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Abstract

The focus of the cell biology field is now shifting from characterizing cellular activities to organelle and molecular behaviors.
This process accompanies the development of new biophysical visualization techniques that offer high spatial and temporal
resolutions with ultra-sensitivity and low cell toxicity. They allow the biology research community to observe dynamic behaviors
from scales of single molecules, organelles, cells to organoids, and even live animal tissues. In this review, we summarize these
biophysical techniques into two major classes: the mechanical nanotools like dynamic force spectroscopy (DFS) and the optical
nanotools like single-molecule and super-resolution microscopy. We also discuss their applications in elucidating molecular
dynamics and functionally mapping of interactions between inter-cellular networks and intra-cellular components, which is key
to understanding cellular processes such as adhesion, trafficking, inheritance, and division.

Keywords Biophysical nanotools - Dynamic Force Spectroscopy (DFS) - Single-molecule micrcoscopy - Super-resolution
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Introduction

“Seeing is believing”. Most of our current knowledge about
the molecular and sub-cellular dynamic processes has been
obtained from single-molecule biophysical techniques at sin-
gle molecule level (Fig. 1). Electron microscopy and crystal-
lography are the most commonly used techniques to visualize
conformations and characterize behaviors of purified proteins
(Springer and Dustin 2012). However, these approaches only
take snapshots of proteins’ stable states and lack real-time
details of transient processes. Thus, they cannot be used to
investigate the coupling of protein conformational changes
with subsequent signaling events on live cells. Over the past
two decades, dynamic force spectroscopy (DFS) (Dulin et al.
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2015; Liu et al. 2015a; Neuman and Nagy 2008) performed
using ultrasensitive force probes (Fig. 2a) such as atomic force
microscopy (AFM, Fig. 2b), optical tweezer (OT, Fig. 2c),
magnetic tweezer (MT, Fig. 2d), and biomembrane force
probe (BFP, Fig. 2e) have provided various biomechanical
approaches for manipulation, characterization and visualiza-
tion of single receptor-ligand interaction and conformational
change with controllable force (Liu et al. 2015a). With nano-
meter spatial, sub-millisecond temporal, and pico-newton
force resolutions, these biomechanical approaches can be used
to induce, follow and analyze single-molecule behaviors in
real time, thus revealing individual molecular details inacces-
sible by conventional biochemistry methods based on ensem-
ble averaging. As a result, they have elucidated the working
mechanisms of many protein nanomachines (Fig. 2f-h) (Liu
et al. 2015a). However, most discoveries are obtained from
DEFS experiments on purified protein systems. How these pro-
teins function in the cellular environment remains largely un-
known. Therefore, the live cell DFS technologies are in great
demand to move the field forward.

The second arm of single-molecule biophysical techniques
is the optical imaging (Fig. 1). Cell biologists who study sub-
cellular structures have been dissatisfied by the blurry images.
This is due to the diffraction-limited spatial resolution of con-
ventional optical imaging. Addressing this, super-resolution
microscopy methods have recently been developed to break
the diffraction barrier and push the spatial resolution from 300
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Fig. 1 The biophysical approaches for single-molecule dynamics

to 10 nm. They are particularly being used to visualize struc-
tures of molecular machines and characterize their functions
underlying important life and disease processes at nanoscale
(Huang et al. 2010). Current super-resolution techniques in-
clude methods based on point spread function modulation
(e.g., stimulated emission depletion (STED), reversible satu-
rable optical linear fluorescence transitions (RESOLFT),
structural illumination microscopy (SIM)) and optical stochas-
tic fluctuation (e.g., stochastic optical reconstruction micros-
copy (STORM), photoactivated localization microscopy
(PALM), super-resolution optical fluctuation imaging
(SOFI), and Bayesian analysis of blinking and bleaching
(3B)). However, most of these techniques require cell samples
to be fixed and thin (2D) to achieve the optimal performance.

