and 95% CIs for 

interaction terms are displayed in Table 4; however, refitted effect estimates should be 

interpreted with caution because effect estimate can be inflated and precision overestimated 
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(Pavlou et al. 2016). We did not perform ENET among subtypes of PTB due to limitations in 

sample size.

We identified three meaningful PCs in the analysis. PC1 was characterized by high loading 

from primarily toxic metals, Cd, Mn, and Pb (Table D). PC2 was characterized by high 

loading from essential metals, Cu, Se, and Zn. PC3 had high loading from metals that have 

previously been linked to seafood intake, As, Hg, and Sn (ATSDR 1999, 2005a, 2007b). 

PC1 was not associated with overall (OR 1.03, 95% CI 0.79, 1.34) or either subtype of PTB 

(Table 3). The PC for essential metals was associated with an increased risk of overall (OR 

1.36, 95% CI 1.05, 1.76) and spontaneous (OR 1.58, 95% CI 1.14, 2.20) PTB. Finally, the 

associations between PC3 and PTB were null. In addition, we analyzed the PC as tertiles 

with the reference level at tertile 1 for PC1 and 3 and tertile 2 for PC2 (Figure 2). We 

observed mostly null associations across all types of PTB for each PC. We did observe an 

increased OR in the third tertile for PC2.

4. Discussion

Our analysis of 17 individual metals from 3rd trimester urine samples in pregnant women 

revealed positive associations between Cu and an increased risk of PTB, which was 

consistently elevated among subtypes of PTB and was the only metal selected from 

correlated exposures in ENET analysis. Additionally, the PC where Cu loaded onto a 

component with other essential metals, Se and Zn, was associated with an increased odds of 

overall and particularly spontaneous PTB. In contrast, we observed null associations 

between individual toxic metals and PTB in single-pollutant as well as mixtures models.

Our findings for Cu contrast with other studies where Cu deficiency was associated with 

increased risk of PTB (Algerwie and Khatri 1998; Galinier et al. 2005; Tsuzuki et al. 2013). 

The studies measured Cu from maternal serum or plasma or cord blood samples taken at 

birth or shortly thereafter, whereas we measured third trimester urinary Cu. Cu can be 

reliably measured in several biological matrices, including but not limited to blood, urine, 

hair, and nails (ATSDR 2004). A systematic review assessed the variety of methods used to 

determine Cu status in humans and concluded with the limited data available that serum Cu 

seems to be a more useful biomarker because it is better at detecting both Cu overload and 

deficiency than other biomarkers (Harvey et al. 2009).

Previous studies in pregnant women observed similar urinary concentrations to levels 

measured in our study population. A study from Australia found a median of 8.08 μg/L 

urinary Cu in pregnant women (n=173) for samples collected two weeks before delivery, 

which is similar to levels in our population (median: 9.22 ppb) (Callan et al. 2013). In a 

cohort of women in Spain, researchers also observed similar or slightly higher 

concentrations of urinary Cu compared with our study population with a median of 15 μg/g 

creatinine at the third trimester (Fort et al. 2014). Finally, as shown in Table 2, urinary 

concentrations in women participating in the Canadian Health Survey were also similar to 

what we observed in pregnant women from the Boston area (Health Canada 2010).
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Cu is an essential nutrient that plays a role in several reduction and oxidation processes 

(Danzeisen et al. 2007; Uriu-Adams et al. 2010). The Institute of Medicine recommends a 

dietary intake of 900 μg/L per day (ATSDR 2004). Animal studies have shown that Cu 

deficiency in pregnancy is associated with many teratogenic effects, such as impaired 

development of the heart, blood vessels, and brain (Keen et al. 1998). However, too much Cu 

can lead to accumulation in the liver and brain and lead to oxidative stress (Danzeisen et al. 

2007). The US Environmental Protection Agency and the Occupational Safety and Health 

Administration have set upper limit regulatory levels for Cu in drinking water and air in 

occupational settings, respectively (ATSDR 2004). Cu overload is rare because of the 

mechanisms in place designed to keep homeostatic balance, but case studies of women with 

Wilson’s disease, where those mechanisms are disrupted, have shown that it may be 

associated with intrauterine growth restriction and preeclampsia during pregnancy (Walker 

et al. 2011). Animal studies also show various developmental effects, such as decrease in 

average litter size and fetal body weight when mother rats are fed high doses of Cu in their 

diet (ATSDR 2004). Se, another essential trace metal, was also associated with increased OR 

of preterm birth in our study population. Similar to Cu, lower levels of Se in pregnancy have 

been associated with PTB, however in our population Se concentrations in urine are higher 

than other cohorts who have measured urinary concentrations during pregnancy (Fort et al. 

