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Epigenetic influences on genetically triggered thoracic aortic aneurysm
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Abstract
Genetically triggered thoracic aortic aneurysms (TAAs) account for 30% of all TAAs and can result in early morbidity and
mortality in affected individuals. Epigenetic factors are now recognised to influence the phenotype of many genetically triggered
conditions and have become an area of interest because of the potential for therapeutic manipulation. Major epigenetic modu-
lators include DNA methylation, histone modification and non-coding RNA. This review examines epigenetic modulators that
have been significantly associated with genetically triggered TAAs and their potential utility for translation to clinical practice.
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Introduction

Thoracic aortic aneurysm (TAA) is a genetically and pheno-
typically diverse condition characterised by the progressive
permanent dilatation of the thoracic aorta, predisposing to
aortic rupture and dissection (Goldfinger et al. 2014). TAA
is predominantly clinically silent and develops on a back-
ground of adverse remodelling of the aortic wall, which may
be inherited or acquired.

Genetically triggered TAAs account for up to 30% of all
TAAs (Clouse et al. 1998; Albornoz et al. 2006) and are often
consequent upon pathological variants in genes encoding key
proteins in either vascular smooth muscle cells (VSMCs), the
extracellular matrix (ECM) or transforming growth factor-
beta (TGF-β) signalling. Non-genetic TAA is usually ob-
served in older patients with comorbidities including hyper-
tension and atherosclerosis (Goldfinger et al. 2014).
Genetically triggered TAA is observed in the clinical

syndromes of Marfan (MFS), Loeys-Dietz (LDS) and vascu-
lar Ehlers-Danlos (vEDS), and also in association with
a bicuspid aortic valve (BAV). In other individuals, TAA
may occur in the absence of other clinically discernible fea-
tures (non-syndromal Thoracic Aortic Aneurysm and
Dissection (nsTAAD)). Current medical therapy is variably
effective at slowing the rate of dilatation, with increasing di-
mensions conferring an increase in the risk of dissection,
which carries a mortality rate of up to 50% (Melvinsdottir
et al. 2016). Most patients will ultimately require surgical
repair of the aneurysm, with mortality risk ranging from 1 to
5% for elective repair (Kallenbach et al. 2013) and up to 12%
for emergency intervention (Goldfinger et al. 2014).

Phenotype variability is well-documented in all forms of
genetically triggered TAA and is particularly highlighted in
cases where an identical pathogenic gene variant results in
different clinical manifestations (De Backer et al. 2007;
Loeys 2016). This phenotype variability significantly impacts
the ability to predict clinical outcomes, resulting in uncertainty
for both clinicians and patients. Therefore, there is a need to
develop more sophisticated risk profiling that aims to provide
a precision-medicine model for patient management.

Epigenetics: regulators of phenotype

The emerging characterisation of the Bepigenome^, compris-
ing endogenous mediators that regulate gene expression inde-
pendent of the DNA sequence, has revolutionised our under-
standing of health and disease beyond traditional Mendelian
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genetics. BEpigenetics^ refers to mechanisms of gene expres-
sion regulation by DNA methylation, histone modification
and non-coding RNA, such as microRNA (miRNA) and long
non-coding RNA (lncRNA) (Tollefsbol 2018). The activity of
these mediators is dynamically influenced by environmental
stimuli, leading to stable changes in gene expression that are
maintained during cell division and can be passed through
generations. Accordingly, aberrant epigenetic changes are as-
sociated with many disease states (Esteller 2011; Tollefsbol
2018). Characterisation of these changes has resulted in im-
proved understanding of pathological disease mechanisms, as
well as the development of disease-specific biological pro-
files. Importantly, epigenetic mediators have been demonstrat-
ed to be modifiable therapeutic targets (Conway et al. 2016),
thus providing enormous clinical potential, with the capacity
to improve diagnosis, monitoring and treatment of a wide
range of diseases.

With epigenetics increasingly recognised in other genetic
conditions as modulators of penetrance and expressivity
(Feinberg 2007), there is a strong theoretical basis for these
mechanisms also occurring in genetically triggered TAA.
Detection of aberrant epigenetic changes in TAA will enable
a deeper understanding of pathogenesis and may provide ex-
planation for the observed phenotype variation among indi-
viduals. In turn, such knowledge may also assist the clinical
decision-making process with regard to the optimal time to
undertake surgical repair and also provide a stronger mecha-
nistic basis for new drug design towards slowing progression
and mitigate the need for surgery. This review provides an
update on epigenetic changes found to be associated with
genetically triggered TAA, with a summary of progress in
translation to clinical practice.

Pathogenesis of thoracic aortic aneurysm

Normal aortic wall architecture

The aortic wall consists of three distinct layers: the outermost
adventitia, which contains connective tissue and ECM for
tensile support, in addition to local blood and neural supply;
the media, which consists of contractile lamellar units com-
prised of concentric layers of contractile VSMCs interspersed
between elastic fibres and surrounded by ECM; and the inti-
ma, containing the endothelial surface and subendothelial con-
nective tissue. Collectively, these components enable the aor-
tic wall to tolerate the large changes in pressure that are asso-
ciated with ventricular contraction, with graded contraction of
the VSMCs responsible for reducing the highly pulsatile ven-
tricular flow to a steady, continuous propagation through the
vasculature (Belz and Belz 1995). The mechanical properties
of the aorta are also maintained through diverse signalling
processes within and between the three aortic wall layers,

i nc lud ing ce l l - ce l l and ce l l -ECM in te rac t ions ,
mechanotransduction complexes that sense and communicate
aortic stretch and responses to external signals, such as neural
and hormonal stimuli (Humphrey et al. 2015).

Gene variants

Thoracic aortic aneurysm formation has been linked to vari-
ants in a number of genes that are involved in homeostasis of
the aortic wall. These include genes that encode proteins re-
sponsible for (a) ECM regulation (FBN1, COL3A1, LOX,
MFAP5, BGN), (b) the VSMC contractile apparatus
(MYH11, ACTA2, MYLK, FLNA, PRKG1) or (c) TGF-β sig-
nalling (TGFB2, TGFB3, TGFBR1, TGFBR2, SMAD3)
(Verhagen et al. 2018).

