Skip to main content
. Author manuscript; available in PMC: 2018 Nov 13.
Published in final edited form as: Proc Int Jt Conf Neural Netw. 2018 Oct 15;2018:10.1109/IJCNN.2018.8489345. doi: 10.1109/IJCNN.2018.8489345

TABLE 3.

CNN architecture 3

Layers Parameter Total
Parameters

Left branch: 39,553
Input Image 100×100
Max Pool 1 10×10
Dropout 0.1
Right branch:
Input Image  100×100
Conv 1 64 X 5 X 5, pad 0, stride 1
Leaky ReLU 1  alpha = 0.01
Max Pool 2a 3×3, stride 3, pad 0
Conv 2 64 X 2 X 2, pad 0, stride 1
Leaky ReLU 2  alpha = 0.01
Max Pool 2b 3×3, stride 3, pad 0
Dropout  0.1
Concatenate Left Branch
+ Right Branch (Merge)
Conv 3+ReLU 64 X 2 X 2, pad 0, stride 1
Max Pool 3 2×2, stride 2, pad 0
L2 regularizer 0.01
Dropout 0.1
Fully connected 1 1 sigmoid