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Abstract
Deep, classical graph-theoretical parameters, like the size of the minimum vertex cover, the chromatic number, or the

eigengap of the adjacency matrix of the graph were studied widely by mathematicians in the last century. Most researchers

today study much simpler parameters of braingraphs or connectomes which were defined in the last twenty years for

enormous networks—like the graph of the World Wide Web—with hundreds of millions of nodes. Since the connectomes,

describing the connections of the human brain, typically contain several hundred vertices today, one can compute and

analyze the much deeper, harder-to-compute classical graph parameters for these, relatively small graphs of the brain. This

deeper approach has proven to be very successful in the comparison of the connectomes of the sexes in our earlier works:

we have shown that graph parameters, deeply characterizing the graph connectivity are significantly better in women’s

connectomes than in men’s. In the present contribution we compare numerous graph parameters in the three largest lobes—

frontal, parietal, temporal—and in both hemispheres of the human brain. We apply the diffusion weighted imaging data of

423 subjects of the NIH-funded Human Connectome Project, and present some findings, never described before, including

that the right parietal lobe contains significantly more edges, has higher average degree, density, larger minimum vertex

cover and Hoffman bound than the left parietal lobe. Similar advantages in the deep graph connectivity properties are held

for the left frontal versus the right frontal and the right temporal versus the left temporal lobes.
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Introduction

Structural connectomes, computed from diffusion weighted

magnetic resonance imaging (MRI) data, are capable of

describing the macroscopic connections between the

anatomically identified small areas of the gray matter of the

human brain. These connectomes can be viewed as math-

ematical objects called graphs: their nodes or vertices

correspond to small gray matter regions of area 1.0–

1.5 cm2, frequently called ‘‘Regions of Interests’’(ROIs),

and two such nodes are connected by an edge if a data-

processing workflow finds axonal fibers in the white mat-

ter, connecting the ROIs of the nodes (Daducci et al. 2012;

Gerhard et al. 2011; Tournier et al. 2012; Fischl 2012).

The number of nodes in these graphs are several hundred or

around one thousand, and, typically, several thousand

edges are identified between those nodes (Hagmann et al.

2008).

One of the most frequently applied data sources for

constructing connectomes is the public releases of the NIH-

funded large Human Connectome Project (HCP) (McNab

et al. 2013). Based on HCP data, we have computed and

published hundreds of human connectomes, or braingraphs

in GraphML format on the website http://braingaph.org

(Kerepesi et al. 2017; Szalkai et al. 2016a). These macro-

scopic, anatomical connections can be examined as the
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macroscopic structural basis of all brain functions (e.g.,

Szalkai et al. 2016b; Fields and Glazebrook 2017; Tozzi

and Peters 2016, 2017; Peters et al. 2017; Zeng et al.

2016).

Here we would like to make two notes:

The first is that the neuronal-level, truly anatomical

staining-based axonal tracing methods are capable of

describing the connections of individual neurons. This

method was successfully applied in the neuronal-level

description of the connectome of the C. elegans nematode

with 302 neurons (White et al. 1986). By this method, this

is the only organism, whose connectome is identified. MRI-

based methods, however, cannot give neuronal-scale res-

olutions, but they are more widely applicable than cellular

staining-based methods.

The second note is that functioning synapses cannot be

easily distinguished from non-functioning ones on micro-

scopic images of stained neurons. Similarly, the MRI-based

structural connectomics studies do not necessarily describe

the functional connectome. Functional MRI studies

describe parts of the functional connectome, but their res-

olution, both in time and in space, is severely limited.

An appealing research direction is the comparison of the

braingraphs of individual subjects or groups of subjects

with different biological/clinical parameters. It was shown

on a publicly un-available dataset that the braingraphs of

the sexes significantly differ (Ingalhalikar et al. 2014) in

the inter-hemispheric/intra-hemispheric edge-number ratio.

We have proven that women’s connectomes not only dif-

fer, but have much better deep connectivity properties than

that of men: female braingraphs have more edges, have

larger bipartition width, larger minimum vertex cover, and

are better expanders than that of men (Szalkai et al.

2015, 2016c) (we use here the ‘‘better’’ adjective for

parameter values describing better connected networks in

exactly defined computer engineering sense Leighton

1992). We have also shown that the women’s advantage

remains in effect if we compare large-brain females and

small-brain males (Szalkai 2017); therefore the better

connectivity properties of females are due to sex, and not

some artifact, related to cerebral size or weight differences.

The braingraph dataset applied in these works of ours was

computed from the high-quality HARDI (high angular

resolution diffusion imaging) data of the Human Connec-

tome Project (McNab et al. 2013), and it is publicly

available at http://braingaph.org (Kerepesi et al. 2017).

The comparison of the connectomes of the individual

subjects—instead of their groups—is also a challenging

question. The comparison of the individual braingraphs is

possible: the set of the vertices of the braingraphs of all

subjects is the same, since the brains of different shapes,

size and weight can be mapped to the very same brain map,

using the tools of FreeSurfer suite of programs (Desikan

et al. 2006; Fischl 2012). Consequently, the braingraphs of

all subjects have the same, anatomically labeled 1015

nodes in the datasets examined in Kerepesi et al. (2018)

and Szalkai et al. (2015, 2016a), they differ only in the

edges, running between some of the pairs of these nodes

(c.f., Figure 1 of Szalkai et al. 2016a).

For the description of the frequently appearing graph

edges or connections, we have built the Budapest Refer-

ence Connectome Server (Szalkai et al. 2015, 2016a),

available at the address http://connectome.pitgroup.org.