Histopathology

Regardless of the gene affected, there is a unifying histopath-
ological change in the aortic wall in genetically triggered
TAAs, defined as medial degeneration (Fig. 1) (Halushka
et al. 2016). The most prominent feature is the fragmentation,
disorganisation and loss of elastic fibres. This has been asso-
ciated with a pathological imbalance of the molecules that
regulate the ECM, primarily the induction of matrix metallo-
proteinases (MMPs) or reduction of their endogenous regula-
tors, tissue inhibitors of metalloproteinases (TIMPs) (Rabkin
2014). The fragmentation of elastic fibres, along with in-
creased collagen deposition decreases the compliant nature
of the aorta, reducing its recoiling ability and increasing wall
stiffness (Emmott et al. 2016). In addition, there is loss of
VSMCs due to apoptosis or necrosis and focal accumulation
of mucoid ECM material, resulting in the loss and/or disrup-
tion of aortic contractile units. Together, the loss of structural
integrity and mechanical strength in the aortic wall reduces its
ability to manage normal haemodynamic loads, consequently
predisposing to aortic dissection (Humphrey et al. 2015).

Conditions associated with genetically
triggered TAA

Marfan syndrome

Marfan syndrome (MFS) is characterised by multisystem fea-
tures affecting the cardiovascular, ocular and skeletal systems
(Loeys et al. 2010), with an estimated prevalence of 6.5 per
100,000 (Groth et al. 2015). TAA is the most common life-
threatening complication in MFS, affecting up to 90% of pa-
tients (Hiratzka et al. 2010), with aortic dissection being a
major cause of mortality (Faivre et al. 2007).

MFS is caused by pathological variants in FBN1, which
encodes fibrillin-1, a major ECM glycoprotein in connective
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tissue distributed throughout the body (Dietz et al. 1991).
The underlying mechanism of TAA pathogenesis in MFS
remains unclear. Possible mechanisms include the variant
fibrillin-1 protein causing an intrinsic impairment of struc-
tural integrity or altered force mechanotransduction and
adverse remodelling of the aortic wall (Yu and Jeremy
2018). In addition, variants in FBN1 have been associated
with altered TGF-β bioavailability and increased sensitiv-
ity to angiotensin II signalling in TAA formation (Yu and
Jeremy 2018). While variant FBN1 is responsible for MFS,
there is important phenotypic heterogeneity among indi-
viduals who harbour the same FBN1 variant, including
within members of the same family (De Backer et al.
2007; Li et al. 2016b), indicating a role for other genetic
or epigenetic mechanisms in determining phenotype.

Loeys-Dietz syndrome

Loeys-Dietz syndrome (LDS) has widespread manifesta-
tions in the craniofacial, neurocognitive, skeletal and
cardiovascular systems and is characterised by extensive
vascular abnormalities including arterial tortuosity and
TAA or dissection (Loeys et al. 2010). The prevalence
is unknown but appears to be less than MFS (Loeys and
Dietz 2008). Aggressive thoracic aortic disease is the
most clinically significant event, affecting over 95% of
patients (Loeys et al. 2006). LDS is caused by patho-
logical variants in TGF-β signalling pathway genes: the
TGF-β ligands (TGFΒ2 and TGFΒ3), its receptors
(TGFΒR1 and TGFΒR2) or its key intracellular signal-
ling mediators Smad2 and Smad3 (SMAD2 and SMAD3)
(Schepers et al. 2018).

Vascular Ehlers-Danlos syndrome

The vascular type of Ehlers-Danlos syndrome (vEDS) is
characterised by a generalised vasculature and integumentary
tissue fragility, with cardinal features of thin, translucent skin,
easy bruising, characteristic facial appearance and ruptures of
the arterial system, intestines or uterus (Beighton et al. 1998).
vEDS is a rare subtype of Ehlers-Danlos syndrome, with es-
timated prevalence between 1:50,000 and 1:200,000
(Germain 2007). It is caused by pathological variants in
COL3A1 that encodes the type III collagen alpha chain, which
is highly expressed in the arterial system and hollow organs
(Beighton et al. 1998). Aortic dissection or rupture is the lead-
ing cause of death, with a median survival of 50 years
(Germain 2007).

Bicuspid aortic valve

Bicuspid aortic valve (BAV) is the most common congenital
cardiac abnormality, characterised by abnormal fusion of the
normally tri-leaflet aortic valve cusps which produces a valve
with two cusps that are usually asymmetrical (Osler 1886). It
affects 1–2% of the population with a male predominance (Siu
and Silversides 2010). TAA is the most common non-valvular
comorbidity in BAV, occurring in up to 45% of affected indi-
viduals (Tzemos et al. 2008; Siu and Silversides 2010).

The aetiology of BAV is unknown, but it is likely polyge-
netic, with causative genes identified in less than 4% of cases
(Garg et al. 2005; McKellar et al. 2007). Causative gene dis-
covery is further complicated by significant variability in pen-
etrance and associated non-valvular manifestations
(Andelfinger et al. 2016). Susceptibility towards TAA in

Fig. 1 Histology of the aortic wall medial layer from (a) normal aorta and
(b) a patient with BAVand TAA, stained with Movat pentachrome. The
normal aortic media (a) has long, intact parallel bands of contractile
lamellar units comprising elastic lamellae (black) interspersed with
VSMCs (purple), with minimal accumulation of ECM material (blue).
In contrast, the BAV-TAA (b) media shows severe fragmentation of and

loss of elastin fibres (arrow), loss of VSMC nuclei and increased accu-
mulation of mucoid ECM, characteristic of medial degeneration. BAV,
bicuspid aortic valve; ECM, extracellular matrix; TAA, thoracic aortic
aneurysm; VSMC, vascular smooth muscle cell. Images were provided
by M. Emami
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BAV also remains poorly understood. The two predominant
theories that aim to explain the increased prevalence are the
Bhaemodynamic theory^ and the Bgenetic theory .̂ The
Bhaemodynamic theory^ broadly suggests that TAA arises
from a background of increased aortic wall stress consequent
on turbulent blood flow from the malformed BAV (Sievers
et al. 2016; Roman et al. 2017). The Bgenetic theory^ suggests
that underlying gene variants are responsible for the increased
predisposition to both BAV and BAV-TAA (Prakash et al.
2014; Andelfinger et al. 2016). The relative contributions of
genetics and haemodynamics remain unclear, but they are
likely interrelated in a complex pathological process.
Overall, the risk of aortic dissection is very low (< 1% 10-
year dissection risk) compared to that of MFS (~ 7.9% per
10 years) and nsTAAD (~ 3.6% per 10 years) (Tzemos et al.
2008; Michelena et al. 2011; Sherrah et al. 2016); however, it
is still approximately eight times higher than the general pop-
ulation (Michelena et al. 2011).

