Table 5.
Features selection test according to feature selection methods
| Test number | Method | Selects | Search algorithms | Selected subsets/features (mean value among the three trials) |
|---|---|---|---|---|
| 1 | Principal components | Attributes | Ranker | Num-OC, Wcl, tetaSD-OC, Wop, Num-PS |
| 2 | SVM | Attributes | Ranker | fSD_PS, WcTF, tetaSD-PS, tetaSD-OC, Wps, WoTF, Num-PS |
| 3 | Consistency | Subset | Greedy SW | Num-OC, Wop, fSD-PS, tetaSD-PS |
| 4 | J48 | Subset | Greedy SW | Num-OC, WcTF, Wop |
| 5 | Filtered subset evaluation | Subset | Genetic search | Num-PS, Num-OC, tetaSD-PS, fSD-PS, Wcl |
| 6 | Information gain | Attributes | Ranker | PwrP, fSD-TF, Num-OC, tetaSD-TF, Wsp, Wps, Num-PS |
| 7 | Gain ratio | Attributes | Ranker | PwrP, fSD-TF, Num-OC, tetaSD-TF, Wsp, Wps, Num-PS |
| 8 | Chi square attribute evaluation | Attributes | Ranker | PwrP, fSD-TF, tetaSD-TF, Num-OC, Wsp, Wps, Num-PS |