The Server uses 477 connectomes, computed from Human

Connectome Project’s data McNab et al. (2013), and the

user may choose an integer k between 1 and 477, and the

server returns those edges which are present in at least

k connectomes of the subjects. Therefore, the frequently

appearing edges can be mapped, while the infrequent

connections can be filtered out. The graph of these k-fre-

quent edges can also be visualized on the webpage http://

connectome.pitgroup.org.

The mapping of the individual differences of the cere-

bral connections could identify the more and less variable

regions of the human brain. For the description of the

variability we have used a natural mathematical tool, the

cumulative distribution function in Kerepesi et al. (2018).

We have shown, by analyzing the variabilities of the

individual connectomes that some areas are more conser-

vative (i.e., the variability of the graph edges is smaller)

and some are more diverse (i.e., the variability of the graph

edges are larger). For example, the limbic lobe is more

conservative, while the edges in the temporal and occipital

lobes are more diverse. Interestingly, a ‘‘hybrid’’ conser-

vative and diverse distribution was found in the paracentral

lobule and the fusiform gyrus of the human brain. Smaller

cortical areas have also shown differences in connectome

variability: the precentral gyri were found to be more

conservative, and the postcentral and the superior-temporal

gyri to be more diverse (Kerepesi et al. 2018).

In the present contribution we compare several

advanced graph-theoretical parameters within the structural

connectomes of the largest three lobes of the human brain,

the frontal, the temporal and the parietal lobes. We com-

pute the parameters in both the left- and the right hemi-

spheres in each of these lobes, and analyze the differences

discovered. Only the largest lobes (cf. Table 1) are ana-

lyzed graph-theoretically, since in the smaller lobes (the

occipital and the libic lobes) there are too few nodes to

form graphs with rich enough structures: the vertex num-

bers of the lobes and smaller gray matter areas in the 1015

vertex-resolution are visualized on an interactive plot at

http://uratim.com/diversity/Figure_S1-Krona.html (Kere-

pesi et al. 2018).
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Discussion and results

Here we define and explain the graph-theoretical parame-

ters computed for the lobes in the current study. Some of

the parameters are related to simple edge-counting

(AvgDegree, Density, and Sum), some can be computed by

more complex, but still polynomial-time (Lovász 2007)

algorithms (AdjLMaxDivD, HoffmanBound, LogSpan-

ningForestN, MinSpanningForest, PGEigengap) and some

are known to be NP-hard (Lovász 2007), and is com-

putable by integer programming tools for small enough

graphs (MinVertexCoverDivN, MinVertexCover).

The definition of the braingraphs analyzed

We have applied five different resolutions, namely 83, 129,

234, 463 and 1015 in the gray-matter parcellation for each

subjects, applying the FreeSurfer tool (Fischl 2012). In low

resolutions, the graphs are more robust against parcellation

errors, in higher resolutions, the graphs may carry more

information on the finer structure of the human connec-

tome. Next, we have prepared five graphs for each subject,

with 83, 129, 234, 463 and 1015 vertices, respectively,

where the vertices correspond to the anatomically identi-

fied gray matter regions of interests (ROIs), and two ver-

tices are connected by an edge if at least one neural fiber

tract is identified between the corresponding two areas.

It is important to make note the strength or the weight of

the edge found between the pairs of vertices: some edges

are defined by just one fiber tract, and others by dozens. For

this goal we use five different weight functions for each

edge: FAMean, FiberLengthMean, FiberN, FiberNDiv-

Length and Unweighted, defined below. Therefore, for

each subject, we have five resolutions and five weight

functions, that is, 5� 5 ¼ 25 weighted graphs are com-

puted and analyzed.

We note that in most or, perhaps all connectomics

studies, we are interested in the connections between the

anatomically identified areas of the gray matter, while we

do not want to observe the trajectories of the fiber tracts in

the white matter, which physically made this connection. In

other words, we want to examine the graph, but not the

fiber tracts, defining this graph. However, some physical

properties of these trajectories (e.g., length, number of

fibers) need to be recorded in the connectome: these

properties are characterized by the different edge weights.

Weight functions on the edges

The following weight functions are computed for the edges

of the graphs:

FAMean: The fractional anisotropy (Basser and Pier-

paoli 1996), averaged for the voxels on the tracts, defining

the edge. For each voxel, the value of the fractional ani-

sotropy is between 0 and 1: 0 if the diffusion-ellipsoid is a

perfect sphere, and it is getting closer to 1 if the ellipsoid

has one big and two small axes (i.e., it is elongated). If the

average fractional anisotropy of a fiber tract is close to 1

then it means that most of the voxels of the fiber has an

elongated diffusion ellipsoid. The reliability of the trac-

tography in diffusion-weighted MR images mostly depends

on the anisotropy of the voxels; consequently, the large

FAMean value for an edge shows the reliability of the

detected neural fiber tracts that define the edge.

FiberLengthMean: The average lengths of the fiber

tracts, defining the graph edges, measured in mm.

FiberN: The number of the fiber tracts, defining the edge

in question.

FiberNDivLength: The weight function FiberLength-

Mean does not reflect the number of the fibers; the weight

function FiberN does not say anything about the lengths of

the fibers, defining the edge. The FiberNDivLength weight

function is the quotient of quantities FiberN and Fiber-

LengthMean. It is an ‘‘electric conductivity’’-like graph

parameter: it decreases for longer fibers and increases if

multiple fibers define an edge. It can also be viewed as a

reliability measure of the edge: with more detected fibers

the reliability of the edge is increases, while with longer

average length fibers the reliability decreases (Hagmann

et al. 2008).

