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BACKGROUND

Renal artery stenosis (RAS) leads to gradual obstruction 
of the renal arterial lumen. Due to decreased blood supply 
and subsequent humoral and in�ammatory responses, RAS 
may lead to hypertension and progressive kidney functional 
decline. In addition, RAS is linked to cardiovascular morbid-
ity and mortality.1 � e prevalence of RAS has been grow-
ing worldwide, especially in individuals with atherosclerotic 
risk factors,2,3 including obesity linked to the metabolic syn-
drome (MetS).

To circumvent the downstream renal ischemia, collateral 
circulation o�en ensues to convey blood supply through 
newly established communicating channels between the 
stenotic renal artery and surrounding arteries to redirect 
the blood to the poststenotic kidney.4–7 � e presence of 
collaterals is o�en indicative of a hemodynamically signi�-
cant stenosis in both animals and humans.8 We have previ-
ously demonstrated development of collateral circulation in 
RAS pigs, as well as a direct correlation of collateral growth 
with renal blood �ow (RBF) and glomerular �ltration rate 

(GFR),9 which suggests a role for the collateral circulation 
in maintenance of renal homeostasis during decrements in 
renal perfusion pressure.

A large body of evidence has demonstrated that obesity 
a�ects kidney function and induces hyper�ltration, re�ected 
by an increase of RBF and GFR. � is is thought to occur 
mainly through vasodilatory e�ects of increased levels of 
insulin10 and hemodynamic e�ects of obesity. We have also 
shown that RBF and GFR in RAS were preserved when 
superimposed by obesity MetS.9,11 Given that obesity alone 
enhances intrarenal microvascular proliferation,12,13 it may 
potentially augment peristenotic collateral vessel growth 
in RAS, which in turn would increase delivery of blood to 
the poststenotic kidney, thereby preserving renal function. 
However, it remains unknown whether the relatively pre-
served renal function in RAS accompanied by MetS involves 
augmented proliferation of collateral vessels. � erefore, this 
study was designed to test the hypothesis that MetS pre-
served renal function partly by increasing the collateral ves-
sel growth to the distal ischemic kidney.
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BACKGROUND
The collateral circulation is important in maintenance of blood sup-
ply to the ischemic kidney distal to renal artery stenosis (RAS). Obesity 
metabolic syndrome (MetS) preserves renal blood �ow (RBF) in the ste-
notic kidney, but whether this is related to an increase of collateral ves-
sel growth is unknown. We hypothesized that MetS increased collateral 
circulation around the renal artery.

METHODS
Twenty-one domestic pigs were randomly divided into unilat-
eral RAS fed an atherogenic (high-fat/high-fructose, MetS-RAS) 
or standard diet, or controls (n = 7 each). RBF, glomerular filtra -
tion rate (GFR), and the peristenotic collateral circulation were 
assessed after 10 weeks using multidetector computed tomogra-
phy (CT) and the intrarenal microcirculation by micro-CT. Vascular 
endothelial growth factor (VEGF) expression was studied in the 
renal artery wall, kidney, and perirenal fat. Renal fibrosis and 
stiffness were examined by trichrome and magnetic resonance 
elastography.

RESULTS
Compared with controls, RBF and GFR were decreased in RAS, but not in 
MetS-RAS. MetS-RAS formed peristenotic collaterals to the same extent as 
RAS pigs but induced greater intrarenal microvascular loss, �brosis, sti�ness, 
and inflammation. MetS-RAS also attenuated VEGF expression in the renal 
tissue compared with RAS, despite increased expression in the perirenal fat.

