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Abstract
A large number of traffic accidents due to driver drowsiness have been under more attention of many countries. The

organization of the functional brain network is associated with drowsiness, but little is known about the brain network

topology that is modulated by drowsiness. To clarify this problem, in this study, we introduce a novel approach to detect

driver drowsiness. Electroencephalogram (EEG) signals have been measured during a simulated driving task, in which

participants are recruited to undergo both alert and drowsy states. The filtered EEG signals are then decomposed into

multiple frequency bands by wavelet packet transform. Functional connectivity between all pairs of channels for multiple

frequency bands is assessed using the phase lag index (PLI). Based on this, PLI-weighted networks are subsequently

calculated, from which minimum spanning trees are constructed—a graph method that corrects for comparison bias.

Statistical analyses are performed on graph-derived metrics as well as on the PLI connectivity values. The major finding is

that significant differences in the delta frequency band for three graph metrics and in the theta frequency band for five

graph metrics suggesting network integration and communication between network nodes are increased from alertness to

drowsiness. Together, our findings also suggest a more line-like configuration in alert states and a more star-like topology

in drowsy states. Collectively, our findings point to a more proficient configuration in drowsy state for lower frequency

bands. Graph metrics relate to the intrinsic organization of functional brain networks, and these graph metrics may provide

additional insights on driver drowsiness detection for reducing and preventing traffic accidents and further understanding

the neural mechanisms of driver drowsiness.

Keywords Electroencephalography (EEG) � Driver drowsiness � Graph theory � Minimum spanning tree �
Functional connectivity

Introduction

Drowsiness during driving is considered a major threat that

endangers the life of drivers, Studies have repeatedly

shown that traffic accidents due to drowsy driving has

become a serious problem in the society (Chen et al. 2015;

Filtness et al. 2017; He et al. 2017). In many countries,

drowsy driving is identified as a contributing factor in a

significant proportion of road transport accidents and the

number of collisions and fatalities caused by this risky

behavior has remained high over the past decades (Tefft

2012; Vanlaar et al. 2008). The National Highway Traffic

Safety Administration estimated that driver drowsiness

caused 100,000 accidents each year in the US (Rau 2005).

Moreover, Smith et al. (2005) found that young adult dri-

vers felt drowsy during driving accounted for 23% of the

cases after a 4-week follow-up study. Usually, drowsiness

is considered to be a state that varies between wakefulness

and sleep, and fatigue is considered as a feeling of reduced

alertness that is associated with drowsiness, which affects

the ability to perform a driving task (Craig et al. 2006).

Therefore, the detection of drowsiness while driving is

important for avoiding accidents and hazards on the road

(Smith et al. 2005).

Several countermeasures based on physiological vari-

ables like Electrooculogram (EOG), Electroencephalogram

(EEG), Electromyogram (EMG) and Electrocardiogram
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(ECG) have been adopted in an attempt to monitor driver

drowsiness (Fu and Wang 2014; Wang et al. 2014). Among

the aforementioned physiological responses, EEG is con-

sidered a reliable indicator in estimating a driver’s status

because of closely related to mental activity (Khasnobish

et al. 2017; Zhang et al. 2017). Hence recent investigations

are working more and more on detection of drowsiness

based on EEG signal. Jap et al. (2009) assessed the four

EEG activities as possible indicators for drowsiness

detection during a monotonous driving session, and they

found that a slight decrease in alpha band power and an

obvious decrease in beta band power over time. A novel

fuzzy mutual-information (MI)-based wavelet packet

transform feature extraction method to classify the driver

drowsy state was studied by Khushaba et al. (2011).

Additionally, Kar et al. (2010) introduced a method based

on Shannon’s entropy measures on the recorded EEG

signals of drivers to quantify drowsiness during simulated

driving and actual driving.

So far, previous investigations are mainly based on

energy entropy or power, whose performances are sus-

ceptible to EEG amplitude because the research methods

are related to amplitude. While phase lag index (PLI)

estimates consistency of phase difference between two

time series which is expected to be less sensitive to the

influence of volume conduction and amplitude effects (Wu

et al. 2013). Thus it has been widely used in neuroscience

studies, such as abnormalities in developmental dyslexia

(Gonzalez et al. 2016), Alzheimer’s disease (AD) (Yu et al.