Unweighted: Every detected edge has the same weight

equal to 1.

Table 1 The vertex numbers in

the six cerebral areas in

different resolutions

Scale 83 Scale 129 Scale 234 Scale 463 Scale 1015

Left_Frontal 10 19 37 74 168

Right_Frontal 10 18 36 74 167

Left_Parietal 6 13 30 62 132

Right_Parietal 6 13 29 60 136

Left_Temporal 7 10 18 33 74

Right_Temporal 7 10 17 33 74

We note that in all resolutions, the frontal lobes contain more nodes than the parietal and temporal ones,

and except in the lowest resolution, the parietal lobes contain more vertices than the temporal ones
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Graph-theoretical parameters

Most of the following graph-theoretical parameters were

computed and analyzed for male and female connectomes

in Szalkai et al. (2015, 2016c) and Szalkai (2017), and it

was shown that women’s connectomes have significantly

better values for such parameters than those of men; here

the ‘‘better’’ adjective refers to graph-theoretical and

computer engineering measures of graph connectivity (e.g.,

Leighton 1992; Tarjan 1983), as were detailed in Szalkai

et al. (2015, 2016c) and Szalkai (2017), since the neuro-

scientific advantages of the ‘‘better’’ underlying structural

network are not established yet.

Here we compute and compare these parameters in the

frontal, parietal and temporal lobes of the human brain,

both in the left and the right hemispheres. In what follows,

we are dealing with the induced subgraphs of the human

connectomes: the vertices correspond to the regions of

interests (ROIs) in six cerebral areas: the left- and right

frontal, temporal and parietal lobes, and only those edges

are considered that connect two vertices from the very

same area from these six ones. In other words, edges that

connect a vertex, for example, in the right frontal lobe to

another vertex in the right parietal lobe are not considered;

while all edges are considered that connect two vertices

from the same area, say the right parietal lobe or the left

parietal lobe, but edges that connect the left parietal lobe

with the right parietal lobe are not considered. Conse-

quently, we will made comparisons of the parameters of

the graphs of these six cortical areas.

The vertex numbers of the six cortical areas in different

resolutions are listed in Table 1.

In the analysis below we list only the statistically sig-

nificant (p\0:05) differences found in the graph parame-

ters in the distinct lobes. The p values mentioned are

Holm–Bonferroni corrected ones (Holm 1979), listed in

Table S1 in the on-line supporting material. For the sta-

tistical details we refer to the ‘‘Statistical Analysis’’

subsection.

Sum In the Unweighted case, this parameter describes

the number of the edges in each of the six areas of the

cortex. For other weight functions (i.e., FAMean, Fiber-

LengthMean, FiberN, FiberNDivLength), the Sum param-

eter gives the sum of the weights of the edges in the area of

question. We emphasize that the Sum parameter and all the

other parameters in this work are computed for the induced

graph edges only: that is, both endpoints of the edges

considered need to be in the same area from the six pos-

sible ones.

Figure S1 visualizes the Sum parameter in the

Unweighted case (i.e., the edge number) in five resolutions

and six areas. In all resolutions the larger lobes contain

more edges than the smaller ones. The same area for the

higher resolutions—naturally—contains more edges than

in lower resolutions, simply because in higher resolutions

there are more vertices in the graph.

On Figure S1, in three resolutions out of five (83,129

and 1015 node resolutions), one can observe that the left

frontal lobe contains significantly more edges than the right

frontal lobe. The right parietal lobe contains significantly

more edges than the left parietal lobe in three resolutions

(129,234 and 1015 nodes) and the right temporal lobes, on

average, contain significantly more connections than the

left temporal lobes in resolution of 463 and 1015 nodes.

The same significant advantage in the weighted number

of connections in the case of the left frontal lobe and in the

case of right parietal and temporal lobes hold true for

Figures S2, S3, S4 and S5 with the four additional weight

functions, and with most of the resolutions (see Table S1

for the corrected p values for the different resolutions). For

example, on Figure S3, the FiberN weighted edge numbers

are significantly larger in the left frontal lobe in resolutions

234 and 1015, and the FiberN weighted edge numbers are

significantly larger in the right parietal lobe than of the left

in all resolutions. In the case of the temporal lobes, the

right temporal lobe contains significantly more FiberN

weighted edges than the left in all resolutions, except the

83-vertex one.

The observation concerning more connections in the left

frontal lobe is surprising, since the width and the volume of

the right frontal lobe is found to be larger on average than

the left one (Toga and Thompson 2003; Cherbuin et al.

2013). The work Cherbuin et al. (2013), based on structural

and diffusion tensor MR imaging, has found also (in their

Table II) that—on the average—the white mater of right

frontal lobe is larger than of the left. Since axonal fibers

(except the very short ones) are in the white matter, our

finding seems to be interesting in the contrast of that result.

Additionally, our finding of significantly more connec-

tions in the right temporal lobe needs also be compared to

the results of lateral asymmetries described in Cherbuin

et al. (2013, Table II), where the size of the left temporal

lobe is found to be larger in much more subjects (i.e., in

288 subjects), compared to cases where the right temporal

lobe is larger (in 60 subjects). Consequently, we have

found significantly more connections in the statistically

smaller, right temporal lobe. Similarly to the data con-

cerning the frontal lobe, the white matter of the left tem-

poral lobe is found to be larger on average in Cherbuin

et al. (2013), while we have found more connections in the

right temporal lobe.