2014; Health Canada 2010; Rayman et al. 2011; Zachara 2018). Recently, a study out of 

China observed similar patters with high concentrations of Cu and Se in cord serum and 

decreased birth weight, birth length, and head circumference (Tang et al. 2016).

In contrast with essential metals, we only observed slight or moderate associations with 

well-documented toxic metals like Pb and Cd, as well as Mn which is essential but can be 

toxic at high doses (Aschner and Aschner 2005; Williams et al. 2012). Additionally, we 

observed that our toxic metal component in PCA analysis was not associated with PTB. 

These compounds have been associated in several studies with PTB (Cheng et al. 2017; Li et 

al. 2017; Perkins et al. 2014; Wang et al. 2016; Yang et al. 2016). Notably, however, our 

study captures urinary levels of Cd and Pb that are equivalent to or lower than those 

observed in the general US population.

The last PC included As, Hg, and Sn, which have each been associated with seafood 

consumption (ATSDR 1999, 2005a, 2007b), and was not associated with PTB. Prenatal 

exposure to As in drinking water has been associated with increased risk of PTB in previous 

studies (Almberg et al. 2017; Rahman et al. 2018). However, both studies assessed exposure 

by measuring community water systems and not biological samples. We expected to observe 

associations between As and PTB in this study, especially because urinary concentrations 

were higher in this population compared to what was observed in NHANES in the same 

time period. Our inability to detect associations may be due to the fact that we did not 

measure the elemental, inorganic, and organic forms separately for these metals nor for 

individual As species. Most of the As found in seafood is the organic form, which is less 

harmful than the inorganic form which can be found in water, soil, and air (ATSDR 2007b). 

Because we were not able to distinguish these sources, true associations with species of As 

may have been obscured. Sn and Hg exposure have also been linked at adverse reproductive 

or birth outcomes (ATSDR 2005a; Xue et al. 2007); however, these compounds are also 

found in seafood which may have protective effects outweighing adverse consequences.
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Between 2006-2008, Boston had a population of approximately 610,000, placing it among 

the top 25 most populated cities in the U.S. As a large metropolitan city, residents in and 

around Boston are exposed to a host of environmental chemicals, including metals, from 

traffic pollution, nearby industries, and the built environment. Other exposure sources for 

these metals include diet and water. Cu is commonly found in the environment and humans 

are exposed via ingestion, inhalation, and dermal contact (ATSDR 2004). Most drinking 

water sources in Massachusetts do not have high levels of Cu, so most exposure from 

drinking water is likely from Cu pipes and brass fittings (Massachusetts Department of 

Public Health 2016). According to ATSDR, MA also has a number of industrial facilities 

that release Cu into the air and water, in addition to other sources of environmental Cu, 

including waste water practices and combustion, which could be potential sources of 

exposure and explain the elevated levels observed in our study population (ATSDR 2004).

This study had several limitations. Although we measured a large panel of metals, urine may 

not be the ideal biomarker for all of them. Pb, W, and Zn are more appropriately analyzed in 

blood, although urine biomarkers can indicate more recent exposure to metals and are highly 

correlated with concentrations earlier in pregnancy (ATSDR 2005b, c, 2007a; Fort et al. 

2014). We were also only able to measure metals from a single urine sample taken at the 

third visit (~26 weeks gestation). Measuring these metals at multiple time points would give 

a better overall picture of exposure during pregnancy. Also, despite having a larger number 

of cases than previous studies, when we consider the subtypes of PTB we had more limited 

power. Finally, this study may be limited in its generalizability because of its assessment of 

associations within a population from Brigham and Women’s Hospital, a tertiary care center, 

where more high-risk pregnancies are delivered compared to other hospitals. Nevertheless, 

the trace metal concentrations observed in this study population are more similar to what is 

observed in the rest of the US population than in previous studies that focus on populations 

with extremely high exposure levels.

We analyzed the metals as a mixture using two different methods, ENET and PCA. 