2016), functional networks changed by Chinese Guqin

music (Wu et al. 2013), etc. Hence, phase lag index (PLI)

seems to be an effective approach for neuronal information

communication between different brain regions (Gonzalez

et al. 2016; Yu et al. 2016). Viewed from this perspective,

it may reveal more information about drowsiness by

studying the phase lag index between different brain

regions.

The goal of the current study is to compare and examine

functional network connectivity and organization between

alert state and drowsy state during simulated driving using

the electroencephalogram (EEG). Previous studies have

investigated the functional connectivity between brain

regions, and Xu et al. found that functional connectivity

among brain regions are related to drowsiness caused by

prolonged driving (Xu et al. 2017). Kong et al. utilized the

phase synchronization to explore the differences between

alert state and drowsy state (Kong et al. 2017). Although

being widely used in some areas and having distinguished

between alert and drowsy state of mind, most conventional

brain network characteristics depend on the number of

links in the network, and the estimated network topology is

hence biased by the choice of the threshold, which limits a

meaningful comparison of network topology between

individuals or groups (Stam et al. 2014). It is noted that

although Van et al. once suggested that normalizing the

network parameters through comparison against network

parameters for surrogate networks can avoid threshold

problems (van Wijk et al. 2010); this approach still cannot

eliminate the problem of bias.

Here, we adopt a novel method-minimum spanning tree

(MST) to construct brain networks to explore the differ-

ences between alert state and drowsy state. The MST is a

simplified representation of a stable network core of the

original network with minimized connection cost, and it

connects all the nodes in the original weighted network

without forming circles or loops. In this way, due to the

same number of nodes and links of MSTs, the network

properties between groups are directly compared, which

avoids the aforementioned methodological biases (Stam

et al. 2014; van Wijk et al. 2010). Collectively, MST

analysis is far superior to conventional network analysis as

(1) it eliminates the problem of bias; (2) it provides a

normalized comparison between conditions or groups; and

(3) it integrates small-world property with scale-free

property (hubs) (Tewarie et al. 2015).

The present study examines brain network connectivity

patterns for frequency bands of interest, utilizing MST

indices, in participants with the simulator driving while

engage in crowded road driving and monotonous driving

tasks. EEG data are also obtained from the 30 scalp elec-

trodes for the whole brain. It is hypothesized that driver

drowsiness would significantly modulate functional brain

network reorganization in different frequency bands.

Specifically, we seek to find sensitive and specific

biomarkers of brain network topology properties such as

MST degree, MST diameters, etc. Comparing to existing

literatures, the highlights of this paper lie in the following

two aspects. (1) We employ phase lag index (PLI) as a

measure for phase synchronization to analyze the driver

drowsiness rather than the EEG amplitude information. (2)

Unlike conventional network topology that is biased by the

choice of the threshold, we use minimum spanning tree

(MST) analysis as a way to characterize and compare EEG

network, avoiding the aforementioned methodological

biases. Importantly, it provides a new and more accurate

method to visualize EEG functional networks.

The paper is organized as follows. In ‘‘Methods’’ sec-

tion, we briefly describe the experimental details and EEG

data employed in this work. Results of the study are pre-

sented in ‘‘Results’’ section and discussed in ‘‘Discussion’’

section.

570 Cognitive Neurodynamics (2018) 12:569–581

123



Methods

Participants

All of the experiments were carried out in accordance to

and with the approval of the local ethical committee of the

Northeastern University (NEU) Institutional Review

Board. Subjects are recruited from the postgraduate stu-

dents at the School of Mechanical Engineering and

Automation, NEU. Fifteen male participants aged between

24 and 30 years agree to participate in the study. Their

average age is 26.200 (SD = 1.935 years). According to

their self-reports, none of the participants has any neuro-

logical or psychiatric disorder. All have normal or cor-

rected to normal vision and normal hearing. All the

participants own their driving licenses, driving at least once

a week during the last 2 years (average of 5500 km per

year). They are asked to sleep adequately (at least 8 h)

before the experiment and are told not to drink coffee,

alcohol or tea during the experiment. They receive 10-yuan

for participation in the experiment and provide informed

written consent prior to entering the experiment.