In the case of the parietal lobe, our results show sig-

nificantly more connections within the right parietal lobe

than in the left, while Cherbuin et al. (2013, Table II) also

indicates larger volume in the right parietal gray matter and
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white matter than in the left ones.Therefore, the larger

right-lobe volume coincides with more connections in the

parietal lobe.

Another two parameters, AvgDegree and Density

are closely related to the Sum parameter. In the

Unweighted case, the AvgDegree parameter gives the

average degree of the nodes in the induced subgraph: the

degree of a node v is the number of edges connected to v,

the average degree is the sum of the degrees of the nodes,

divided by the number of the nodes in the area considered.

Again, we are counting the edges of the induced subgraphs,

that is, both endpoints of the counted edge needs to be in

the same area (out of the six considered) of the brain.

Figures S6, S7, S8, S9 and S10 describe the AvgDegree

with different weight functions.

In the unweighted case, for n vertices, the Density

parameter describes the quotient

e
1
2
nðn� 1Þ;

that is, the number of the edges (denoted by e) of the graph,

divided by the maximum possible number (i.e.,

nðn� 1Þ=2) of edges. For a complete graph, where each

vertex-pair is connected by an edge (e ¼ nðn� 1Þ=2), this
value is 1, for the empty graph (where no vertices are

connected by edges) this value is 0. For the weighted case

the Density is computed similarly, then e should be sub-

stituted by the sum of the weights of the edges in the graph.

Consequently, the density describes the relative total

weight of connections in the area in question.

Figure S11 shows the Density values in the Unweighted

case, while Figures S12, S13, S14 and S15 the Density

values with edge weights FiberNDivLength, FiberN,

FiberLengthMean and FAMean, respectively.

The Density values in Figure S11 are quite interesting.

For rougher resolutions (blue and red bars) the density of

the right and the left parietal lobes are the largest: in the 83

node resolution (blue bars) 80% of the possible vertex-pairs

are connected by edges, in the frontal and temporal areas

these values are less than 60%. However, in finer (i.e.,

higher) resolutions, the right and the left temporal lobes

have the highest densities. This observation can be inter-

preted as follows: in low resolution, a significantly larger

fraction of the vertex-pairs are connected in the parietal

area than in the other lobes, in higher resolutions this

advantage disappears. Relatively more long edges in the

parietal lobe and relatively more short edges in other lobes

would imply this observation. In higher resolutions, rela-

tively more vertex-pairs are connected in the temporal

lobes than in other lobes: if those edges are short ones,

which do not cross the borders of the parcellation in the

83-node resolution, then this property would explain the

observation. Table S1 shows that the mentioned differences

are all significant statistically. Similar relations can be

observed for the Density with other weight functions on

Figures S12, S13, S14 and S15.

The MinVertexCover parameter is one of the most

studied characteristics of graphs, examined for many dec-

ades (e.g., Gallai 1959; Garey and Johnson 1979; Garey

et al. 1974). A vertex cover is a set of vertices in a graph

that are incident to all edges in the graph (i.e., ‘‘cover

them’’), see Fig. 1. Clearly, the set of all vertices of any

graph covers all the edges, so the question is not to find any

vertex cover, but the minimum number of vertices that

already cover all the edges; the parameter MinVertexCover

is equal to this number. Clearly, the minimum vertex cover

of the complete graph on n vertices (where each pair of

vertices are connected by an edge) is n� 1 (one needs to

include all vertices, except one; if two vertices were left

out, the edge connecting them would not be covered), the

minimum vertex cover of the empty graph on n vertices

(that contains no edges) has a MinVertexCover of 0, other

graphs have this parameters between these two extreme

values.

As one can easily verify (e.g., on Fig. 1), the comple-

ment set of any vertex cover cannot span any edge (since

this edge would not be covered), therefore, this set is an

independent set (a vertex set is called to be an independent

set, if it does not span any edges). Consequently, the

complement of the minimum vertex cover set is the max-

imum independent set in a graph, so, if we denote the size

of the minimum vertex cover set of a graph G by sðGÞ, and
the size of the largest independent set in G by aðGÞ, then,
for an n-vertex graph G:

sðGÞ þ aðGÞ ¼ n:

It is well known that computing sðGÞ (and, equivalently,

aðGÞ ¼ n� sðGÞ), is an NP-hard problem (Garey and

Johnson 1979; Garey et al. 1974), therefore, it is not

probable that it can be computed by a fast (i.e., polynomial

time) algorithm. One can interpret, in a sense, these

parameters as follows: dense, well-connected graphs have a

larger MinVertexCover and, consequently, a smaller

independence number (aðGÞ), while ‘‘scarcely’’ connected

graphs have a smaller MinVertexCover and, consequently,

a larger independence number. Apart from the indepen-

dence number, the minimum vertex cover is also closely

related to the matching number of the graphs (Gallai 1959).

Figure S16 through S20 depict the MinVertexCover

values for different lobes. Generally, the higher resolutions,

with larger vertex numbers (Table 1) imply larger

MinVertexCover values. On Figures S17 and S18, where

the weights are proportional to the fiber numbers, there are

no such increases in finer resolutions, since the same fiber-

set is re-partitioned in finer resolutions in the graph con-

struction process (see the ‘‘Methods’’ section). On
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Figure S16, the Unweighted case is covered: in higher

resolutions (129, 234 and 1015 vertices), the already

observed differences are strengthened between the left and

right frontal, parietal and temporal lobes. These results

show that the left frontal lobe contains not just more con-

nections than the right frontal lobe, but its minimum vertex

cover is also significantly larger (in the 463-vertex reso-

lution the difference is not significant).