CONCLUSIONS
MetS does not interfere with collateral vessel formation in the stenotic 
kidney, possibly because decreased renal arterial VEGF expression off-
sets its upregulation in perirenal fat, arguing against a major contribu-
tion of the collateral circulation to preserve renal function in MetS-RAS. 
Furthermore, preserved renal function does not protect the postste-
notic kidney from parenchymal injury.
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METHODS

This project was approved by the Mayo Clinic Institutional 
Animal Care and Use Committee. Twenty-one domestic pigs 
were randomized into normal, RAS, and MetS-RAS groups 
(n = 7 each). Unilateral RAS was induced in 14 pigs by placing 
a local-irritant coil in 1 main renal artery, achieving subse-
quent hypertension within about 7 days.14,15 MetS pigs were 
fed a high-fat/high-fructose diet12 starting 6 weeks before RAS 
induction, and normal and RAS pigs received regular chow. 
Renal function and the collateral circulation were studied after 
16 weeks of diet (10 weeks of RAS) using multidetector com-
puted tomography (MDCT); the degree of stenosis was deter-
mined by angiography and in vivo renal stiffness (a measure 
of tissue fibrosis) by magnetic resonance elastography in vivo. 
Animals were then euthanized by intravenous sodium pento-
barbital (100 mg/kg, Fatal Plus, Vortech Pharmaceuticals, Fort 
Washington, PA), and kidneys, renal arteries, and perirenal 
fat harvested, fresh-frozen, prepared for micro-CT (to study 
the intrarenal microcirculation), or preserved in formalin for 
staining. During MDCT studies, systemic venous blood was 
obtained for plasma creatinine and lipid profile, and urine col-
lected via bladder puncture to determine albumin excretion. 
To assess insulin resistance, an intravenous glucose tolerance 
test was performed during MDCT in normal and MetS-RAS 
groups.12 Blood samples (~3 ml each) were obtained at base-
line (−5 and 0 minutes), and then animals were given an IV 
bolus of glucose 0.5 g/kg. Samples were obtained at 5, 10, 20, 
30, 40, 50, and 60 minutes after injection to measure blood 
glucose and insulin levels. The homeostasis model assessment 
of insulin resistance index (fasting plasma glucose × fasting 
plasma insulin/22.5) was calculated and plotted over time to 
evaluate insulin sensitivity.11

Renal function

Single-kidney function was assessed in vivo using 128-
slice MDCT (Somatom Definition Flash-128, Siemens 
Medical Solution, Forchheim, Germany).16,17 Briefly, sequen-
tial acquisition of 140 consecutive scans was executed after 
a central bolus injection of iopamidol (0.5 cc/kg over 2 sec-
onds). The first 70 scans were collected at 0.68-second inter-
vals during respiratory suspension at end expiration, whereas 
the following 70 scans were acquired every 2 seconds dur-
ing suspension of respiration with assisted breathing every 
30 seconds. Then, MDCT images were reconstructed and 
displayed with the Analyze software package (Biomedical 
Imaging Resource, Mayo Clinic, Rochester, MN).

For data analysis, regions of interest (ROI) were selected 
from tomographic images from the aorta, poststenotic (or 
right kidney in normal pigs) renal cortex, and medulla to 
generate time-attenuation curves in each region and obtain 
measures of renal function including GFR and RBF.18

Collateral circulation

To collect volumetric data, the kidneys were scanned from 
pole to pole during infusion of iopamidol (0.5  ml/kg over 
5 seconds). Reconstruction of the volume data produced 
512 × 512 matrix images at a resolution of 0.39 × 0.39 mm 

and a 0.6-mm slice thickness with 0.3-mm overlap through 
the planes containing the renal artery. Collateral index was 
calculated by assessment of the fractional vascular volume 
in the immediate zone around the stenosis, as previously 
described.9 Briefly, the zone encompassing visually discern-
ible collaterals around the stenotic segment of the renal 
artery was manually traced (approximately 250–300 mm2). 
Two ROIs were then sampled,9 representing the collateral 
vessel zone surrounding the stenotic main renal artery and 
the contrast-filled lumen of the renal artery. In the control 
group, manually traced ROIs were centered on the renal 
artery in a comparable location. The fractional vascular area 
containing blood vessels around the stenosis, representing 
the collateral vessel fraction, was determined as the ratio 
between the opacity of the 2 ROIs.