Non-syndromal thoracic aortic aneurysm
and dissection

Non-syndromal thoracic aortic aneurysm and dissection
(nsTAAD) is characterised by an inherited predisposition to
TAA and dissection, without any other physical features
(Milewicz et al. 2013). As TAA is often asymptomatic, pre-
sentation usually occurs at a later age than the syndromic
forms, with surgical repair most commonly performed at age
51–60, compared to MFS at age 31–40 (Robertson et al.
2016). Calculated 10-year mortality due to dissection is ap-
proximately 7.8% for patients under clinical surveillance;
however, with the inclusion of undiagnosed patients, truemor-
tality is likely much higher and possibly up to 50%
(Melvinsdottir et al. 2016). Due to the asymptomatic nature
and absence of external physical signs, the population inci-
dence is unknown; however, up to 16% of patients undergoing
aortic surgery have characteristic pathology consistent with
nsTAAD (Robertson et al. 2016). Additionally, up to 50% of
nsTAAD probands have a first-degree relative with TAA
(Elefteriades and Farkas 2010; Robertson et al. 2016), sug-
gesting that nsTAAD may be relatively common.

The aetiology of nsTAAD is largely unknown, with caus-
ative gene variants identified in only 20% of cases. nsTAAD
has an autosomal dominant inheritance pattern with increased
male penetrance and variable age of onset and progression
(Albornoz et al. 2006; Sherrah et al. 2016). The known affect-
ed genes are generally involved in the VSMC contractile ap-
paratus (ACTA2, MYH11, MYLK, PRKG1) or TGF-β signal-
ling pathway (SMAD3, TGFΒR1, TGFΒR2) (Milewicz et al.
2013). As with MFS, there is considerable phenotypic varia-
tion in severity of TAA among family members sharing the
same causative gene variant (Robertson et al. 2016), indicat-
ing a role for other genetic or epigenetic modifiers.

Epigenetics in TAA

MicroRNA

The miRNAs are a class of small (~ 22 nucleotide) highly
conserved non-coding RNA molecules that modulate gene
expression by inhibiting mRNA translation to maintain ho-
meostasis in a variety of physiological processes (Bartel
2004). They dynamically regulate over 60% of human
protein-coding genes, in a manner that is highly tissue- and
context-dependent (Ha and Kim 2014). Dysregulated miRNA
expression is widely implicated in a variety of disease process-
es (Gommans and Berezikov 2012).

The synthesis and maturation process of miRNA has been
extensively covered elsewhere (Ha and Kim 2014). Briefly,
miRNA genes are transcribed from intra- or inter-genic re-
gions of the genome and undergo a number of cleavage and
maturation steps in the nucleus before export to the cytoplasm,
and incorporation with the RNA-induced silencing complex
(RISC) (Bartel 2004). The miRNA sequence guides the RISC
complex to target mRNA transcripts by imperfect sequence
complementarity between the miRNA and the 3’UTR of the
target mRNA (Lewis et al. 2005). The target mRNA is then
cleaved or translationally repressed, resulting in reduced pro-
tein product (Bartel 2004).

Importantly, the imperfect sequence recognition enables
each miRNA to regulate the expression of multiple mRNA
genes. This gives miRNAs the capability to extensively mod-
ify gene expression profiles and dynamically regulate homeo-
stasis. However, despite their functional redundancy, it has
become apparent that changes in the expression of a single
miRNA and the consequence on protein expression are an
important factor in the pathogenesis of many disease states
(Gommans and Berezikov 2012).

Several different mechanisms and mediators regulate the
expression of miRNAs. These include miRNA transcription
being influenced by host gene expression in cases where the
promoter sequence is shared, or alternatively miRNA expres-
sion may be altered by epigenetic mechanisms, transcription
factors and non-coding RNA (Gulyaeva and Kushlinskiy
2016). Genomic variants that result in changes to either me-
diators of miRNA transcription or other proteins involved in
miRNA biogenesis may also affect miRNA function
(Gulyaeva and Kushlinskiy 2016). Exogenous factors, such
as environmental carcinogens, diet, smoking and alcohol con-
sumption, and endogenous factors, including stress, hor-
mones and changes to the tissue microenvironment, such as
hypoxia, have also been shown to induce changes in miRNA
expression (Gulyaeva and Kushlinskiy 2016). Single-
nucleotide polymorphisms in the miRNA promoter can also
modulate miRNA expression (Hrdlickova et al. 2014 and
have been documented to be influential in several disease
contexts (Yue et al. 2018).

1244 Biophys Rev (2018) 10:1241–1256



Dysregulated miRNA expression is implicated in vascular
pathologies such as atherosclerosis, hypertension, TAA and
abdominal aortic aneurysm (AAA) (De Lucia et al. 2017; Li
and Maegdefessel 2017), with emerging evidence that it also
contributes to genetically triggered TAA. There are relatively
few studies focusing on genetically triggered TAA, which is
reflective of their low incidence combined with the inherently
difficult nature of aortic tissue sample acquisition. The pre-
dominant miRNAs that have been associated with genetically
triggered TAA to date are the miR-29 family, miR-143/145
and miR-17.

miR-29 family

The miR-29 family, comprising miR-29a, miR-29b and miR-
29c, has been the most extensively studied miRNA in genet-
ically triggered TAA (Table 1). The family is transcribed from
two independent bi-cistronic clusters as miR-29a/miR-29b1
and miR-29b2/miR-29c, with miR-29b1 and miR-29b2 iden-
tical in sequence (Boon et al. 2011). They are considered
important regulators of ECM homeostasis, with gene targets
in elastin (ELN) (van Rooij et al. 2008), several collagens and
MMPs (Liu et al. 2010).