We need to note that more edges do not necessarily

imply larger MinVertexCover values as the example on

Fig. 2 clearly demonstrates.

MinVertexCoverDivN It can be seen clearly on

Figure S16 (and also on Figures S19 and S20) that in all six

areas of the brain the MinVertexCover values are increased

along the increase of the vertex number (or the resolution).

Therefore, it would be interesting to compute the differ-

ences in the relative size of the vertex covers, compared to

the number of the vertices in the area. The parameter

MinVertexCoverDivN describes exactly this value for each

area under study: we normalized by dividing the MinVer-

texCover parameter by the vertex number of the lobe, in

each resolutions.

The average of the normalized vertex cover numbers are

visualized on Figures S21–S25. Figure S21 is particularly

informative in the comparison of the lobes: now the vertex-

number differences are ‘‘factored out’’, because of the

normalization, and we can compare the parameters of the

different lobes, without the influence of the differing vertex

numbers.

Fig. 1 Examples of the vertex

covers of graphs. In these three

graphs, the red nodes cover all

the edges. In graph a the central

node is a minimum vertex

cover. In graph b the red nodes

are covering the edges, but they

are not of minimal cardinality.

In graph c the red vertices form

also a minimum vertex cover.

One can observe that the non-

red vertices form independent

vertex sets (they do not span any

edges) in all three examples:

this is not by chance, the

complementer vertex-set of all

vertex covers are independent

sets, they cannot span edges,

otherwise, the spanned edges

were not covered by the vertex

cover. Therefore, the

complementer set of the

minimum vertex cover needs to

be the maximum independent

set in any graph. Consequently,

finding the minimum vertex

cover is equivalent to the

finding the maximum

independent vertex set in a

graph. (Color figure online)

Fig. 2 Graph A and B have the

same MinVertexCover value

(i.e., 4), while graph A has four

edges and graph B 11 edges.

Therefore, more edges do not

necessarily imply larger

MinVertexCover value

554 Cognitive Neurodynamics (2018) 12:549–559
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One can observe that in the higher resolutions the

MinVertexCoverDivN values are significantly higher in the

frontal lobe than in the parietal and in the temporal lobe,

and it is larger in the parietal lobe than in the temporal one.

Therefore, in this sense—and strictly in this sense—we can

conclude that the frontal lobe has more ‘‘complex’’ graph

than the parietal and the temporal, and the parietal has a

more ‘‘complex’’ graph than the temporal lobe. We note

that—in the higher resolutions—the advantage of the left

frontal lobe against the right frontal lobe, and the advan-

tage of the right parietal and the temporal lobes against the

left ones remained significant, even in this vertex-number

normalized setting. Similar observation can be made on

Figure S25, with the FAMean weight function, except that

the higher value in the left frontal lobe only in scale 463 is

significant.

PGEigengap The transition matrix PG of a graph G

describes the Markovian process of the random walk on the

graph, i.e., one walker visits the vertices of the graph in a

sequence of steps as follows: when the walker is in a node

then he makes a (uniform) random choice between the

adjoining edges, and follows that edge to the other end-

point. When the graph is weighted by positive weights then

the probability of choosing an edge is proportional to its

weight. Matrix PG contains the probabilities of this walk.

The eigengap of matrix PG is the difference between its

largest and second largest eigenvalues, and this value is

characteristic to the expanding properties of the graph

(Hoory et al. 2006): a larger eigengap implies a better

expander graph.

Expander graphs with few edges are important objects

of study in mathematics and in engineering, and have

dozens of important applications. Let us consider n ver-

tices, and the n-vertex complete graph, denoted by Kn: in

this graph every pair of vertices are connected by an edge,

therefore, Kn has nðn� 1Þ=2 edges. Kn has perfect con-

nectivity properties: from each vertex each other vertex can

be reached in a short path (in fact, through a single edge), if

we make a short random walk then the probability of being

at any vertex will be almost the same (in fact, already after

the first step), or any two, disjoint sets, containing k ver-

tices each, are joined by k vertex-disjoint paths (in fact, by

k edges). Consequently, the graph Kn has very good con-

nectivity properties. However, it has a great disadvantage:

it has too many edges (nðn� 1Þ=2 edges), and each vertex

has a too large degree (n� 1). For example, if the human

brain’s n ¼ 80 billion neurons were formed the vertices of

a complete n-vertex graph, Kn, then each neuron needs to

be connected to 80 billion others; that is, the small vicinity

of each neuron needs to contain 80 billion connecting

axons! This is simply impossible, there is no place for so

many axons in the small vicinity of each neurons.

Consequently, mathematicians and engineers are inter-

ested in graphs with very good connectivity properties,

similar to that of the complete n-vertex graph, but with very

few edges and only a small degree at each nodes. These

small-degree expander graphs are of the subjects of an

intensive research for many decades now Hoory et al.

(2006).

We have computed the eigengap of the PG transition

matrix for all lobes of all subjects, and their average value

is denoted by PGEigengap. The results are visualized on

Figures S26 through S30.

On Figure S26 the PGEigengap with Unweighted edges

are demonstrated. In finer resolutions, the PGEigengap is

larger in the frontal and in the temporal lobes than in the

parietal lobe, and it is the highest in the temporal lobe. In

other weight functions (Figures S27–S30) the advantage of

the temporal lobe remains true. In finer resolutions, the

differences between the left and right parts of the same

lobes are not significant in most weight functions.