Renal stiffness

As a measure of renal fibrosis, tissue stiffness was evalu-
ated by magnetic resonance elastography (Signa TwinSpeed 
EXCITE 3T system, GE Healthcare, Waukeshau, WI), as 
described previously.19,20 A 3D stack of images was collected 
using 2D, transverse, multislice, flow-compensated, spin-
echo, echo-planar imaging in conjunction with motion sen-
sitizing gradients synchronized with the 120-Hz vibrations 
produced by 2 passive pneumatic drivers placed on the ani-
mal’s dorsal surface, proximal to the kidneys. Images were 
processed and analyzed using magnetic resonance elastog-
raphy/Wave (MRI Research Lab, Mayo Clinic). Data were 
processed using phase unwrapping, curl filtration to exclude 
bulk motion, and a local spatial frequency estimation algo-
rithm to determine the shear wavelength at 120 Hz. The 
product of shear wavelength and the vibration frequency 
was used to derive the shear wave speed, and the product of 
the tissue density (approximately 1 g/cm3) and the square of 
the wave speed was used as an index of tissue stiffness. Our 
previous studies have shown good correlation between his-
tological changes and stiffness in the medulla but not in cor-
tex,20 which is more affected by hemodynamic variables such 
as RBF.19 Therefore, medullary ROIs were selected on echo-
planar imaging magnitude images and verified with the aid 
of coregistered contrast-enhanced CT images obtained dur-
ing the vascular phase of contrast agent transit.21

Ex vivo studies

Intrarenal microcirculation.  After the harvested kidney 
was flushed, Microfil MV122 (an intravascular contrast agent) 
was perfused into the stenotic kidney under physiological 
pressure through a cannula ligated in the renal artery. Samples 
were prepared and scanned at 0.5° angular increments at 
18-μm resolution, and images analyzed as described.22,23 The 
spatial density of cortical microvessels (defined by diameters 
<500 μm) and medullary microvascular volume fraction was 
then calculated, as previously described.22,24

Expression  of  VEGF.  To assess angiogenic signaling which 
is possibly involved in collateral vessel growth, expression of 
vascular endothelial growth factor (VEGF) was examined 
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in the renal artery wall and in the adjacent perirenal fat by 
immunohistochemistry and immunofluorescence staining, 
respectively. Imaging analysis was performed using a com-
puter-aided image-analysis program (AxioVision v4.7.2.0, 
Carl Zeiss MicroImaging, Thornwood, NY).17 Renal protein 
expression of VEGF (Santa Cruz) was also measured by west-
ern blot in homogenized kidney tissue samples. Perirenal fat 
gene expression of VEGF (Ss03393993) and glyceraldehyde 
3-phosphate dehydrogenase (Ss03374854) was assessed on 
Applied Biosystems ViiA7 Real-Time PCR system using the 
delta-delta CT method with validated TaqMan primers from 
Thermo Fisher Scientific (Waltham, MA).25

Renal fibrosis, tubular injury, and inflammation.  Renal 
interstitial fibrosis and glomerular score were evaluated 
ex vivo trichrome staining.26 Tubular injury was scored in 
a blinded fashion in sections stained with periodic acid–
Schiff, as previously described.27 Renal inflammation was 
evaluated using monocyte chemoattractant protein (MCP-1, 
Novusbio) and tumor necrosis factor-alpha (TNF-α, Abcam) 
immunofluorescence staining. The number of monocyte 
chemoattractant protein-1 and TNF-α-expressing cells was 
manually counted in randomly chosen 8–10 fields/slide.28

Endothelial to mesenchymal transition.  The endothelial 
to mesenchymal transition (EndoMT) was evaluated as a 
mechanism contribution to fibrosis and microvascular loss. 
Vimentin (Abcam) and CD31 (Bio-Rad) antibodies were 
used for immunofluorescence in renal frozen sections. The 
numbers of cells colocalized with vimentin and CD31 were 
manually quantified in randomly chosen 10–15 fields/slide.29