miR-29a An increase in miR-29a expression was observed in
BAV-TAA tissue compared to controls (Ikonomidis et al.
2013; Albinsson et al. 2017), with demonstrated regional dif-
ferences in miRNA expression. It was also shown to be in-
creased in the aortic concavity (inner curvature) but decreased
in the convexity (outer curvature) (Albinsson et al. 2017),
which is typically under greater stress (Barker et al. 2012).
These data suggest that miR-29a plays a role in adapting the
aortic wall to the haemodynamic stress that arises from the
BAV (Albinsson et al. 2017). In non-genetic TAA, miR-29a
was decreased in aortic tissue obtained during prophylactic
replacement surgery both before (Jones et al. 2011) and after
dissection (Liao et al. 2011). Further studies using cultured
human aortic VSMCs have demonstrated that miR-29a is a
direct regulator of MMP-2 expression (Jones et al. 2011),
indicating that its primary role may be to regulate ECM ho-
meostasis and that this may differ depending on the underly-
ing genetic aetiology and pathological process.

miR-29bAn increase in miR-29b was observed in aortic tissue
of patients with BAV-TAA (Boon et al. 2011) and non-genetic
TAA (Jones et al. 2011); however, it was decreased in aortic
t i ssue from abdominal aor t ic aneurysms (AAA)
(Maegdefessel et al. 2012). A murine MFS (Fbn1C1039G/+)
model (Merk et al. 2012) and two other mouse models of
aortic dilatation (Ang-II/ApoE−/− and Fibulin-4R/R) (Boon
et al. 2011) have also demonstrated increased miR-29b ex-
pression in aneurysmal aortic tissue. These murine studies
showed histological evidence of reduced elastin expression

and increased ECM fragmentation and apoptosis. Lending
further support to a pathogenic role of miR-29b in aneurysm
progression, blockade of miR-29b in vivo was shown to re-
duce ECM degradation and prevented aneurysmal develop-
ment in both the MFS mice (Merk et al. 2012) and Ang-II
mice (Maegdefessel et al. 2012). Subsequent studies in the
MFSmice have shown that while miR-29b blockade prevented
TAA formation when administered from birth, it did not reduce
aneurysm size once formed (Okamura et al. 2017), indicating a
potential limitation in translation to human therapy.

Cell culture studies have demonstrated that miR-29b re-
presses elastin and collagen gene expression and promotes
MMP expression, which would result in a reduction of ECM
deposition and increased degradation (Chen et al. 2011; Chen
et al. 2012). In human aortic VSMCs and adventitial fibro-
blasts, miR-29b was shown to target COL1A1 and COL3A1,
with ELN additionally regulated by miR-29b in VSMCs but
not fibroblasts (Maegdefessel et al. 2012). Furthermore, miR-
29b is selectively modulated by TGF-β1 depending on the
cell type. In human aortic fibroblasts (Maegdefessel et al.
2012) and cardiac fibroblasts (van Rooij et al. 2008),
TGF-β1 reduces miR-29b and increases collagen and elastin
gene expression, altogether promoting a fibrotic response that
is well-established for TGF-β. However, in aortic VSMCs,
TGF-β1 has no effect on miR-29b levels (Maegdefessel
et al. 2012; Merk et al. 2012).

The discordance in miR-29b expression among different
tissue samples suggests that it may be differentially regulated
depending on aneurysm context. It is increased in TAA asso-
ciated with MFS, non-genetic TAA and BAV, while it is de-
creased in AAA. This may be due to the inherent differences
in the tissue at the different locations or differences in the
underlying pathogenesis. There is a general observation of
elevated TGF-β in genetically triggered TAA as well as in
AAA; however, AAA is associated with more significant tis-
sue fibrosis. This may mean that fibroblasts have a reduced
role in TAAs and a greater role in AAA, and this may dictate
the cell-specific effects of TGF-β and overall miR-29b ex-
pression in the aorta.

miR-29c miR-29c was shown to be increased in BAV-TAA
aortic tissue (Licholai et al. 2016; Albinsson et al. 2017), in
addition to the aortic tissue taken from a murine TAA model
(Fibulin-4R/R) (Boon et al. 2011). Conversely, miR-29c was
decreased in acute thoracic aortic dissection tissue samples,
similarly to miR-29a (Liao et al. 2011).

Overall, the miR-29 family appears to adopt a cell- and
tissue-specific role in ECM regulation. There is a trend to-
wards increased expression in TAAs of different aetiology,
which overall favours degradation of the ECM. This is likely
mediated through multiple transcriptional programmes that
require further elucidation as to their relevance to genetically
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triggered TAA pathogenesis. Combined, these studies illus-
trate the important role of the miR-29 family in ECM regula-
tion and its potential for therapeutic modulation.

miR-143/145

miR-143 and miR-145 are two of the best characterised
cardiovascular-related miRNAs, which play an essential role
in VSMC differentiation and phenotype (Boettger et al. 2009;
Cordes et al. 2009). They are transcribed together from a large
primary pri-miR-143/145 bi-cistronic gene cluster that is then
enzymatically cleaved into miR-143 and miR-145 (Rangrez
et al. 2011). They are under transcriptional control by many
SMC transcription factors, including TGF-β, in a feed-
forward mechanism that maintains VSMCs in a contractile
phenotype (Cordes et al. 2009; Boucher et al. 2011). They
are also influenced by local environment changes, such as
vascular injury, which often represses their transcription in
favour of ECM repair (Liu et al. 2013b).

In the normal aortic wall, VSMCs are a phenotypically
diverse population, ranging along a spectrum from
contractile/differentiated to synthetic/dedifferentiated
(Rensen et al. 2007). The majority of aortic VSMCs are con-
tractile, characterised by the expression of a contractile gene
profile, and are predominantly composed of actin and myosin
filaments. Synthetic VSMCs are usually a minor population in
the aortic wall and primarily function in maintenance and
repair by promoting expression of ECM genes, such as colla-
gen and elastin (Rensen et al. 2007). miR-143/145 collabora-
tively maintain contractile VSMC populations in the aorta,
with miR-145 promoting contractile gene expression and
miR-143 suppressing synthetic gene expression (Cordes
et al. 2009).

Loss of miR-143/145 is associated with impaired aortic
contractility and is associated with TAA regardless of the un-
derlying aetiology (Elia et al. 2009; Albinsson et al. 2017), in
addition to other conditions of vascular damage and disease
(Liu et al. 2013b; Quiat and Olson 2013). DecreasedmiR-143/
145 expression was observed in the aortic wall of patients with
BAV-TAA that had mild aortic dilatation (< 4.5 cm), in corre-
lation with immunohistochemical evidence of reduced con-
tractile gene expression (Alajbegovic et al. 2017). Additional
work has demonstrated that there is decreased miR-143 but
increased miR-145 expression together with increased miR-
29a in BAV-TAA aortic tissue, and this was in conjunction
with a plasma profile showing increased miR-133a and miR-
145 and altered MMP/TIMP expression (Ikonomidis et al.
2013). The mechanism of the divergence between miR-143/
145 expression is not currently understood, but it may be the
result of differing post-translational modifications or differ-
ences in miRNA stability.