Dynamic force spectroscopy techniques
b AFM c
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Fig. 2 a—e Dynamic force spectroscopy techniques. a Generic dynamic
force spectroscopy where a force is applied to the receptor-ligand bond
spanning between a cell surface and a force transducer. Force is
determined respectively by cantilever deflection (b), bead displacement
(c), gradient of the magnetic field (d), and RBC deformation (e). b
Atomic force microscopy (AFM) where force is applied to individual
molecules tethered between a functionalized cantilever and a surface. ¢
Optical tweezers (OT) where a protein-coated bead is held by a laser
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Development of super resolution imaging techniques that are
able to work on live cells and even 3D thick samples (>
100 pum) is the focus of the international progress.

Both mechanical and optical technologies are being
evolved to offer the visualization capability in native cell en-
vironment. This review will summarize the recent progress of
these biophysical techniques. It is worth of noting that most of
current knowledge about the sub-cellular dynamic process has
come from isolated cells cultured on artificial two-
dimensional (2D) surfaces. Furthermore, it has been challeng-
ing to study multiple cells in their native and physiological
environments, which are three-dimensional (3D) (Rios and
Clevers 2018). The barriers mount when cells are hidden in
a thick specimen, e.g., a developing metastatic tumor cell in
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beam. d Magnetic tweezers (MT) where permanent/electrical magnets
are used to manipulate a protein-coated magnetic bead. e Biomembrane
force probe (BFP) where a protein-coated bead is attached to the apex of a
micropipette-aspirated red blood cell (RBC). f-g Molecular
mechanosensitive mechanisms. Mechanosensitive proteins contain a mo-
tif or motifs that can change structures in response to mechanical forces,
giving rise to hinge movement (f), unfolding and unmasking (g), and
multiple receptor cooperativity (h)
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deep tissue, a dividing bacterium in a thick biofilm, a cell
circulating in organ-on-a-chip or being 3D printed into an
engineered organ. Hereby, this review will also discuss the
perspective of the 3D volumetric imaging, which provide un-
tapped spatiotemporal resolutions for subcellular dynamics
studies through deep tissue with low background noise and
photo-toxicity.

Live cell dynamic force spectroscopy (DFS)

The DFS techniques are commonly used to manipulate and
analyze force-induced receptor-ligand unbinding and protein
domain unfolding (Fig. 2a). In a typical experiment, automat-
ed precise movement brings together ligands and receptors on
the respective force probes (i.e., an AFM cantilever in Fig. 2b
or a bead in Fig. 2c—e) and targets (i.e., a cell in Fig. 2a bot-
tom). The contact time, area, and force are preset to allow for
bond formation under controlled conditions. The following
separation of the two surfaces applies a pico-newton (pN)
level force to the receptor-ligand bond to induce mechanical
changes in the molecules and modulate binding kinetics.
These techniques are usually used to perform either force-
ramp or force-clamp DFS. Force-ramp DFS exerts linearly
increasing forces on the receptor-ligand bond with a range of
force application rates, whereas force-clamp DFS exerts a
range of constant forces on the bond. However, other modes
of operation and manipulation can be used to exert different
force waveforms on the molecular bond, for example, jump-
and-ramp DFS (Evans et al. 2004) and cyclic force DFS
(Kong et al. 2013; Li et al. 2016).

Recently, these DFS techniques have been upgraded with
the capability to manipulate single living cells. This enables
DFS to examine the live-cell dynamics in response to mechan-
ical (Feng et al. 2017; Sawicka et al. 2017) and biochemical
stimulations (Husson et al. 2011; Ju et al. 2017a). When com-
bined with molecular signature analysis (Das et al. 2015; Fiore
et al. 2014; Ju et al. 2016), DFS has been used to investigate
simultaneous protein conformational or organizational chang-
es in the same native cell context (Chen et al. 2017a). To
directly correlate single-molecule dynamics with the triggered
cell response requires running DFS analysis with concurrent
imaging of intracellular signaling (e.g., calcium flux). We
achieved this using a fluorescence BFP (Chen et al. 2015; Ju
et al. 2016; Liu et al. 2014a) or micropipette-based adhesion
assays (Francis and Heinrich 2018; Pryshchep et al. 2014).
Others used fluorescence OT (Alieva et al. 2017; Favre-
Bulle et al. 2017; Feng et al. 2017; Kim et al. 2009; Wang et
al. 2005), AFM (Chaudhuri et al. 2009; Hu and Butte 2016),
and MT (Matthews et al. 2006). This ability to manipulate
protein dynamics and concurrently analyze the resulting re-
ceptor—ligand unbinding, receptor mechanical events, and in-
tracellular signaling enables one to examine how cells