Task and procedure

Participants are instructed to drive the driving simulator in

a quiet and isolated room. To adjust for individual differ-

ences in skill level, they are allowed to be familiarized with

the simulator driving and practice driving. During the

whole experiment, participants are instructed to avoid

unnecessary movements to reduce artifacts in the physio-

logical data recording (Fu et al. 2016). The outline of the

experiment setup is shown in Fig. 1. The driving simulator

equipment consists of a large screen showing other cars,

the current speed, other road stimuli, etc. and a car frame

with a steering wheel, horn, clutch, brake pedal, accelera-

tor, manual shift, chair and turn signal (see Fig. 1). The

equipment also provides engine noise as well as nearby

traffic noise, which has the same performance as real

vehicles. The distance from the participant to the screen

was about 120 cm.

Each experiment contains two tasks; TASK-1 and

TASK-2, respectively (see Fig. 2). In order to avoid the

influence of circadian fluctuations, the experiments are

scheduled at the same time each day, starting at about

17:00 and finishing at about 19:30. TASK-1 is the first

condition in which each participant is asked to drive in a

crowded bi directional and four-lane road in the city. All

the participants are required to keep the motor vehicle on

the track as accurately as possible to avoid other vehicles

and obey traffic regulations to ensure that they are not

penalized. In TASK-1, participants need to pay attention to

other vehicles changing lane in crowded roads. Concerning

the TASK-2, it is a monotonous driving stage, in which per

participant has to drive at the speed of about 60 km/h on a

two-lane road without any visual distraction. Compared to

the crowded roads in the city, they are more likely to fall

into drowsiness under the requirement of the speed limit

and monotonous driving task. TASK-1 is separated from

the TASK-2 by half an hour for the rest of the participants.

During the whole experiment, the blink frequency based

on EOG is recorded to validate the level of drowsiness.

Also, other drowsy signs such as yawning and nodding are

obtained manually by an observer to validate the drowsi-

ness. After each driving task, participants’ state levels of

subjective drowsiness are assessed immediately by

Karolinska Sleepiness Scale (KSS) (1 = extremely alert,

9 = very sleepy) (He et al. 2017). The KSS is a well-val-

idated measure of subjective state-related drowsiness.

A

B

C

Fig. 1 The outline of the

experiment setup (a), electrode
cap (b), and EEG raw data (c)
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Data recording

In the processing of the simulated driving experiment, the

EEG signals for each participant in each task are extracted

through the 30-channel brain computer interface (BCI)

system. More specifically, the EEG signals are recorded

from 30 scalp electrodes with an electrode cap, which are

arranged according to the international 10–20 standard.

Horizontal and vertical eye positions are recorded by

electrooculography (EOG) using 4 electrodes positioned

around eyes (Wang et al. 2016). Meanwhile, a mid-fore-

head electrode serves as ground and two additional elec-

trodes are placed on the left and right mastoids. Electrode

impedances are below 5 kX, and Neuroscan amplifiers are

set for band pass at 0.01–70 Hz and data are sampled at a

rate of 1000 Hz. Experiments with amplifier blocked are

removed from the EEG data (Evans et al. 2011). Further-

more, prior to EEG quantitative analysis, eye movement

correction protocols (Zhao et al. 2017) are applied to the

entire set of recorded data to remove the DC shift and eye

movement artifacts. Blink artifacts in the EEG recordings

are removed by using a regression analysis in combination

with artifact averaging implemented algorithm in Scan 4.3.

Subsequently, the data in TASK-1 between 1th and 3th min

and in TASK-2 between 28th and 30th min out of those of

30 min for each participant are selected for further pre-

processing. For each task, the 2-min EEG signals from 30

channels are segmented into 3-s epochs (3000 sample

points per epoch), resulting in 40 epochs for each

participant.