Other work in BAV-TAA has identified regional differ-
ences in miRNA expression, with decreased miR-143 in aortic

tissue obtained from the convex compared to concave regions,
indicating that haemodynamic changes from the malformed
valve may influence local miRNA expression (Albinsson
et al. 2017). BAVs with a right-left cusp fusion pattern are
significantly associated with increased aortic wall shear stress
in the aortic convexity (Barker et al. 2012); therefore, stress-
induced degenerative changes may be associated with loss of
miR-143/145 expression, which further propagates loss of
function that accompanies aortic dilatation.

Murine models of TAA (ApoE−/− and transverse aortic
constriction) are concordant with the human tissue studies,
showing that miR-143/145 are decreased in TAA (Elia et al.
2009). miR-143/145 knockout rodent models exhibit histo-
logical evidence of dedifferentiated VSMCs, reduced medial
density, inflammation, fibrosis and a loss of myogenic tone
(Xin et al. 2009; Holmberg et al. 2018).

Human cell culture studies have demonstrated the thera-
peutic potential of miR-145 to protect against vascular dam-
age. In aortic VSMCs, pre-treatment with a miR-145 mimic
has been shown to prevent inflammation-induced vascular
injury through modulation of CD40 (Li et al. 2016a) and tu-
mour necrosis factor-alpha (TNF-α) (Guo et al. 2016).
Activation of CD40 receptors onVSMCs and endothelial cells
triggers inflammatory cascades that lead to vascular diseases,
such as atherosclerosis (Song et al. 2012). Increased miR-145
expression was shown to suppress CD40 activation and inter-
rupt VSMC proliferation and dedifferentiation in response to
platelet-derived growth factor-BB (PDGF-BB) (Li et al.
2016a) and TNFα (Guo et al. 2016), which are both upregu-
lated in early vascular damage. In addition, simultaneous
blockade of miR-145 with aspirin treatment abolished the
protective effect of aspirin and reversed the associated gene
expression profiles (Guo et al. 2016). miR-145 may therefore
mediate part of the anti-inflammatory effects of aspirin treat-
ment by blocking TNF-α-mediated activation of CD40.

Despite the wealth of research into miR-143 and miR-145
in vascular disease, there is still a relative paucity of studies in
genetically triggered TAA. However, the current studies high-
light these miRNA as likely key players in the pathological
VSMC dedifferentiation that is commonly observed in genet-
ically triggered TAA.

miR-17

The miR-17/92 cluster, comprising miR-17, miR-18a, miR-
19a, miR-19b-1, miR-20a and miR-92a-1, has been extensive-
ly characterised in many aspects of human development and
disease, with dysregulation in cardiovascular disease well
established (Mogilyansky and Rigoutsos 2013).

Increased miR-17 has been observed in BAV-TAA aortic
tissue compared to control (Wu et al. 2016). Within individual
BAV-TAA patients, miR-17 was increased in less dilated
(< 4 cm diameter) aortic tissue segments compared to severely
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dilated (> 4 cm diameter) segments (Wu et al. 2016), indicat-
ing that miR-17 may contribute to early TAA development,
but as the aorta dilates this effect diminishes (Wu et al. 2016).
Furthermore, increased miR-17 levels correlated with de-
creased levels of TIMP-1, -2 and -3 and increased MMP-2
levels, indicating that the role of miR-17 is likely to be in
the regulation of MMP-mediated ECM degradation.

miR-17/92 expression has not been investigated in MFS or
LDS; however, murine palatogenesis studies indicate that the
cluster might contribute to palatal manifestations in addition
to TAA in these conditions (Wang et al. 2013; Cao et al. 2016;
Ries et al. 2017). The cause of palatal deformity is unknown,
but it is associatedwith aberrant TGF-β signalling (Iwata et al.
2011). miR-17/92 has been identified to be essential for nor-
mal mouse palatogenesis, with inhibition of the cluster in vivo
resulting in palatal deformity (Ries et al. 2017). Decreased
miR-17 is accompanied by increased expression of TGF-β
receptors and decreased TGF-β ligand in maxillary tissue
(Ries et al. 2017).

miR-17 contributes to ECM maintenance by targeting
TIMP1 and TIMP2 in human VSMCs, which are repressors
of the matrix degrading enzyme, MMP-2 (Wu et al. 2016).
Additional miR-17 gene targets identified in non-vascular cell
lines include TIMP3 (Yang et al. 2013), TGFBR1 and
TGFBR2 (Ries et al. 2017), and the anti-proliferative bone
morphogenic protein receptor-2 (BMPR2) (Luo et al. 2014).
Other work has described a TGF-β-Smad3-miR-17/92-
BMPR2 axis in the promotion of TGF-β-mediated VSMC
proliferation (Luo et al. 2014). Increased miR-17/92 and
Smad3 have been identified in carotid artery restenosis tissue,
which is characterised by excessive TGF-β signalling and
VSMC proliferation. Subsequent studies have shown that
TGF-β is able to induce miR-17/92 transcription via Smad3
binding at Smad-binding elements in the miRNA promoter,
and BMPR2 has been identified as a miR-17/92 target (Luo
et al. 2014).

Overall, miR-17/92 may contribute to TAA development
by MMP/TIMP-mediated degradation of the aortic ECM, in
addition to TGF-β-mediated pathological remodelling and
VSMC proliferation.

Circulating miRNA

The identification of changes in miRNA levels in the circula-
tion represents an alternative method of disease investigation,
due to their potential utility as relatively non-invasive bio-
markers that are economical to measure (Mitchell et al.
2008). miRNAs are stably expressed in plasma and serum
and are resistant to degradation by endogenous RNAses
(Chen et al. 2008). Their expression within the circulation
has been shown to correlate with different physiological states
(Gilad et al. 2008) and has led to the development of disease-
specific miRNA expression profiles (Mitchell et al. 2008).

