Skip to main content
. Author manuscript; available in PMC: 2018 Nov 13.
Published in final edited form as: Proc Int Jt Conf Neural Netw. 2018 Sep 15;2018:10.1109/IJCNN.2018.8489440. doi: 10.1109/IJCNN.2018.8489440

TABLE 2.

Our Designed CNN architecture

Layers Parameter Total Parameters
Left branch:
Input Image 100×100
Max Pool 1 10×10
Dropout 0.1
Right branch:
Input Image 100×100
Conv 1 64 X 5 X 5, pad 0, stride 1
Leaky ReLU alpha = 0.01
Max Pool 2a 3×3, pad 0, stride 3
Conv 2 64 X 2 X 2, pad 0, stride 1
Leaky ReLU alpha = 0.01
Max Pool 2b 3×3, pad 0, stride 3
Dropout 0.1
Concatenate Left Branch + Right Branch 39,553
Conv 3+ReLU 64 X 2 X 2, pad 0, stride 1
Max Pool 3 2×2, pad 0, stride 2
L2 regularizer 0.01
Dropout 0.1
Fully connected 1 1 sigmoid