AdjLMaxDivD The adjacency matrix A of an n-vertex

graph is an n� n matrix, where the rows and the columns

are corresponded to the vertices of the graph. The entry in

row i and column j is 1 if vertices vi and vj form an edge,

and 0 otherwise. In the case of weighted graphs, the entry

in row i and column j is the wij weight of the fvi; vjg edge,

or 0 if no such edge exists. For un-weighted non-directed

graphs the eigenvalue with the largest absolute value of the

adjacency matrix A is a non-negative real number k (be-

cause of the Perron–Frobenius theorem, Lovasz 2007;

Hoffman 1972), and its value is larger or equal to the

average degree of the vertices and less or equal to the

maximum degree of the vertices (Chung 1997). For non-

empty graphs, AdjLMaxDivD denotes the value k=d,
where d denotes the average degree of the vertices. For

unweighted graphs, its value is always at least 1. For

weighted graphs, the degrees of the vertices need to be

computed by summing the weights of the adjoining edges.

In regular graphs (where all the degrees are the same

number, say d), the maximum and the average degrees

coincide, therefore k ¼ d, and AdjLMaxDivD is 1. Con-

sequently, in a sense, AdjLMaxDivD describes the ‘‘ir-

regularity’’ of the degree distribution of the graph: the

higher the number the more ‘‘irregular’’ the degree

distribution.

Figures S31–S35 visualizes the AdjLMaxDivD values

for different weight functions. On Figure S31, in higher

resolutions, we can learn that the ‘‘more complex’’ left

frontal lobe is more regular in this sense than the ‘‘less

complex’’ right frontal lobe (for 1015-vertex resolution)

and the graph of the ‘‘less complex’’ left temporal lobe is

more irregular than the ‘‘more complex’’ right temporal

lobe (in 463 and 1015 vertex resolutions). In the case of the
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parietal lobe the differences exist, but they are not signif-

icant statistically. On Figure S35, with the FAMean weight

function, the left parietal lobe is more ‘‘irregular’’ than the

more ‘‘complex’’ right parietal lobe (in the 129, 234 and

463 node resolutions the differences are significant).

HoffmanBound This value gives a lower bound to the

(hard-to-compute) chromatic number of graphs. The

chromatic number of graphs is the smallest integer k that

the vertices of the graph can be colored by k colors, in a

way that adjoint vertices carry different colors. The com-

plete n-vertex graph clearly needs different colors for all of

its vertices, while, for example, any tree can be colored by

two colors. In a certain sense, the graph chromatic number

can also be applied as a measure of graph complexity: more

complex graphs have higher chromatic numbers. We note

that the chromatic number is rather independent from the

edge number of the graph: for example, the n-vertex

bipartite graph with two equal vertex classes has n2=4

edges and its chromatic number is only 2, while an n-vertex

graph that consists of a single ½
ffiffiffi

n
p

�-clique has less than n

edges and its chromatic number is high: ½
ffiffiffi

n
p

�. In this sense

we apply the Hoffman bound also as a complexity mea-

sure; it is defined as

1þ kmax
jkminj

;

where kmax and kmin denote the largest and smallest

eigenvalues of the adjacency matrix of the graph Hoffman

(1972).

The Hoffman bounds are visualized on Figures S36–

S40. On Figure S36, in the Unweighted graphs, in higher

resolutions, the right parietal and temporal lobes have

significantly larger HoffmanBounds than the left ones, and

in scales 129 and 463, the left frontal lobe has larger

HoffmanBound than the right one.

The LogSpanningForestN parameter describes the

logarithm of the number of the spanning forests in the

unweighted case. This parameter can also be applied to

describe the ‘‘connectedness’’ of the graph, in the sense,

detailed below. We say that a graph G is connected, if from

any vertex u any other vertex v can be reached on a path,

consisting of a sequence of edges of the graph. A tree is a

minimal connected graph: deleting any edge would make

the graph non-connected. Any tree on n vertices contains

exactly n� 1 edges. For a connected graph G T is a

spanning tree of G if T contains all the vertices of G, and

T is a tree subgraph of G.

Clearly, all connected graphs contain at least one

spanning tree. A tree (as the minimal connected graph) has

only one spanning tree: itself. One may quantify the

‘‘connectedness’’ of a connected graph G by the number of

spanning trees of G. Cayley’s theorem states that the n-

vertex complete graph has nn�2 spanning trees. Any con-

nected, n-vertex G has at least 1 and at most nn�2 spanning

trees. Computing the number of the spanning trees in a

connected G can be done from the eigenvalues of G’s

Laplacian matrix, by applying the famous matrix-tree

theorem of Kirchoff, proved in 1847 Kirchhoff (1847).

If G is not connected, then, instead of spanning trees, it

has spanning forests. The parameter LogSpanningForestN

gives the logarithm of the number of the spanning forests in

the unweighted case. When edge weights are present, the

parameter LogSpanningForestN gives the sum of the log-

arithms of the added-up edge-weights of trees in the forest.

This value can also be negative if all the weights are small.

Figures S41–S45 demonstrate the LogSpanningForestN

parameters with different weight functions. Figure S41 (the

Unweighted case) shows that in the 1015-vertex resolution,

this parameter is larger in the left frontal lobe than in the

right, and in the right parietal and in the right temporal

lobes than in the left ones. Similar observations can be

made on Figures S43 and S44.

The MinSpanningForest parameter gives the

average weight of the minimum spanning forests for each

lobe. For connected graphs, the minimum-weight spanning

tree is an extremely important structure with lots of

applications. In the unweighted case (more exactly, when

each edge-weight is 1), if the n-vertex graph G is con-

nected, then the weight of its minimum-weight spanning

tree is always exactly n� 1. If graph G has ‘ connected

components, then the weight of its minimum-cost spanning

forest is exactly n� ‘. Therefore, in the unweighted case,

the MinSpanningForest parameter describes the component

number of G.