interpret the mechanical stimulation then respond differently.
Furthermore, a novel upgrade of BFP to a dual BFP allows
one to analyze dual receptor crosstalk by quantifying the spa-
tiotemporal requirements and functional consequences of the
up- and down-stream signaling events (Ju et al. 2017b). In
contrast to conventional biochemistry and cell biology
methods that are usually population-averaged and not imaged
in real-time, the dual BFP provides precise control and quan-
titative readouts in both mechanical and chemical terms,
which is particularly suited for juxtacrine signaling and
mechanosensing studies.

Overall, the live cell DFS led to many discoveries on inner-
workings of many protein nanomachines in the context of
mechanobiology including T cell receptors (Liu et al.
2014a), integrin (Chen et al. 2012; Ju et al. 2018; Passam et
al. 2018; Xu et al. 2018), syndecan (Fiore et al. 2014), notch
(Lucaetal. 2017), glycoprotein Ibax (Deng et al. 2016; Ju et al.
2016; Ju et al. 2015), and von Willebrand factor (Butera et al.
2018; Ju et al. 2013). Their dynamic molecular mechanisms
can be classified into three categories:

(1) Hinge movement (Fig. 2f). For proteins or their subunits
that consist of two or more distinct globular domains
connected by a hinge region, such as integrin (Luo and
Springer 2006), selectin (Somers et al. 2000), and FimH
(Le Trong et al. 2010), force can relieve the conforma-
tional constraints and allosterically promote hinge open-
ing. Take the integrin as an example, numerous studies
have demonstrated that force applied through ligand
binding facilitates the conformational switch from a bent
to an extended conformation (Chen et al. 2017b; Springer
and Dustin 2012).

(i) Unfolding and unmasking (Fig. 2g). Force can unfold
and unmask a specific protein domain to expose cryp-
tic cleaving, binding, or enzymatic sites. For example,
several recent studies have demonstrated that force can
unfold distinct domains of GPIb to mediate signal
transduction (Deng et al. 2016; Ju et al. 2016; Zhang
et al. 2015). Force-induced exposure of a binding site
has been shown for intracellular adaptor proteins such
as talin (del Rio et al. 2009) as well as extracellular
proteins such as fibronectin (Kong et al. 2009; Smith
et al. 2007) and VWF (Fu et al. 2017; Ju et al. 2013).
Force-induced exposure of an enzymatic cleavage site
has also been shown for Notch activation (Stephenson
and Avis 2012) and VWF proteolysis (Wu et al. 2010;
Zhang et al. 2009).

(iii) Cooperativity (Fig. 2h). External force facilitates the
cooperative binding of two receptors to one ligand.
In a dual receptor system, for example, integrin and
syndecan bind to their mutual ligand Thy-1 (Fiore et
al. 2014). The trimolecular bond displays a unique
bond-strengthening phenomenon, in which increasing
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force abruptly stiffens the complex by bridging both
receptors through one ligand. A similar mechanism is
also implied in the TCR/CDS co-receptor system
(Jiang et al. 2011).

Optical microscopy for single-molecule
dynamics

Optical microscopy has been widely utilized to observe the
protein and membrane dynamics on single cells. With the
advance of fluorescent labeling techniques, such as geneti-
cally expressed fluorescent proteins, tag/ligand labeling
system, and specific organelle-targeted organic dyes
(Valm et al. 2017), cell behavior within a millisecond
timeframe can be described at single-molecule level.
Remarked by the 2014 Nobel Prize in Chemistry, the devel-
opment of single-molecule and super-resolution microsco-
py enables the visualization of subcellular structures at the
resolutions down to tens of nanometers scale and the dy-
namic information at milliseconds level (Liu et al. 2014b;
Valm et al. 2017). Here, we summarize these single-
molecule and super-resolution imaging methods.