Statistical analysis

Statistical analysis was performed using JMP software 
package version 9.0, SAS Institute, Cary, NC. Results are 
shown as mean ± SEM or median (interquartile range) 
as appropriate. For data with normal distribution, one-
way analysis of variance was applied followed by unpaired 
Student’s t-test. Wilcoxon test was performed for non-
normal distribution data. Pearson correlation test was 

performed to detect the relation between medullary stiffness 
and vascular volume fraction. Results were considered sig-
nificant for P < 0.05.

RESULTS

MetS-RAS pigs had higher body weight, plasma total 
cholesterol, low-density lipoprotein, and triglyceride lev-
els (Table  1). MetS-RAS developed insulin resistance, as 
reflected in increased baseline homeostasis model assess-
ment of insulin resistance and in a marked increase in 
HOMA-IR in the glucose tolerance test compared with nor-
mal animals (Figure 1a), suggesting development of MetS. 
Both RAS groups developed comparable moderate degrees 
of stenosis (Figure  1d), and both increased mean arterial 
pressure, yet it was higher in MetS-RAS, consistent with pro-
hypertensive effects of MetS. Plasma creatinine levels were 
slightly and similarly increased in both RAS groups, while 
urine albumin to creatinine ratio was unaltered (Table 1).

Renal hemodynamics and circulation

RBF and GFR decreased in the stenotic RAS kidney 
(Figure  1b,c), confirming a hemodynamically significant 
stenosis. However, despite a comparable obstruction of renal 
artery (Table  1, Figure  1d), RBF and GFR were not lower 
than normal in MetS-RAS (Figure  1b,c), suggesting rela-
tively preserved renal function. Interestingly, however, both 
RAS and MetS-RAS similarly increased collateral index sur-
rounding stenotic renal artery (Figure 1d,f). Within the kid-
ney, microvascular loss was found in both RAS groups in the 
cortex and medulla (Figure 1e,g,h), but MetS-RAS elicited 
great loss in the cortex compared with RAS (Figure 1e,g).

Perirenal angiogenic activity

In stained slides, RAS increased VEGF expression in the 
renal artery wall in both the endothelium and adventitia 
(Figure 2a), but not in perirenal fat (Figure 2b). Contrarily, 
MetS decreased VEGF in the renal artery wall and kidney 
tissue (Figure 2c) in RAS but upregulated it in the perirenal 

Table 1.  Characteristics of normal and RAS pigs with or without MetS (n = 7 each)

Normal RAS MetS-RAS

Body weight (kg) 52.3 ± 0.7 50.2 ± 2.5 92.4 ± 2.3*

Degree of stenosis (%) – 64.8 ± 3.8 65.0 ± 5.0

MAP (mm Hg) 89.6 ± 2.1 97.2 ± 2.0* 129.6 ± 9.1*†

Creatinine (mg/dl) 1.2 ± 0.1 1.6 ± 0.1* 1.7 ± 0.1*

Total cholesterol (mg/dl) 71 (67.5–84) 91 (79.2–106.5) 506 (365.2–723.2)*†

Triglyceride (mg/dl) 7.0 ± 0.3 11.9 ± 0.9 15.1 ± 3.0*

LDL cholesterol (mg/dl) 26.6 (22–31.7) 39.2 (34–44.4) 444 (277.4–555.2)*†

Urine ACR (mg/g) 9.9 (4.4–20.6) 16.2 (13.3–536.4) 12.0 (5.4–79.9)

Data are mean ± SEM or median (interquartile range). Abbreviations: ACR, albumin to creatinine ratio; LDL, low-density lipoprotein; MAP, 
mean arterial pressure; MetS, metabolic syndrome; RAS, renal artery stenosis.