In weighted case, its value is the sum of the weights of

the minimum weight spanning trees in each of its compo-

nents. Figures S46–S50 describe this value with different

weight functions, while Figures S51–S55 describe this

value normalized by the vertex number minus one (i.e., the

edge number of the tree) in each lobe (denoted by

MinSpanningForestDivNMin1).

Figure S51 shows that in the left parietal lobe in the

coarsest two, and in the right parietal lobe in the coarsest

three resolutions the graphs are almost always connected

(i.e., their component number is 1). In finer resolutions the

number of the connected components are typically larger,

that is, the ‘‘connectivity’’ is, in this sense, worse. The

relative number of graph components is the smallest in the

234-vertex scale in the frontal and the temporal lobes. This

observation is paralleled by the Density parameter values

on Figure S11, where similar observations are done.

556 Cognitive Neurodynamics (2018) 12:549–559

123



Methods

Computing the connectomes

We have applied the graphs from the https://braingraph.org

repository (Kerepesi et al. 2017), which were computed

from the Human Connectome Project’s public data release

(McNab et al. 2013). The details of their construction is

given in Kerepesi et al. (2017).

The computation of the graph-theoretical
parameters

The graph-theoretical parameters, detailed in the ‘‘Dis-

cussion and Results’’ section, were computed for the

spanned subgraphs for the left- and right frontal, parietal

and temporal lobes. That means that only those edges were

allowed, which have both of their endpoints in the very

same area from these six ones. The subgraphs were pre-

pared from the https://braingraph.org data; in this work, we

have analyzed the graphs of 423 subjects from the Human

Connectome Project McNab et al. (2013). The parameters

were computed by our own scripts and by the integer

programming (IP) solver SCIP http://scip.zib.de (Achter-

berg et al. 2008; Achterberg 2009).

Statistical analysis

For each graph parameter, resolution and weight function,

we applied a statistical null-hypothesis (Hoel 1984) that the

average values of the graph parameters do not differ for

distinct lobes. Next, we applied Holm–Bonferroni (Holm

1979) corrected ANOVA (Analysis of variance) (Wonna-

cott and Wonnacott 1972) for assigning p values for each

pairs of values with the same parameter, resolution and

weight function. The null hypothesis was refuted if the

corresponding corrected p-value was less than 0.05.

Conclusions

We have analyzed numerous deep graph-theoretical prop-

erties in the left- and right frontal, parietal and temporal

lobes of the connectomes of 423 subjects, computed from

the data of the Human Connectome Project McNab et al.

(2013). The most relevant findings of our analysis are listed

as follows:

• In numerous resolutions, the left frontal lobe contains

significantly more edges, has higher average degree,

density, larger minimum vertex cover, Hoffman bound

and has a ‘‘more regular’’ degree distribution than the

right frontal lobe.

• In numerous resolutions, the right parietal lobe contains

significantly more edges, has higher average degree,

density, larger minimum vertex cover and Hoffman

bound than the left parietal lobe.

• In numerous resolutions, the right temporal lobe

contains significantly more edges, has higher average

degree, density, larger minimum vertex cover and

Hoffman bound and has a ‘‘more regular’’ degree

distribution than the left temporal lobe.

• Comparing the normalized MinVertexCoverDivN

parameter in finer resolutions in frontal, parietal and

temporal lobes, one can conclude that these values are

largest in the frontal and the smallest in the temporal

lobes. In this sense, the frontal lobe is more complex

than the other two lobes.

• The eigengap differences show that in the coarsest

resolution the parietal lobe is the best expander, and in

the finer resolutions the temporal lobe is the best

expander. In the case of the temporal lobe, this remark

is in line with the density-differences: in the finest three

resolutions the temporal lobe has the highest densities.

In this sense, the temporal lobe is more ‘‘well-

connected’’ than the other two ones.

• Both the left and right parietal lobes are almost always

connected in the coarsest three resolutions, for the

frontal and temporal lobes this property does not hold.

Data availability

The data source of this study is Human Connectome Pro-

ject’s website at http://www.humanconnectome.org/doc

umentation/S500 (McNab et al. 2013). The connectomes

that we have computed from these data are freely available

at the site http://braingraph.org/download-pit-group-con

nectomes/ (Kerepesi et al. 2017). The Supporting fig-

ures are downloadable from http://uratim.com/paralobe/

Supporting_figures.pdf, and are also enclosed with this

work. The statistical details (average parameter values,

standard deviations, and the corrected p-values) are avail-

able as a very large Table S1 from http://uratim.com/para

lobe/Table_S1.pdf.
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Ströme geführt wird. Ann Phys Chem 72(12):497–508

Leighton FT (1992) Introduction to parallel algorithms and architec-

tures: arrays, trees, hypercubes. Morgan Kaufmann, Burlington

Lovasz L (2007) Eigenvalues of graphs. Technical report, Department

of Computer Science, Eotvos University, Pazmany Peter 1/C,

H-1117 Budapest, Hungary. http://www.cs.elte.hu/lovasz/eigen

vals-x.pdf

Lovász L (2007) Combinatorial problems and exercises, 2nd edn.

American Mathematical Society, Providence

McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K,

Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth

RD, Kinney HC, Wald LL (2013) The human connectome

project and beyond: initial applications of 300 mT/m gradients.

Neuroimage 80:234–245. https://doi.org/10.1016/j.neuroimage.