Single-molecule microscopy

Thanks to its high signal-to-noise ratio and localization
accuracy, the total internal reflection fluorescence (TIRF)
microscopy is widely used to observe dynamic processes
of individual molecules and their assemblies. Using the
TIRF, fluorophores within a short axial distance above
surface (100~200 nm) can be selectively excited to
achieve higher signal-to-noise ratio, lower photo-toxicity,
and shorter exposure time than conventional fluorescence
microscopies. In the biophysics field, TIRF is an effective
approach for tracking molecular motors (myosin, kinesin
and dynein) while they move along the cytoskeleton with
< 1.5 nm precision at video rates (Sun et al. 2007; Yildiz
et al. 2003). Multiple single-molecule in vitro assays have
been developed around TIRF to characterize motor con-
formations and interactions with cytoskeleton filaments
under various biochemical conditions (Guan et al. 2017;
Shen et al. 2016).

Moreover, TIRF has recently been used to investigate
the movements of single molecules in cells. The single-
particle tracking, single-molecule FRET, and the
correlation-based approaches have been developed. For
example, the TIRF has been used to demonstrate motor
driven intracellular membrane dynamics (such as vesicles
transport, deformation, tubulation and reformation) and
their important roles for cargo transportation and
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organelle biogenesis (Su et al. 2016). In recent studies,
it reveals the essential role of kinesinl motor driven nano-
tube dynamics in the autophagic lysosome reformation
during late-stage autophagy (Du et al. 2016) and mito-
chondrial network remodeling in the subzone of the cell
plasma (Wang et al. 2015). Notably, a novel synthetic
biology method has been developed to reconstitute puri-
fied organelles with different genetic modification, artifi-
cial liposomes with different lipid component, recombi-
nant motor proteins, and polymerized microtubule fila-
ments (Chen et al. 2018b). The big advantage for such
in vitro reconstitution system is the feasibility of manip-
ulating small molecules like ATP, GTP, and ions which
are impossible in cultured cell line systems. Combined
with TIRF imaging, we can investigate the molecular
mechanisms of membrane and protein dynamics from in
situ cell environment to in vitro systems reconstituted
from purified organelles and artificial liposomes/vesicles.

Super-resolution microscopy

Advances in super-resolution fluorescence imaging have
enabled unprecedented insights on the inner life of a cell
under the diffraction-limit (200~300 nm) resolution
(Huang et al. 2010). To improve lateral (and more recent-
ly axial) resolution, several localization-based methods,
such as PALM, STORM, and SOFI, reconstruct fluores-
cent images from large datasets consisting of stochastical-
ly sparse and localized centroids, to achieve the typical
lateral resolutions of 20~40 nm (Sahl et al. 2017) (Fig. 3,
top). Another set of super-resolution microscopies is
based on the point spread function modification, e.g.,
STED, RESOLFT, SIM, resulting a lateral resolution of
50-100 nm (Sahl et al. 2017) (Fig. 3, bottom). These
super-resolution microscopies are sufficient to visualize
precise subcellular structures and membrane protein inter-
actions at the single molecule level.

However, to see fine structural detail with high spatial
resolution together with fast dynamic biological tracking
with high temporal resolution is mutually contradicted as
temporal resolution is typically sacrificed to achieve
higher spatial resolution and vice versa. Developed by
Betzig et al., the lattice light sheet (LLS) microscope uses
a light sheet generated by a 2D optical lattice for confined
illumination. This is an extraordinary example of super-
resolution imaging method that can resolve both dynamic
processes (90 ms) and subcellular structures (~400 nm)
(Chen et al. 2014). With the LLS microscope, for the first
time, scientists are able to pinpoint the subcellular organ-
elle interactome dynamics in the living cells (Valm et al.
2017) and even in the living animals (Liu et al. 2018).
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Fig. 3 Principle of single-molecule localization and point-spread-
function modification based super-resolution microscopies. (Top) A weak
violet light activates only a few fluorescent molecules whose distance is
much longer than the diffraction limit of 200 nm. A strong red light is

Recently, new imaging techniques, such as super-
resolution by polarization demodulation (SPoD) (Hafi et al.
2014) and super-resolution dipole orientation mapping
(SDOM) (Zhanghao et al. 2016) that use information on
fluorophore dipole orientation, have been employed to over-
come the diffraction limit and produce super-resolution im-
ages with the information of molecular orientation on the
membrane. Notably, SDOM can map F-actin orientations
and membrane proteins on different organelles juxtaposed
on super resolution cell images. This new technique may po-
tentially be used to characterize individual protein conforma-
tional changes with high spatial and temporal resolutions at
the same time.