However, these methods have their own limitations as well. ENET is a prediction model, and 

therefore the selected chemicals and interactions, while the most statistically relevant for 

predicting PTB, may not be biologically meaningful. PCA also selects PCs mathematically 

and therefore the clusters may not be biologically meaningful, which can limit the 

interpretability. PCA can identify a group of toxic metals that are associated with PTB, but 

we do not know which metal within that group is important. Currently, there is no gold 

standard among biostatisticians and epidemiologist with respect to the best methods for 

analyzing complicated mixtures (Braun et al. 2016; Taylor et al. 2016). We selected ENET 

and PCA as two promising approaches for 1) assessing the most important predictor within a 

correlated set of exposures, and 2) identifying the effect of combined rather than individual 

exposures, respectively. While the results from ENET in this example provided little 

additional information beyond what we learned from single pollutant models, the results 

from PCA may have identified groups of metals with possible shared exposure sources. 

Thus, these findings may be useful for targeted public health measures in populations 

exposed to elevated levels of multiple metals simultaneously.
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5. Conclusions

In summary, we found that several essential urinary trace metal concentrations were 

associated with overall as well as subtypes of PTB. Mixtures analyses confirmed findings in 

single-pollutant models but did not provide notable additional information in our study. 

Further research is necessary to confirm these findings and to understand the mechanisms 

behind the risk of essential metals and PTB.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We analyzed 17 urinary trace metals in collaboration with the Children’s 

Health and Exposure Assessment Resource (CHEAR).

• Urinary Cu concentrations from third trimester were associated with 

increased odds of preterm birth in single pollutant model

• Elevated concentrations of other essential trace metals, Se and Zn, also has a 

positive association with increased odds of preterm birth

• ENET and PCA results confirmed findings from the single pollutant models.
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Figure 1. 
A. Adjusted1 odds ratios (95% confidence intervals) of all and subtypes of preterm birth 

(PTB) by tertiles of exposure. Referent levels were set at tertile 2 for essential metals (Cu, 

Mn, Mo, Ni, Se, Zn).

B. Adjusted1 odds ratios (95% confidence intervals) of all and subtypes of preterm birth 

(PTB) by tertiles of exposure. Referent levels were set at tertile 1 for non-essential metals 

(As, Ba, Cd, Hg, Pb, Sn).
1 Models adjusted for specific gravity, maternal age, race, education, pre-pregnancy BMI, 

gestational age at time of sample collection
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Figure 2. 
Adjusted1 odds ratios (95% confidence intervals) of all and subtypes of preterm birth (PTB) 

by tertiles of principal components. Referent levels were set at tertile 2 for essential PC 

(PC2) and tertile 1 for toxic and seafood-related (PC1 and 3).
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Table 1.

Distribution of demographic characteristics overall and by case status: median (25th, 75th percentiles) or n (%).

Demographic Characteristic
Overall

(n = 390)
Cases

(n = 99)
Controls
(n = 291) P

1

Maternal age, years 32.2 (29.2, 35.7) 33.0 (30.2, 36.3) 31.9 (28.9,35.6) 0.14

 24 years or younger 41 (10.5) 7(7.1) 34(11.7)

 25-29 years 76 (19.5) 17 (17.2) 59 (20.3)

 30-34 years 159 (40.8) 43 (43.4) 116(39.9)

 35+ years 114 (29.2) 32 (32.3) 82 (28.2)

Race/ethnicity 0.74

 White 234 (60.0) 61 (61.6) 173 (59.5)

 African American 58 (14.9) 14 (14.2) 44 (15.1)

 Other 98 (25.1) 24 (24.2) 74 (25.4)

Education 0.20

 High school degree or less 53 (13.6) 17 (17.2) 36(12.4)

 Technical college 59 (15.1) 17 (17.2) 42 (14.4)

 Junior college or some college 116 (29.7) 28 (28.3) 88 (30.2)

 ≥ College graduate 152 (39.0) 36 (36.3) 116 (39.9)

 Missing 10 (2.6) 1 (1.0) 9(3.1)

Health insurance 0.44

 Private/HMO/self-pay 317 (81.3) 84 (84.9) 233 (80.1)

 Public 64 (16.4) 14 (14.1) 50 (17.2)

 Missing 9 (2.3) 1 (1.0) 8 (2.7)

Pre-pregnancy BMI 0.40

 <25 kg/m2 226 (58.0) 56 (56.6) 170 (58.4)

 25-30 kg/m2 94 (24.1) 21 (21.2) 73 (25.1)