2013.05.074

Peters JF, Tozzi A, Ramanna S, Inan E (2017) The human brain from

above: an increase in complexity from environmental stimuli to

abstractions. Cogn Neurodyn 11:391–394. https://doi.org/10.

1007/s11571-017-9428-2 ISSN 1871-4080

Szalkai B, Varga B, Grolmusz V (2015a) Graph theoretical analysis

reveals: women’s brains are better connected than men’s. PLoS

One 10(7):e0130045. https://doi.org/10.1371/journal.pone.

0130045

Szalkai B, Kerepesi C, Varga B, Grolmusz V (2015b) The Budapest

Reference Connectome Server v2. 0. Neurosci Lett 595:60–62

Szalkai B, Kerepesi C, Varga B, Grolmusz V (2016a) Parameterizable

consensus connectomes from the Human Connectome Project:

The Budapest Reference Connectome Server v3.0. Cogn Neu-

rodyn. https://doi.org/10.1007/s11571-016-9407-z

Szalkai B, Varga B, Grolmusz V (2016b) Mapping correlations of

psychological and connectomical properties of the dataset of the

human connectome project with the maximum spanning tree

method. Brain Imag Behav. https://doi.org/10.1007/s11682-018-

9937-6

Szalkai B, Varga B, Grolmusz V (2016c) The graph of our mind.

arXiv:1603.00904,

Szalkai B, Varga B, Grolmusz V (2017) Brain size bias-compensated

graph-theoretical parameters are also better in women’s connec-

tomes. Brain Imag Behav. https://doi.org/10.1007/s11682-017-

9720-0. arXiv:1512.01156

Tarjan RE (1983) Data structures and network algorithms, volume 44

of CBMS-NSF Regional Conference Series in Applied Mathe-

matics. Society for Industrial Applied Mathematics

Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev

Neurosci 4:37–48. https://doi.org/10.1038/nrn1009 ISSN

1471-003X

558 Cognitive Neurodynamics (2018) 12:549–559

123

https://doi.org/10.1016/j.jmr.2011.09.022
https://doi.org/10.1016/j.jmr.2011.09.022
https://doi.org/10.1002/hbm.22022
https://doi.org/10.1371/journal.pone.0048121
https://doi.org/10.1371/journal.pone.0048121
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1145/800119.803884
https://doi.org/10.3389/fninf.2011.00003
https://doi.org/10.3389/fninf.2011.00003
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1073/pnas.1316909110
https://doi.org/10.1073/pnas.1316909110
https://doi.org/10.1016/j.neulet.2017.10.003
https://doi.org/10.1016/j.neulet.2017.10.003
http://www.cs.elte.hu/lovasz/eigenvals-x.pdf
http://www.cs.elte.hu/lovasz/eigenvals-x.pdf
https://doi.org/10.1016/j.neuroimage.2013.05.074
https://doi.org/10.1016/j.neuroimage.2013.05.074
https://doi.org/10.1007/s11571-017-9428-2
https://doi.org/10.1007/s11571-017-9428-2
https://doi.org/10.1371/journal.pone.0130045
https://doi.org/10.1371/journal.pone.0130045
https://doi.org/10.1007/s11571-016-9407-z
https://doi.org/10.1007/s11682-018-9937-6
https://doi.org/10.1007/s11682-018-9937-6
http://arxiv.org/abs/1603.00904
https://doi.org/10.1007/s11682-017-9720-0
https://doi.org/10.1007/s11682-017-9720-0
http://arxiv.org/abs/1512.01156
https://doi.org/10.1038/nrn1009


Tournier J, Calamante F, Connelly A (2012) Mrtrix: diffusion

tractography in crossing fiber regions. Int J Imag Syst Technol

22(1):53–66

Tozzi A, Peters JF (2016) Towards a fourth spatial dimension of brain

activity. Cogn Neurodyn 10:189–199. https://doi.org/10.1007/

s11571-016-9379-z ISSN 1871-4080

Tozzi A, Peters JF (2017) From abstract topology to real thermody-

namic brain activity. Cogn Neurodyn 11:283–292. https://doi.

org/10.1007/s11571-017-9431-7 ISSN 1871-4080

White JG, Southgate E, Thomson JN, Brenner S (1986) The structure

of the nervous system of the nematode caenorhabditis elegans:

the mind of a worm. Philos Trans R Soc Lond 314:1–340

Wonnacott TH, Wonnacott RJ (1972) Introductory statistics. Wiley,

New York

Zeng L-L, Liao Y, Zhou Z, Shen H, Liu Y, Liu X, Dewen H (2016)

Default network connectivity decodes brain states with simulated

microgravity. Cogn Neurodyn 10:113–120. https://doi.org/10.

1007/s11571-015-9359-8 ISSN 1871-4080

Cognitive Neurodynamics (2018) 12:549–559 559

123

https://doi.org/10.1007/s11571-016-9379-z
https://doi.org/10.1007/s11571-016-9379-z
https://doi.org/10.1007/s11571-017-9431-7
https://doi.org/10.1007/s11571-017-9431-7
https://doi.org/10.1007/s11571-015-9359-8
https://doi.org/10.1007/s11571-015-9359-8

	Comparing advanced graph-theoretical parameters of the connectomes of the lobes of the human brain
	Abstract
	Introduction
	Discussion and results
	The definition of the braingraphs analyzed
	Weight functions on the edges
	Graph-theoretical parameters

	Methods
	Computing the connectomes
	The computation of the graph-theoretical parameters
	Statistical analysis

	Conclusions
	Data availability
	Acknowledgements
	References