Functional connectivity analysis

As a measure of functional connectivity between all 30

electrodes of EEG channels, the phase lag index (PLI) is

adopted to calculate the asymmetry of the distribution of

instantaneous phase differences between two EEG signals,

making it less likely to be contaminated by an active ref-

erence electrode (Stam 2014). The instantaneous phase

difference between two signals can be determined using the

analytical signal based on the Hilbert transformation.

Furthermore, the PLI is acquired from time series of phase

differences ðDu tkð Þ, k ¼ 1 � � �NÞ, as follows
PLI ¼ sign sinðDuðtkÞÞ½ �h ij j ð1Þ

Here | | denotes the absolute value, and\[ indicates the

mean value. Moreover, sign is the signum function. The

PLI ranges between 0 (no phase coupling, or coupling with

a phase difference centered on 0� p) and 1 (perfect phase

coupling).

A square 30 9 30 PLI-weighted matrix is constructed

by calculating the PLI value between all pairs of 30 EEG

channels for each epoch in each frequency band, using

common frequency bands by wavelet packet transform

(WPT): delta-range (0–4 Hz), theta-range (4–8 Hz), alpha-

range (8–12 Hz), and beta-range (12–32 Hz). Analyses of

functional connectivity and subsequent brain network

topology analysis are performed for these bands separately

with MATLAB R2014a.

Minimum spanning tree analysis

The minimum spanning tree (MST) is an unconventional

sub-graph as obtained from a weighted matrix which

connects all nodes of the network but has no circle or loop.

In this work, the MST is constructed based on the above-

mentioned PLI adjacency matrix by applying effective

greedy algorithm, that is, Kruskal’s algorithm. Briefly, this

algorithm first orders the weights (defined as: 1/PLI) of all

links in an ascending order. We start the construction of the

MST with the link with the highest PLI value since we are

interested in the strongest connections in the network, and

then we add the following highest link PLI value until all

30 nodes are linked in a loop-less sub-graph consisting of

Practice TASK-1 TASK-2Rest

30min 30min 30min30min

A B

Fig. 2 Experiment set-up with

practice trials and two task

blocks, TASK-1 (a) and TASK-

2 (b). For details, see text please
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29 links. If adding a new link results in the creation of a

cycle, this link should be ignored in the process.

Compared to the conventional network metrics, the

MST has the advantage that it abandons the need to choose

an arbitrary threshold to reconstruct the graph. Moreover,

the MST also has a much more uncomplicated structure

since it concentrates on the most significant sub-graph and

avoids bias. A brief description of all MST metrics used in

this paper is listed in Table 1 [definitions are based on

(Stam et al. 2014)]. And examples of tree topologies

including the two extreme forms are illustrated in Fig. 3. In

this work, the aforementioned metrics characterizing the

MST of each epoch and condition are computed.

Statistical analysis

Topological network differences between two driving tasks

(crowded road driving and monotonous driving) are com-

pared by means of the t-test for the PLI values for each

frequency band separately. Additionally, the t-test is also

used to examine group (alertness and drowsiness) differ-

ences of the MST network metrics for each frequency band

separately. Here, the p values below 0.05 are considered

significant. Statistical analyses are performed using SPSS

for windows. The methods and steps involved in this study

are illustrated schematically in Fig. 4.

Results

Subjective and objective evaluation

The KSS is a well-validated measure of subjective state-

related drowsiness. Participants are asked to evaluate how

drowsy they currently feel on a 9-point ordinal scale. As

shown in Table 2, the KSS score is generally increased

from 2.667 ± 1.384 (M ± SD) in TASK-1 to

7.467 ± 0.694 in TASK-2. Also, KSS score varies signif-

icantly with driving tasks (p\ 0.001). Moreover, drowsy

signs such as yawning and nodding were observed fre-

quently in all the participants during the driving TASK-2.