 >30 kg/m2 70 (17.9) 22 (22.2) 48 (16.5)

Tobacco use 0.22

 None in pregnancy 360 (92.3) 90 (90.9) 270 (92.8)

 Some in pregnancy 25 (6.4) 9 (9.1) 16 (5.5)

 Missing 5(1.3) 0(0) 5(1.7)

Alcohol use

 None in pregnancy 366 (93.9) 96 (100.0) 270 (92.8)

 Some in pregnancy 15 (3.8) 0 (0) 15 (5.1)

 Missing 9 (2.3) 3 (3.0) 6 (2.1)

Parity 0.74

 Nulliparous 171 (43.9) 42 (42.4) 129 (44.3)

 Parous 219 (56.1) 57 (57.6) 162 (55.7)

History of PTB

 No 350 (89.7) 77 (77.8) 273 (93.8) <0.001

 Yes 40 (10.3) 22 (22.2) 18 (6.2)

Use of ART 0.44
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Demographic Characteristic
Overall

(n = 390)
Cases

(n = 99)
Controls
(n = 291) P

1

 No 355 (91.0) 92 (92.9) 263 (90.4)

 Yes 35 (9.0) 7 (7.1) 28 (9.6)

Multivitamin use

 No 109 (28.0) 31 (31.3) 78 (26.8) 0.44

 Yes 276 (70.8) 68 (68.7) 208 (71.5)

 Missing 5 (1.2) 0 (0) 5 (1.7)

Sex of neonate 0.09

 Male 170 (43.6) 36 (36.4) 134 (46.1)

 Female 220 (56.4) 63 (63.6) 157 (53.9)

1
p-value denotes differences between cases and controls by t-test.

Abbreviations: BMI, body mass index; PTB, preterm birth; ART, assisted reproductive technology.
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Table 2.

Distribution of trace metals from third trimester urine samples (ppb) in all women from the present study 

population and from women in the National Health and Nutrition Examination Survey (NHANES) from 

2007-2008.
1

Metals N LOD n (%)
<LOD GM 25% 50% 75% 95% NHANES

GM

As 390 0.30 0 (0) 18.5 9.66 18.1 32.5 95.6 7.14

Ba 390 0.10 4 (1.03) 1.74 1.01 1.95 3.46 6.33 1.51

Cd 390 0.06 218 (55.9) 0.08 0.04 0.08 0.14 0.42 0.19

Cu 390 2.50 32 (8.20) 9.65 7.08 9.22 12.2 19.8 7.82
1

Hg 390 0.05 32 (8.20) 0.47 0.27 0.51 0.97 2.15 0.43

Mn 390 0.08 6 (l.50) 0.85 0.51 0.72 1.15 5.05 0.13
2

Mo 390 0.30 0 (0) 51.7 37.1 51.3 69.8 132.3 40.5

Ni 390 0.80 54 (13.9) 2.60 1.87 2.84 3.98 6.83 1.00
1

Pb 390 0.10 92 (23.6) 0.27 0.17 0.35 0.62 1.32 0.44

Se 390 5.00 3 (0.80) 37.7 30.0 37.5 46.3 67.4 42.4
1

Sn 390 0.10 24 (6.20) 0.71 0.36 0.61 1.22 4.54 0.62
2

Tl 390 0.02 61 (15.6) 0.10 0.08 0.13 0.18 0.28 0.17

Zn 390 2.00 0 (0) 227 149 251 379 688 162
1

Be 390 0.04 356 (91.3) 0.02 0.01 0.02 0.04 0.11 <LOD

Cr 390 0.40 330 (84.6) 0.20 0.10 0.22 0.41 1.06 NR

U 390 0.01 342 (87.7) 0.006 0.004 0.007 0.01 0.04 0.006

W 390 0.20 309 (79.2) 0.13 0.09 0.14 0.24 0.53 0.09

Abbreviations: Arsenic (As), Barium (Ba), Cadmium (Cd), Copper (Cu), Mercury (Hg), Manganese (Mn), Molybdenum (Mo), Nickel (Ni), Lead 
(Pb), Selenium (Se), Tin (Sn), Thallium (Tl), Zinc (Zn), Beryllium (Be), Chromium (Cr), Uranium (U), Tungsten (W), Limit of Detection (LOD), 
Geometric Mean (GM), Not Reported (NR)

1
Where NHANES measurements were unavailable, we present urinary concentrations from the Canadian Health Measures Survey Cycle 1, 

2007-2009, which includes females ages 20-39 years.