Development of a similar circulating miRNA profile for
TAAmay lead to improvements in diagnosis and assist in both
prognosis and optimising decisions regarding timing of surgi-
cal intervention.

miRNA extracted fromwhole blood of a small MFS cohort
identified 11 miRNAs with significantly different expression
compared to a control cohort (Abu-Halima et al. 2018).
Significant correlations were seen between increased left ven-
tricular end-diastolic dimension and increased levels of miR-
151-5p, miR-24, miR-30e, miR-324-5p, miR-500b, miR-502-
3p and miR-627. In addition, miR-331-3p was significantly
increased in MFS without mitral valve prolapse (MVP) com-
pared to MFS with MVP (Abu-Halima et al. 2018).

A small number of studies have examined circulating
miRNAs in BAV-TAA cohorts. A global miRNA expression
profile identified significantly decreased expression of miR-
122 and miR-486 and significantly increased expression of
miR-130a in plasma compared to a control group (Martinez-
Micaelo et al. 2017). Subsequent pathway analysis identified
TGF-β signalling as the most enriched pathway, with 32 pos-
sible miRNA-gene interactions. Within the BAV cohort, miR-
718 expression had a significant inverse correlation with aor-
tic diameter, with predicted gene targets in vascular remodel-
ling and the focal adhesion pathway.

A targeted study evaluating a panel of six miRNAs in a
BAV-TAA cohort identified miR-133a and miR-145 to be
significantly decreased in the plasma compared to control
(Ikonomidis et al. 2013), although these data were not cor-
roborated subsequently (Martinez-Micaelo et al. 2017). The
variance may reflect differences in methodology or the
known biological heterogeneity that makes BAV-TAA so
difficult to study. This is reflected in a more recent study
in which the expression of seven miRNAs was analysed
according to distinct BAV phenotypic subgroups; those with
aortic root dilatation and concomitant insufficiency versus
BAV with severe aortic stenosis (Girdauskas et al. 2018a).
Within the root dilatation subgroup, circulating miR-17 and
106a were significantly increased in the less dilated
(< 50 mm) compared to severely dilated (> 50 mm) aortas;
however, when compared overall to the aortic stenosis co-
hort, significant differences were observed in all seven
miRNAs (miR-17, miR-16a, miR19a, miR-20a, miR-21,
miR-106a and miR-145) (Girdauskas et al. 2018b). While
the lack of a control cohort in this study limits further inter-
pretation, it is clear that there are likely different miRNA
profiles associated with different BAV phenotypes, and this
should be factored in to future experimental design in BAV
studies.

Overall, the development of circulating miRNA profiles in
genetically triggered TAAs is still in preliminary stages. More
observational studies using larger andwell-defined cohorts are
required to identify candidate miRNAs that can act as bio-
markers of the disease state. In addition, longitudinal studies
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of the same patient group may provide miRNAs that can be
used as markers of TAA progression.

miRNAs in other cardiovascular studies

In addition to studies detailing the role of miRNAs in TAA,
there has been extensive characterisation of miRNAs in other
cardiovascular pathologies that have been reviewed elsewhere
(De Lucia et al. 2017; Li andMaegdefessel 2017).While there
are important differences in molecular pathogenesis limiting
direct comparison and inference, these studies are informative
in terms of understandingmiRNA-mRNA regulatory relation-
ships that affect the vasculature. In addition, other studies have
characterised the normal function of miRNAs within the vas-
culature, for example in endothelial cells and VSMCs
(Ballantyne et al. 2016), molecules involved in ECM regula-
tion (Hu et al. 2016) and in major signalling pathways, such as
TGF-β (Climent et al. 2015; Forte et al. 2016). The relevance
of these miRNAs with respect to genetically triggered TAA is
yet to be investigated.

Long non-coding RNA

Long non-coding RNAs (lncRNAs) have emerged in the last
decade as a large and functionally diverse class of non-
protein-coding RNA at least 200 nt in length, which regulate
gene expression at the transcriptional and post-transcriptional
levels (Engreitz et al. 2016). Research on lncRNA is still
emerging, with broad estimations as to the number of
lncRNAs ranging from 20,000 to 100,000 (Kopp and
Mendell 2018), but very few having been biologically
characterised. One of the best established is Xist (X inactive
specific transcript), which orchestrates X chromosome inacti-
vation through highly ordered interactions with chromatin
scaffolding proteins and targeted binding to X chromosomal
DNA, where it mediates transcriptional silencing along the
ent i re ty of the chromosome (Wutz et al . 2002) .
Characterisation of lncRNAs in vascular biology and disease
has rapidly progressed, with a number of extensive reviews
available (Li and Maegdefessel 2017; Leeper and
Maegdefessel 2018; Simion et al. 2018).

MALAT1

MALAT1 (metastasis-associated lung adenocarcinoma
transcript 1) is highly expressed in endothelial cells (Simion
et al. 2018) and was recently implicated in genetically trig-
gered TAA, with increased expression linked to pathological
VSMC dedifferentiation in the aneurysmal aortic wall
(Cardenas et al. 2018). In aortic tissue from MFS, nsTAAD
and non-genetic TAA, increased expression of MALAT1, the
epigenetic repressor histone deacetylase 9 (HDAC9), and the
chromatin-remodelling enzyme, BRG1, was observed when

compared to normal aortic tissue. These expression changes
were also observed in two mutant VSMC cell lines that rep-
resent genetically triggered TAA (TGFBR2G357W and
ACTA2R179H) and were correlated with decreased contractile
gene expression (Cardenas et al. 2018).

MALAT1 is essential to transport BRG1 and HDAC9 into
the nucleus, where the promoters of contractile genes are
methylated by HDAC9, resulting in pathological VSMC de-
differentiation (Cardenas et al. 2018). These data have been
confirmed in a MFS mouse model (Fbn1C1039G/+) where de-
letion of either MALAT1 or HDAC9 impaired aneurysm for-
mation (Cardenas et al. 2018). These deletions correlated with
increased contractile gene expression and decreases in elastin
fragmentation, MMP activity, TGF-β signalling and VSMC
proliferation.

The cause of the observed upregulation of MALAT1 in
genetically triggered TAA tissue is unknown. Its expression
can be modulated by factors including hypoxia, p53 transcrip-
tion factor mutations, miRNA and polymorphisms within the
MALAT1 gene (Simion et al. 2018). It may also be influenced
by the pathological context. For example, MALAT1 was de-
creased in human aortic and coronary VSMCs cultured in
BECM stiffening^ conditions reflective of arterial disease,
and MALAT1 knockdown limited stiffness-induced VSMC
proliferation and migration (Yu et al. 2018). Overall, these
studies suggest that MALAT1 may play an important role in
the regulation of vascular homeostasis.