Meanwhile, the blink frequency per minute obtained based

on EOG are significantly increased from 12.800 ± 1.373 to

19.933 ± 2.120 (see Table 2). The subjective and

Table 1 MST network metrics

Symbol Concept Explanation

N Nodes Number of nodes in the MST

M Links Number of links in the MST

D Degree Number of neighbors for a given node in the MST

L Leaf fraction Fraction of leaf nodes in the MST where a leaf node is defined as a node with degree one

d Diameter Longest shortest path in the MST

Ecc Eccentricity Longest distance between a reference node and any other node

BC Betweenness

centrality

Fraction of all shortest paths that pass through a particular node

k Kappa Measure of the broadness of the degree distribution

Th Tree hierarchy A hierarchical metric that quantifies the trade-off between large scale integration in the MST and the overload of

central nodes

R Degree correlation Correlation between the degrees of a node and the degree of the neighboring vertices to which it is connected

Tree With Lowest Hierarchy
Tree With Lowest Leaf

Tree With Highest Diameter

Tree With Lowest Diameter
Tree With Highest Hierarchy

Tree With Highest Leaf

Fig. 3 Examples of tree topologies including the two extreme forms.

They are all composed of 11 nodes and 10 edges. Leaf nodes are

indicated in blue, and all other nodes are red. The MST on the left is

known as a line-like tree with the lowest leaf number which is 2, a

highest diameter which is 10 and low tree hierarchy. The MST on the

right is known as a star-like tree with the highest leaf number which is

10, a lowest diameter which is 2 and high tree hierarchy. The MST in

the middle is an intermediate configuration between these two

extremes with the leaf number which is 6. (A color version of this

Fig. can be viewed online.)
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A B C

DEF

G H I

Fig. 4 Schematic illustration of the procedure involved in this study.

The simulated driving in the experiments is presented in (a). Then
EEG signals are recorded from electrodes, which are arranged

according to the international 10–20 standard, illustrated in (b),
30-channel EEG time series of 2 min of 1 subject are displayed in

Scan 4.3 software, as shown in (c). Illustrated in (d), the wavelet

package analysis is employed to the EEG signal to get common

frequency bands. Weighted functional connectivity matrix con-

structed by the phase lag index for each frequency band, as shown

in (e). Then the Kruskal’s algorithm is applied to obtain the minimum

spanning tree (MST) matrix (f). Subsequently, the resulting loopless

graph is displayed on a scalp projection (g). MST represented as a tree

is shown in (h), which shows the hierarchical structure of the graph.

Finally, MST metrics can be computed such as degree, betweenness

centrality (BC), diameter, kappa and eccentricity (i). And finally, the

state of the drivers will be judged based on the MST metrics

Table 2 KSS score and blink

frequency across all the

participants

Measures TASK-1 TASK-2 p value

M SD M SD

KSS 2.667 1.384 7.467 0.694 < 0.001

Blink frequency (per minute) 12.800 1.373 19.933 2.120 < 0.001

M mean, SD standard deviation
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objective indicators illustrated that experiment manipula-

tion is successful to incur states of drowsiness.

Functional connectivity

The PLI values are calculated for each frequency band, and

all results from the statistical analyses are presented in

Table 3. Functional connectivity analysis yields significant

between group effects in the delta frequency band. PLI,

reflecting the relative phase distribution’s asymmetry, is

significantly lower in alert state (M = 0.286, SD = 0.067)

relative to drowsy state (M = 0.367, SD = 0.109) in the

delta frequency band, p = 0.00002, which indicates a less

asymmetry of the phase difference distribution in alert state

compared to drowsy state. It is interesting that there are no

significant differences in functional connectivity for all

other frequency bands.