Next-generation imaging methods
to visualize cells in native state

New nanoprobes for super-resolution functional
imaging

The development of super resolution imaging methods has
created a need for robust probes that can track single

Depletion Beam
Excitation Beam

Scanning

Repeat

Super-
resolution
Image

used to turn them on and off frame-by-frame until photobleaching;
(bottom) A high-power laser (red) that could quench the fluorophores is
used to modify the excitation laser (green) beam to a pretty tiny volume <
200 nm and then scan the sample point-by-point

molecules and image subcellular structures in real time.
Rapid advances in material sciences provide a large collection
of near-infrared (NIR) luminescent probes, such as
upconversion nanocrystals (Lu et al. 2013; Zhao et al.
2013), fluorescent nanodiamonds (Reineck et al. 2018), and
fluorescent proteins (Ghodke et al. 2016). They are super
bright, produce non-bleaching, non-blinking emissions, and
can be precisely tuned to emit different lifetime signatures
(take turns to shine) and to show distinct colors at NIR-IR
range. These properties are ideal for simultaneous long-term
imaging of multiple analytes deep within tissues and under
background-free conditions. These developments proved the
concept of single-molecule imaging with deep tissue penetra-
tion, free of optical alignment of multiple laser beams. In
addition, time-gated microscopy has also been developed to
overcome the autofluorescence of conventional in vivo imag-
ing (Miao et al. 2017). Considering their time-gated lumines-
cence properties (Lu et al. 2013), the upconversion
nanocrystals based NIR-IR super resolution microscopy have
a promising future that can solve the critical bottlenecks of
deep tissue imaging as one stone two birds. The new library
of Super Dots®, t-dots, and Hyper Dots provide multi-photon
luminescent probes, through the so-called “transparent

@ Springer



1354

Biophys Rev (2018) 10:1349-1357

biology window” (650—1350 nm), which is vitally important
to obtain maximum penetration depth for deep tissue imaging
(Chen et al. 2018a).

New modalities for super-resolution imaging in three
dimensions (3D)

Most of our current knowledge about sub-cellular dynamic
processes has been obtained from imaging isolated cells, cul-
tured on a two-dimensional (2D) slide or petri dish. An ulti-
mate challenge for cell biology research is to study molecular
and cellular behavior inside their 3D natural environments.
Current super-resolution imaging methods like STORM and
PALM are relatively limited to thin samples (<50 pum) as a
reliable separation against a diffusive background is needed.
To address this, several leading groups have been working on
integrating various optical facilities to enable super resolution
cell imaging in thick samples (> 100 wm) or “Volumetric
Imaging.” In this regard, Betzig et al. have developed Bessel
beam LLS microscope and integrated adaptive optics in both
excitation and emission paths so as to correct the sample-
induced aberrations (Chen et al. 2014). This exciting new
LLS microscope for the first time enables video-rate super
resolution imaging in 3D physiological environment (Liu et
al. 2018). In addition, Hell et al. have developed the parallel
fast super-resolution microscopy to decode the principle un-
derlying vital biological processes (Balzarotti et al. 2017;
Chmyrov et al. 2013). In the conventional microscopy do-
main, Zong et al. designed a miniaturized two-photon micro-
scope with improved speed (40 Hz) and spatial resolution
(0.64 um), and utilized it to resolve activity at single dendritic
spines in freely-moving animals (Zong et al. 2017; Zong et al.
2015). Chen et al. developed a new Hessian SIM for fast,
long-term, super-resolved rapid imaging of moving vesicles
or loops in the endoplasmic reticulum with a spatiotemporal
resolution of 88 nm and 188 Hz (Huang et al. 2018).