*P < 0.05 vs. normal.
†P < 0.05 vs. RAS.
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Figure  1.  Establishment of MetS in domestic pigs with RAS and changes in renal function and circulation compared to Normal and RAS alone. 
Intravenous glucose tolerance test showing increased HOMA-IR index in animals with the MetS-RAS compared with normal animals, suggesting insulin 
resistance (a). RBF and GFR significantly decreased in pigs with RAS, but not when RAS was accompanied by MetS (b, c). Representative multidetector- 
and micro-CT images showing collateral circulation (d), intrarenal cortical microvascular density and medullary vascular volume fraction (e), and their 
quantification (g, h). Collateral index was similarly elevated in RAS and MetS-RAS, but MetS-RAS had greater cortical microvascular loss (f). *P < 0.05 vs. 
normal, †P < 0.05 vs. RAS. Green arrow: coil inducing stenosis; red arrow: collateral vessels; orange arrow: vasa recta in medulla. (Please refer to color 
online only for indicated colors.) Abbreviations: CT, computed tomography; GFR, glomerular filtration rate; HOMA-IR, homeostasis model assessment of 
insulin resistance; MetS, metabolic syndrome; MetS-RAS, metabolic syndrome and renal artery stenosis; RAS, renal artery stenosis; RBF, renal blood flow.
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Figure  2.  Expression of angiogenic VEGF in renal artery wall and fat tissue, and association of medullary vascular volume fraction with stiffness. 
Expression of VEGF in the renal artery wall (a) and perirenal fat (b, red). RAS increased VEGF expression in the renal artery wall, whereas MetS-RAS 
decreased VEGF in the renal artery wall but increased it in the perirenal fat. Renal protein expression of VEGF was decreased in MetS-RAS compared with 
RAS (c). VEGF gene expression in perirenal fat was not different among the groups (d). Renal medullary stiffness by MRE (yellow/red indicates greater stiff-
ness) and its quantification (e, f). (Please refer to color online-only for indicated colors.) An inverse correlation was observed between medullary stiffness 
and vascular volume fraction (g). *P < 0.05 vs. normal, †P < 0.05 vs. RAS. Abbreviations: MetS-RAS, metabolic syndrome and renal artery stenosis; MRE, 
magnetic resonance elastography; RAS, renal artery stenosis; VEGF, vascular endothelial growth factor.
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fat. VEGF gene expression in perirenal fat of MetS-RAS 
showed a similar pattern, although this has not reached sta-
tistical significance levels (Figure 2d).

Renal fibrosis and stiffness

An increase in the stenotic kidney medullary stiff-
ness in vivo was found in RAS, was greater in MetS-RAS 
(Figure  2e,f), and was inversely correlated with vascular 
volume fraction (Figure  2g). Trichrome staining ex vivo 
showed increased cortical and medullary fibrosis in both 
RAS groups, which was markedly greater in MetS-RAS 
(Figure 3a–c). Glomerulosclerosis was similarly increased in 
both RAS groups compared with normal (Figure 3d).

Renal tubular injury, inflammation, and EndoMT

Tubular injury scores evaluated in periodic acid–Schiff 
staining increased in stenotic compared with normal kidneys 
and further in MetS-RAS compared with RAS (Figure 3b,e). 
Expressions of monocyte chemoattractant protein-1 and 
TNF-α were significantly higher in MetS-RAS than normal 
and RAS (Figure 4a–d). CD31 and Vimentin colocalization 
was greater in MetS-RAS than in RAS as well as normal kid-
neys, suggesting increased EndoMT (Figure 4e,f).

DISCUSSION

In the present study, we found that while swine MetS-
RAS kidneys maintained normal RBF and GFR, they did 
not magnify development of collateral circulation compared 
with RAS. This observation suggests that collateral growth is 
unlikely to be a major contributor to preserved renal hemo-
dynamics and function in MetS-RAS. Furthermore, in spite 
of renal hemodynamics within the normal range, MetS-RAS 
aggravated renal injury distal to the stenosis, including loss 
of cortical microvasculature and increased fibrosis, tubu-
lar injury, inflammation, and stiffness compared with RAS, 
suggesting that at an early stage, preserved renal function in 
MetS may be partly dissociated from the downstream paren-
chymal damage.