Table 3 Analysis of variance

for network metrics
Frequency band Index Alert state Drowsy state p value

M (SD) M (SD)

Delta PLI 0.286 (0.067) 0.367 (0.109) 0.00002*

Degree 0.277 (0.092) 0.325 (0.110) 0.022*

Eccentricity 0.261 (0.052) 0.245 (0.054) 0.147

BC 0.713 (0.085) 0.771 (0.095) 0.001*

Kappa 3.406 (0.802) 3.772 (0.961) 0.041*

R - 0.401 (0.131) - 0.409 (0.142) 0.774

Diameter 0.330 (0.070) 0.313 (0.068) 0.213

Leaf 0.606 (0.084) 0.629 (0.082) 0.175

Th 0.427 (0.059) 0.412 (0.067) 0.233

Theta PLI 0.215 (0.044) 0.227 (0.048) 0.221

Degree 0.264 (0.071) 0.309 (0.106) 0.014*

Eccentricity 0.263 (0.053) 0.236 (0.042) 0.006*

BC 0.712 (0.071) 0.747 (0.089) 0.033*

Kappa 3.276 (0.491) 3.65 (0.857) 0.009*

R - 0.421 (0.095) - 0.401 (0.097) 0.318

Diameter 0.332 (0.071) 0.296 (0.056) 0.007*

Leaf 0.608 (0.075) 0.63 (0.067) 0.122

Th 0.429 (0.055) 0.425 (0.051) 0.715

Alpha PLI 0.213 (0.05) 0.201 (0.04) 0.158

Degree 0.296 (0.098) 0.281 (0.098) 0.804

Eccentricity 0.235 (0.048) 0.251 (0.062) 0.184

BC 0.738 (0.09) 0.73 (0.083) 0.413

Kappa 3.422 (0.788) 3.441 (0.873) 0.842

R - 0.354 (0.144) - 0.387 (0.14) 0.682

Diameter 0.296 (0.065) 0.317 (0.082) 0.195

Leaf 0.62 (0.08) 0.611 (0.085) 0.533

Th 0.432 (0.061) 0.421 (0.059) 0.999

Beta PLI 0.138 (0.025) 0.135 (0.031) 0.62

Degree 0.305 (0.114) 0.292 (0.106) 0.53

Eccentricity 0.239 (0.044) 0.247 (0.052) 0.405

BC 0.753 (0.078) 0.726 (0.082) 0.093

Kappa 3.665 (0.958) 3.564 (0.935) 0.594

R - 0.401 (0.118) - 0.403 (0.138) 0.943

Diameter 0.303 (0.058) 0.312 (0.068) 0.477

Leaf 0.63 (0.069) 0.624 (0.093) 0.708

Th 0.421 (0.053) 0.432 (0.062) 0.348

PLI phase lag index, BC betweenness centrality, R degree correlation, Th tree hierarchy

Bold text represents significant results (p\ 0.05)
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Minimum spanning tree

MST analysis yields significant between group effects in

delta frequency band (see Table 3 and Fig. 5). Degree,

representing the number of neighbors for a given node

within the network, is significantly lower in alert state

(M = 0.277, SD = 0.092) relative to drowsy state

(M = 0.325, SD = 0.110), p = 0.022. The group effect on

betweenness centrality (BC), reflecting the fraction of all

shortest paths that pass through a particular node, is also

significant, p = 0.001, indicating higher BC in drowsy state

(M = 0.771, SD = 0.095) compared to alert state

(M = 0.713, SD = 0.085). The group effect on kappa,

relating to the broadness of the degree distribution, just

reaches significance, p = 0.041, suggesting a trend for

higher kappa in drowsy state (M = 3.772, SD = 0.961)

relative to alert state (M = 3.406, SD = 0.802). The major

finding is that significant differences in the delta frequency

band for three graph metrics suggesting network integra-

tion and communication between network nodes are

increased from alertness to drowsiness. Together, our

findings also suggest a more line-like configuration in alert

states and a more star-like topology in drowsy states.

For the theta frequency band, the group effects on

degree, BC and kappa are significantly lower in alert state

compared to drowsy state, p = 0.014, p = 0.033 and

p = 0.009, respectively (see Table 3 and Fig. 3). The group

effect on eccentricity, describing how efficient information

is communicated from the least central node, is signifi-

cantly higher in alert state (M = 0.263, SD = 0.053) rela-

tive to drowsy state (M = 0.236, SD = 0.042), p = 0.006.