2
Mn and Sn levels measured in 2011-2012.

Shading denotes metals with >70% of samples below the limit of detection.
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Table 3.

Adjusted
1
 odds ratio (95% Confidence Interval) of overall, spontaneous, and placental preterm birth (PTB) in 

association with an interquartile range difference in urinary trace metal concentration and by principal 

components (PC).

Overall PTB Spontaneous PTB Placental PTB

Metal (n cases = 99)
(n controls = 291)

(n cases = 46)
(n controls = 291)

(n cases = 22)
(n controls = 291)

As 0.98 (0.72, 1.33) 0.89 (0.58, 1.38) 1.07 (0.49, 2.35)

Ba 1.27 (0.90, 1.77) 1.27 (0.84, 1.93) 1.51 (0.75, 3.04)

Cd 1.03 (0.78, 1.37) 1.13 (0.79, 1.63) 1.73 (0.64, 4.66)

Cu 1.41 (1.12, 1.78) 1.52 (1.14, 2.03) 1.50 (0.99, 2.27)

Hg 1.13 (0.85, 1.51) 1.28 (0.82, 1.98) 1.02 (0.70, 1.50)

Mn 1.08 (0.85, 1.37) 1.14 (0.77, 1.69) 0.97 (0.58, 1.61)

Mo 1.05 (0.80, 1.37) 1.14 (0.71, 1.82) 0.97 (0.60, 1.58)

Ni 0.96 (0.75, 1.22) 1.19 (0.77, 1.85) 0.99 (0.71, 1.39)

Pb 1.19 (0.91, 1.55) 1.15 (0.82, 1.60) 1.45 (0.91, 2.31)

Se 1.33 (0.98, 1.81) 1.69 (1.11, 2.57) 0.83 (0.53, 1.29)

Sn 0.89 (0.65, 1.22) 0.99 (0.68, 1.43) 0.83 (0.53, 1.29)

Tl 0.96 (0.79, 1.16) 0.95 (0.64, 1.41) 0.96 (0.66, 1.42)

Zn 1.15 (0.85, 1.57) 1.21 (0.78, 1.90) 1.04 (0.50, 2.14)

Be 0.48 (0.18, 1.29) 0.37 (0.09, 1.64) 0.93 (0.17, 4.98)

Cr 1.83 (0.93, 3.61) 1.39 (0.57, 3.37) 4.19 (1.16, 15.1)

U 1.61 (0.79, 3.27) 2.05 (0.88, 4.80) 1.58 (0.36, 6.87)

W 1.33 (0.73, 2.42) 1.94 (0.95, 3.97) 0.71 (0.16, 3.09)

Principal Components

Toxic 1.03 (0.79, 1.34) 1.02 (0.72, 1.44) 1.37 (0.80, 2.33)

Essential 1.36 (1.05, 1.76) 1.58 (1.14, 2.20) 1.16 (0.64, 2.10)

Fish-related 1.05 (0.83, 1.35) 1.09 (0.79, 1.51) 0.93 (0.59, 1.46)

1
Adjusted for specific gravity, maternal age, race, education, pre-pregnancy BMI, gestational age at time of sample collection. Shading denotes 

metals with >70% of samples below the limit of detection modeled as detect vs. non-detect.
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Table 4.

Adjusted
1
 ORs (95% CI) for overall preterm birth in association with third trimester urinary metals refitting 

selected exposures from elastic net (ENET) regularization methods into generalized linear models

Main Effects Model
Main Effects and
Interaction Model

Metal Overall Preterm Birth

Ba

Cu 1.90 (1.28, 3.02) 1.09 (0.23, 4.71)

Hg

Mo

Se

Be

U

W

As:Be
2 0.65 (0.40, 0.94)

Cd:Cu 0.92 (0.83, 1.02)

Cu:Cr

Cu:Mo 1.09 (0.93, 1.29)

Cu:Se 1.06 (0.78, 1.49)

Cu:Zn 1.01 (0.86, 1.20)

Cu:W

Ni:Cr
2 2.12 (1.18, 3.84)

Tl:Cr
2

1
Adjusted for specific gravity, maternal age, race, education, pre-pregnancy BMI, and gestational age at time of collection

2
Be and Cr have >70% of samples below the limit of detection and are modeled as detect vs. non-detect
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