HOTAIR

Decreased HOTAIR expression has been observed in calcified
BAVaortic leaflets, and this was inversely correlated with the
expression of two key calcification genes, ALPL, encoding
alkaline phosphatase, and BMP2, encoding bone morphogen-
ic protein 2 (Carrion et al. 2014). HOTAIR epigenetically reg-
ulates gene expression by promoting histone H3K27 methyl-
ation (Gupta et al. 2010).

Decreased HOTAIR expression has also been identified in
the aortic tissue of a small non-genetic TAA cohort, which
was negatively correlated with aortic diameter (Guo et al.
2017). Knockdown in human aortic VSMCs resulted in de-
creased expression of collagens I and III and increased apo-
ptosis, indicating HOTAIR is a potential mediator of ECM
regulation in the aorta (Guo et al. 2017).

HOTAIR expression is down-regulated by the WNT/β-
catenin pathway in cultured human aortic valvular interstitial
cells subjected to cyclic mechanical stretch (Carrion et al.
2014). Increased WNT/β-catenin signalling is implicated in
MFS (Chopra et al. 2017) and in other aneurysm formation
and vascular pathology in general (Mill and George 2012),
implicating HOTAIR as another mediator of pathological
WNT/β-catenin signalling, thus potentially driving aortic
and valvular pathology in genetically triggered TAA.
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HIF1A-AS1

HIF1A-AS1 (hypoxia inducible factor 1 alpha antisense RNA
1) is implicated in TAA in association with BRG1-mediated
VSMC apoptosis (Wang et al. 2015). BRG1 is a major regu-
lator of vascular development through chromatin remodelling
(Griffin et al. 2008), and its expression was increased in aortic
tissue of a non-genetic TAA cohort (Wang et al. 2015). In
human aortic VSMCs, BRG1 knockdown resulted in VSMC
apoptosis and reduced proliferation, which was mediated
through HIF1A-AS1 (Wang et al. 2015). HIF1A-AS1 expres-
sion in TAA tissue has not been investigated; however, in-
creased levels were detected in the serum of a non-genetic
TAA cohort (Zhao et al. 2014), indicating a potential role for
this lncRNA in aneurysm pathogenesis.

DNA methylation

DNA methylation is a physiological process that involves the
addition of methyl groups to DNA, which results in repression
of gene transcription without changing the DNA sequence
(Curradi et al. 2002). It is a somatically heritable trait that is
also influenced by environment. Both cytosine and adenine
nucleotides can be methylated; however, DNA methylation is
found almost exclusively in CpG dinucleotides, which are
segments of DNA sequence comprising a cytosine followed
by a guanine nucleotide in a 5′ to 3′ direction with a phosphate
in between (Curradi et al. 2002). In mammals, approximately
70–80% of all CpG cytosines are methylated (Jabbari and
Bernardi 2004). Certain CpG regions within the DNA, known
as CpG islands, serve as regulatory units of transcription.
These islands are typically 200–1500 base pairs long, with
50% located in the promoter regions of constitutively active
genes, and 25% within regions that serve as alternative pro-
moters (Larsen et al. 1992). These CpG islands typically are
methylated at very low levels, thus allowing the expression of
the resident gene (Curradi et al. 2002).

Tissue-specific, genome-wide DNA methylation profiling
performed in aortic tissue from BAV-TAA has identified nine
novel genes with significant differential methylation and dif-
ferential gene expression, when compared to TAA tissue with-
out a known genetic trigger (Shah et al. 2015). The strongest
finding was the hypermethylation and decreased expression of
PTPN22 in BAV-TAA tissue. PTPN22 (protein tyrosine phos-
phatase, non-receptor type 22) has an important role in regu-
lating immune responses, with decreases in its encoded pro-
tein, lymphoid tyrosine phosphatase (Lyp), shown to increase
T cell signalling (Burn et al. 2011). Activated T cells in the
aortic wall can lead to VSMC apoptosis and degradation of the
ECM (He et al. 2008); thus, hypermethylation of PTPN22 in
the aorta may contribute to medial degeneration.

Genes previously associated with TAA, including ACTA2,
and genes associated with cardiovascular development, such

as GATA4, were shown to be differentially methylated but not
differentially expressed in BAV-TAA (Shah et al. 2015). As
DNA methylation is important for embryological develop-
ment, it has been suggested that altered DNA methylation in
these genes may contribute to abnormalities in aortic valve
development and aortic cell migration during embryogenesis
and, therefore, may not necessarily be altering gene expres-
sion at the time of tissue analysis.

Epigenetic mechanisms may also contribute to the altered
MMP expression that is observed in genetically triggered
TAA. There are extensive CpG islands throughout MMP9
(Chernov and Strongin 2011), and hypomethylation of the
MMP9 promoter has been correlated with increased MMP9
transcriptional activity in lymphoma cells (Chicoine et al.
2002). MMP3 gene expression was increased in a colon can-
cer cell line after dual knockout of key DNA methyltransfer-
ase genes (DNMT1 and DNMT3b) (Couillard et al. 2006). In
human VSMCs, miR-29b has been shown to increaseMMP2
and MMP9 expression through the suppression of the DNA
methyltransferase genes, DNMT3a and DNMT3b (Takada
et al. 2009; Chen et al. 2011).

The TET2 DNA demethylase is highly expressed in
VSMCs and is an important regulator of VSMC phenotype
(Liu et al. 2013a). Decreased TET2 expression has been iden-
tified to occur in proliferative vascular pathologies, such as
atherosclerosis, and knockdown in human VSMCs resulted in
loss of contractile phenotype and increased expression of syn-
thetic VSMC markers (Liu et al. 2013a). Overexpression of
TET2 was shown to be sufficient to induce the contractile
phenotype, and local injection into rat arteries prevented the
intimal hyperplasia that is associatedwith pathological VSMC
switching (Liu et al. 2013a). The role of TET2 in TAA devel-
opment is a current area of investigation.