The group effect on diameter, representing the efficiency of

communication between the nodes, is also significant,

p = 0.007, indicating higher diameter in alert state

(M = 0.332, SD = 0.071) relative to drowsy state

(M = 0.296, SD = 0.056). These group differences are

displayed in Fig. 6. In general, these results indicate a more

integrated network organization in drowsy state compared

to alert state in the theta frequency band. Group effects in

all other measures and frequency bands are not significant.

Discussion

In this study, to analyze the topological characteristics of

brain networks in alert state and drowsy state, we conduct

simulated driving tasks and apply MST analysis derived

from the PLI to EEG signal. The differences are most

pronounced in the delta and theta frequency band, espe-

cially for delta frequency band, in which a significantly

higher PLI is found for drowsy state compared to alert

state. That is, the PLI analyses reveal differences in

connectivity strength between the two states. This is con-

sistent with the study that a higher level of connectivity

strength in subjects who have poorer performance in

attentional performance tasks is observed (Breckel et al.

2013). Researchers have reported that cognitive processing

during the driving process is positively related to the

coherence levels of the brain. More specifically, coherence

levels are increased as the cognitive processing capacity

becomes higher, but, on the other hand, the cognitive skills

can be impaired by drowsiness induced by prolonged,

monotonous driving (Lal et al. 2003). This can be

explained from the perspective of the compensation

mechanisms hypothesis. That is, when drowsiness is

increased during driving, the synchronization of brain

activity will also increase to prevent drowsiness

aggravation.

Previous studies have employed EEG coherence to

characterize the synchronization activities between differ-

ent brain regions during monotonous driving (Lal and

Craig 2002). Zhao et al. reported that that coherence levels

are relatively increased at some brain regions after a

monotonous driving session for the four frequency bands

(Zhao et al. 2017). Whereas they described an increase in

alpha and beta frequency band coherence, not found in our

study. This discrepancy could be related to the method of

measuring phase synchronization. The coherence may be

affected by field spread, volume conduction, or alterations

in power. Here, we calculate weighted connectivity

matrices using the PLI, which is relatively unaffected by

these factors (Porz et al. 2014; Stam et al. 2007).

The MST analyses yielded between groups differences

in network organization as revealed in delta and theta

frequency band (see Table 3, Figs. 5 and 6). More specif-

ically, the differences are most pronounced in the delta

band, in which MST leaf, degree, and kappa are increased

and a significantly higher betweenness centrality (BC) is

found for drowsy state compared to alert state. Since no

other study has previously investigated the driver drowsi-

ness using the minimum spanning tree (MST), whereas a

relevant consideration when interpreting the current results

is the relation between MST analysis and conventional

network analysis. Tewarie et al. found that these two

measures are strongly related to path length by performing

cFig. 5 MST matrices derived from PLI matrices (left column), MST

loopless graph, viewed from the top (middle column) and MST

represented as a tree (right column) for alert and drowsy state for the

delta frequency band (a) and theta frequency band (b), respectively.
The MST matrices are 30 9 30 square matrices, where X axis and Y

axis represent the corresponding EEG channels. A color scale, from

blue (0) to pink (1) reflects the strength of the value respectively.

Abbreviations: MST, minimum spanning tree; PLI, phase lag index.

(A color version of this Fig. can be viewed online.)
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an extensive and systematic series of simulation studies

(Tewarie et al. 2015). MST leaf is negatively related to

path length. Furthermore, when driver drowsiness was

induced, a decrease in path length was observed (Kar and

Routray 2013). The decrease in characteristic path length

denotes better correlation between different areas of the

brain, indicating lack of alertness. Accordingly, our find-

ings are consistent with these recent studies. The MST

analysis shows a higher leaf indicating more network

integration for drowsy state compared to alert state. In

addition, there are significant group differences for degree,

betweenness centrality (BC) and kappa suggesting more

communication between nodes of the network in drowsy

state compared to alert state. More specifically, Nodes with

a high degree may be considered ‘hubs,’ that is, crucial

regions on the functional brain network (van Dellen et al.