Discussion

This review summarizes the latest biophysical technologies
for biologists at levels of single molecules, cells, and tis-
sues. The mechanical techniques DFS have strength in ma-
nipulating molecular behaviors whereas the optical tech-
niques super resolution microscopies harness the power of
directly visualizing biological processes. Currently, bio-
physicists are trying to combine the two approaches to in-
vestigate molecular biology with both mechanical control
and optical information (Heller et al. 2013). Researchers
have also made efforts to apply DFS in vivo. The IR optical
tweezers have been developed to trap and manipulate red
blood cells in capillaries of living mice (Zhong et al. 2013a;
Zhong et al. 2013b), and more recently trap 55 um otoliths
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in larval zebrafish that causes tail movements (Favre-Bulle
et al. 2017). The magnetic tweezers have been combined
with the magnetic nanoparticles for the control of cerebral
ischemia and stroke investigation in living mice (Jia et al.
2017). Furthermore, a series of optomechanical and
photothermal actuator nanoparticles become available
(Guo et al. 2018; Liu et al. 2015b), providing new avenues
of cell manipulation when combined with DFS in future.
Taken together, we could foresee the DFS techniques will
push towards native state molecular and cellular analysis.

On the imaging side, super resolution microscopies are
being combined with multifunctional imaging probes, i.c.,
Super Dots towards a future vision of a complete, progressive
“street view” of intra-cellular traffic. Importantly, it will en-
able functional imaging of system-level organelle interactions
on a single cell. On one hand, it will monitor the interactions
between at least five membrane-bound organelles, e.g., cell-
membrane bound integrins, endoplasmic reticulum, Golgi
complex, mitochondria, and lysosomes (Valm et al. 2017).
On the other hand, it will simultaneously visualize cellular
responses to the local environment changes in mechanical
shear stress, pH value, viscosity, temperature, and membrane
potential (ref). Taken together, these optical approaches will
be used to examine subcellular processes such as energy me-
tabolism, trafficking, inheritance, autophagy, and cell divi-
sion. In the near future, scientists could generate a “street-
view” version of functional maps upon how membrane recep-
tors and organelles respond under different nutrient conditions
in living cells. By using spectral barcoding and/or combinato-
rial labeling, it may also be possible to study 3D interactions
of'a number of proteins simultaneously in the same cell and to
understand how they coordinate with each other to achieve
complex biological functions.

However, advances in instrumentation alone are not suf-
ficient to enable studies in native physiological environ-
ments. This is largely owing to the gap between real animal
tissues and cell lines grown in laboratories that are widely
used for years (Vlachogiannis et al. 2018). It is worth of
noting that these cell lines often do not mimic the tissues
they originally come from. The results from animals and
humans are also not always comparable. In this regard, sev-
eral alternative in vitro methods have been developed. The
first is the organ-on-a-chip that grows tissues on a
microfluidic chip to simulate the microarchitectures and
functions of living organs like the kidney, lungs, bone mor-
row, intestine, and others (Bhatia and Ingber 2014; Takebe
et al. 2017). The other one is the organoids, announced as
the Method of the Year 2017 by Nature Methods (Eisenstein
2018). These clusters of cells organize themselves into mini
versions of our organs, including the liver, lungs, and even
brain cells. The organoids are usually grown in a 3D hydro-
gel that allows them to develop three dimensionally; there-
after, they fill the gap between 3D animal tissues and 2D
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cultured cell lines by overcoming the current limitation in
life sciences and clinic applications. Taken together, these
powerful approaches allow scientists to better study the de-
velopment and treatment for human diseases at organ levels,
and could be implemented in personalized medicine pro-
grams (Vlachogiannis et al. 2018).

In our view, the time is ripe to combine the biophysical
techniques summarized in this review with these 3D human-
mimicked models (Takebe et al. 2017). It will certainly facil-
itate the study of cell functions and heterogeneity in an ideal
multicellular microenvironment that mimics human-specific
physiology and pathophysiology and helps to identify thera-
peutic targets. In the meantime, the demand of biophysical
techniques for physiological imaging of subcellular dynamics
in native physiological environments, through deep tissue or
over a large population of cellular networks in 3D in vitro
models will definitely accelerate the design, fabrication, char-
acterization and validation of new luminescent probes, pho-
tonics imaging techniques and organ-on-chip devices. This
would also facilitate the translation into a single, practical
point-of-care device to aid disease diagnostics and improve
healthcare outcomes.
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