Skip to main content
. Author manuscript; available in PMC: 2018 Nov 13.
Published in final edited form as: Proc Int Jt Conf Neural Netw. 2018 Oct 15;2018:10.1109/IJCNN.2018.8489345. doi: 10.1109/IJCNN.2018.8489345

TABLE 1.

CNN architecture 1

Layers Parameter Total Parameters

Input Image 100×100 841,681
Conv 1 64 X 5 X 5, pad 0, stride 1
Leaky ReLU 1 alpha = 0.01
Max Pool 1 3×3, stride 3, pad 0
Conv 2 64 X 2 X 2, pad 0, stride 1
Leaky ReLU 2 alpha = 0.01
Max Pool 2 3×3, stride 3, pad 0
Dropout 0.1
Fully connected 1+ relu 128
Fully connected 2 + relu 8
L2 regularizer 0.01
Dropout 0.25
Fully connected 3 1 sigmoid