Histone modifications

Histones are positively charged proteins that associate with
DNA to form nucleosomes, the basic structural unit of chro-
matin. Nucleosomes contain a small length of DNAwrapped
tightly around eight core histone proteins: two dimers of H2A/
H2B and two dimers of H3/H4 (Luger et al. 1997). Each core
histone protein contains a modifiable amino acid tail. Various
post-transcriptional modifications occur at the N-termini of
these tails, including acetylation, methylation, phosphoryla-
tion and ubiquitination (Kouzarides 2007). These modifica-
tions can alter DNA-histone interactions, ultimately changing
the chromatin structure and modulating the accessibility of
transcriptional machinery to DNA binding sites to produce
changes in gene transcription (Webster et al. 2013).

Two well-characterised histone modifications associated
with transcriptional activation are H3 acetylation at Lys 9
(H3K9) and H3 methylation at Lys 4 (H3K4) (Verdone et al.
2005; Greer and Shi 2012). Increased acetylation and
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methylation at these specific histone residues in the SMAD2
promoter was associated with increased Smad2 protein in
VSMCs isolated from aortic tissue samples from individuals
with MFS, BAV and non-genetic TAA (Gomez et al. 2011).
SMAD2 overexpression in these VSMCs was subsequently
shown to be modulated by histone acetyltransferases
(p300/PCAF) (Gomez et al. 2013). Thus, the dysregulated
TGF-β signalling that is frequently observed in genetically
triggered TAAmay be contributed to by aberrant histone mod-
ulations affecting SMAD2 transcription.

Histone acetylation is also able to modulate VSMC pheno-
type by altering chromatin accessibility and SMC transcrip-
tion factor binding (Liu et al. 2014). Contractile VSMC gene
expression is induced by the binding of myocardin/serum re-
sponse factor (SRF) to CArG (CC(A/T)6GG) DNA sequence
elements in SMC gene promoter regions (McDonald et al.
2006), and the binding capacity of SRF to CArG-elements
has been shown to rely heavily on preceding histone
hyperacetylation (Qiu and Li 2002).

Aberrant histone modifications affecting VSMCs in TAA
may be a result of the altered biomechanical environment that
accompanies aortic dilatation. It has been suggested that the
increased wall strain and altered mechanotransduction cas-
cades result in changes to VSMC chromatin state that subse-
quently alters downstream gene transcription profiles (Chen
et al. 2013;Michel et al. 2018). Altered histone acetylation has
been observed in AAA, with increased expression of histone
acetyltransferases in human AAA tissue compared to normal
aortic tissue (Han et al. 2016); however, this has not yet been
explored in TAA.

Epigenetics as a therapeutic target

The use of non-coding RNAs as therapeutic molecules is in
the early stages of development, with many currently in pre-
clinical stages but few having reached clinical trials.
Miravirsen, a miR-122 inhibitor for the treatment of chronic
hepatitis C infection, has progressed to phase 2a studies and
has demonstrated efficacy with few moderate-severe adverse
events (Janssen et al. 2013). A small number of miRNA ther-
apeutics are in phase 1 studies, mostly for the treatment of
various cancers (Mellis and Caporali 2018); however, one trial
was suspended due tomultiple immune-related severe adverse
events (Beg et al. 2017; Chakraborty et al. 2017).

An injectable hyaluronan-based hydrogel enabling targeted
miRNA delivery to the heart has demonstrated preclinical
efficacy in a murine model of myocardial infarction (MI).
miR-29b that had been incorporated into the hydrogel and
injected into the MI border zone demonstrated beneficial
ECM changes and maintenance of cardiac function compared
to control, decreasing the area of myocardial fibrosis
(Monaghan et al. 2018). Similarly, administration of miR-

302 to promote cardiomyocyte proliferation post-MI demon-
strated local and sustained proliferation for two weeks after a
single injection, indicating this method may have long-acting
therapeutic potential (Wang et al. 2017).

In AAA, preclinical efficacy has been established for miR-
126 in suppressing inflammation associated with aneurysm
development. Using a dual-targeted approach in a murine
Ang-II model, miR-126 conjugated with a VCAM-1-specific
antibody was incorporated into ultrasound-guided
microbubbles, which were subsequently delivered to inflamed
endothelial cells of the AAA in weekly intravenous injections
(Wang et al. 2018). VCAM-1 adhesion molecules are upreg-
ulated in AAA, thus binding allowed the targeted release of
miR-126 to the affected endothelium to exert its anti-
inflammatory effects. Amelioration of aneurysmal growth
was observed after a period of four weeks.

Delivery of miRNA therapeutics to the aortic tissue in ge-
netically triggered TAA may be more challenging than in
AAA, given that the pathology in TAA predominantly occurs
in the media, as opposed to the intima in AAA, in which
intravenous agents benefit from having direct access. This
may be resolved with novel techniques, such as a hydrogel-
based injection, that will undoubtedly continue to emerge over
the coming years.

Therapeutics aimed at methylation and histone-based mod-
ifications is complicated by their non-specific effects, which
typically result in broad changes in gene expression (Yang
et al. 2014). A number of DNA methyltransferase inhibitors
(DNMTs) and histone deacetylase inhibitors (HDACi) are ei-
ther in use or in clinical trials for cancer treatment (Jones et al.
2016) and are being explored for the treatment of various
cardiovascular diseases; however, this has not progressed be-
yond preclinical studies (Schiattarella et al. 2018).

Future directions

Our understanding of the role of epigenetics in the pathophys-
iology of complex genetic diseases continues to expand at a
rapid pace. With respect to genetically triggered TAA, epige-
netics may provide insights into the observed phenotypic var-
iation and, importantly, may assist in the development of
personalised clinical management. Epigenetic mediators, such
as miRNAs, are effector biological molecules whose expres-
sion can be altered through targeted mechanisms, presenting
new opportunities for therapeutic strategies. However, large
cohort studies capable of yielding robust clinical correlates to
identify potential targets are still required. The mechanisms by
which epigenetic mediators are regulated remain poorly un-
derstood and warrant further investigation. This would subse-
quently enable better understanding of the possible causative
role of epigenetics in pathogenesis and strengthen the basis for
exploring epigenetics-based therapeutics. These future
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research aims would significantly benefit from international
multi-site collaborations and the establishment of a large in-
ternational database and biobank.

Conclusion

Genetically triggered TAA is a complex condition with phe-
notypic heterogeneity that results in early morbidity and mor-
tality in affected individuals. Epigenetic changes appear to
play an important role in the pathogenesis and phenotypic
heterogeneity of TAA and may represent feasible targets for
future therapy.
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