2015); Nodes with a high BC are considered ‘hub nodes’

based on their importance for global communication in the

network.

In terms of the extreme tree topologies, the network

alterations in drowsy state suggest a more star-like MST

network configuration (see Fig. 5), which indicates a more

integrated network topology. These findings are in accor-

dance with previous functional connectivity studies (Kli-

mesch 1996; Kong et al. 2017) suggesting that subjects

present more connections between functional units when

they are in drowsy state, especially for delta frequency

band. Additionally, it is generally accepted that delta waves

are highly related with sleep and represent the unconscious

(Klimesch 1999; Kong et al. 2017; Zhao et al. 2017).

Therefore, delta frequency band takes an important role in

classifying the drowsy state and alert state in our study.

It is interesting that we find not only significant differ-

ences for MST metrics in delta frequency band but also two

other MST metrics in theta frequency band. That is, for

theta frequency band, there is a significant group difference

for MST diameter suggesting more communication

between nodes of the network in drowsy state compared to

alert state. Furthermore, the reduced MST eccentricity

suggests that the least central nodes of the network become

more important in drowsy state. Together, these results

indicate, for theta frequency band, a more path-like con-

figuration in alert state and a more star-like topology in

drowsy state (see Fig. 5). Tewarie et al. observed that MST

diameter is positively related to path length (Tewarie et al.

2015). Just as discussed previously, the driver drowsiness

level is also positively related to path length (Kar and

Routray 2013). Hence, it can be concluded that MST

diameter is positively related to path length. This finding is

consistent with a recent study that investigated the topol-

ogy of structural networks in which a shorter path length is

observed for drowsy state relative to alert state (Kar and

Routray 2013).

It should be emphasized that the main group differences

in network organization are found in delta and theta fre-

quency band. Whereas Kong and colleagues did not find

such significant phenomenon in theta frequency band

(Kong et al. 2017). This could be related to computational

differences between MST and conventional network. More

specifically, the MST concentrates on the connectivity

backbone of the network, thereby neglecting weaker and

noisier connections (Stam et al. 2014; Tewarie et al. 2015).

Additionally, the MST allows an unbiased comparison of

networks with a different density and hence resulting in a

more robust network characterization (Tewarie et al. 2015).

This may allow the MST to better detect subtle network

alterations that are present between drowsy state and alert

state, but cannot be detected yet with the more conven-

tional network.

Differences in functional network topology between

drowsy state and alert state may reflect the ability of the

brain to modulate either drowsiness or alertness. Distin-

guishing the conventional EEG power analysis (Kiroj and

Aslanjan 2005) and conventional network analysis (Zhao

et al. 2017), the novelty of the current study lies in the fact

that the MST graph theory is employed to gain more

understanding of the reorganization of brain networks with

the variation of drowsiness. When drowsiness occurs, the

brain regional synchronous activities are increased signif-

icantly in the delta and theta frequency band, which

accordingly induces the changes in brain network config-

urations. The current results are consistent with previous

studies on functional and scaling aspects of oscillatory

activity. In terms of general properties of the brain as an

oscillatory system, research suggests that lower frequencies

recruit large networks whereas high oscillations are more

confined to smaller networks (Buzsaki and Draguhn 2004).

More specifically, it is proposed that synchronous activity

of slow oscillations mediates long range integration

between several cortical areas (von Stein and Sarnthein

2000).

This study demonstrates that how drowsiness modulates

brain network configuration. We employ minimum span-

ning tree (MST) analysis as a way to investigate and

compare the different brain network topologies between

the drivers’ alert and drowsy states. Our results indicate

that significant differences in the delta frequency band for

three graph metrics and in the theta frequency band for five

graph metrics suggesting network integration and com-

munication between network nodes are increased from

alertness to drowsiness. Together, our findings also suggest

a more line-like configuration in alert states and a more

star-like topology in drowsy states. These findings provide

the first evidence that the functional brain network con-

structed by MST is linked with driver drowsiness, which
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plays a significant role in further understanding the neural

mechanisms of driver drowsiness.
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