Establishment of collateral circulation is thought to play 
important roles in maintaining renal blood supply when 
the renal artery is obstructed.8,30 Earlier studies have found 
that collateral development is influenced by the degree of 
obstruction and by availability of extrarenal arterial sources 
that carry the collateral flow.30 Importantly, the underlying 
condition of the kidney might be an important determinant 
of both the degree and effectiveness of the newly established 
circulation to sustain renal blood supply.30

In our swine model, development of collateral circulation 
in MetS-RAS was similar to that observed in RAS alone and 
could be affected by multifactorial mechanisms. Obesity and 
MetS activate proangiogenic pathways, possibly mediated 
through inflammatory mechanisms that stimulate intrare-
nal angiogenesis11,31 and might hypothetically also augment 
collateral vessel formation. Notably, MetS-RAS increased 
VEGF expression in perirenal fat, as observed by others.32 
This might be related to the adipose-enriched inhibitor of 

DNA binding protein-3, which promotes VEGF expression 
and microvascular blood volume in visceral fat.32

On the other hand, when coexisting with RAS, MetS may 
synergize with injury mechanisms activated in the postste-
notic kidney to magnify microvascular loss by amplifying 
increases in oxidative stress characteristic of both RAS and 
MetS.11 In addition, increased fibrogenic activity in the post-
stenotic kidney33,34 can also suppress angiogenic signaling 
and inhibit angiogenesis and arteriogenesis.35 Indeed, MetS-
RAS pigs were inclined to have greater renal fibrosis both 
in vivo and ex vivo, as well as intrarenal microvascular rare
faction. Factors including insulin resistance and dyslipidemia 
may induce endothelial dysfunction and EndoMT,36 which 
might in turn contribute to development and progression 
of renal fibrosis in MetS-RAS. Hence, the distinct patterns 
of intrarenal injury in MetS-RAS may partly compromise 
the capability of the stenotic kidney to sustain its microcir-
culation. Furthermore, insulin resistance has been shown 
to impair the function of angiogenic progenitor cells that 
participate in endothelial repair and thereby delay endothe-
lial regeneration.37 This may not only jeopardize within the 
MetS kidney microvascular repair, facilitating microvascular 
regression compared with RAS alone, but may also lessen the 
response of endothelial cells in renal artery and surrounding 
vessels to the ischemic stimulus for angiogenesis.

We have also found increased inflammation in MetS-RAS 
compared with RAS kidneys, indicated by upregulation of 
MCP-1 and TNF-α, implicating inflammation in the ampli-
fied kidney injury in MetS-RAS. In addition, greater inflam-
mation and oxidative stress in perirenal fat cause endothelial 
dysfunction of the adjacent renal arteries, partly due to par-
acrine TNF-α signaling.38 Blunted upregulation of VEGF 
expression in MetS-RAS renal artery wall compared with 
RAS might have been related to the poststenotic kidney, as 
well as local arterial or perirenal fat milieu. Collectively, their 
net result was collateral vessels channeling similar to that in 
RAS.4 Hence, regardless of the mechanisms involved, given 
its preserved RBF and GFR in the face of a similar collateral 
index to RAS, our study argues against collateral circulation 
growth as a chief determinant of sustained function in the 
poststenotic kidney coexisting with MetS.

Although the stenotic kidney function was comparable 
with normal pigs, elevated plasma creatinine indicated 
decline of overall renal function in MetS-RAS, suggest-
ing impaired contralateral kidney function, possibly due 
to greater hypertension or to cytokines released from the 
obese stenotic kidney.39 Contrarily, renal protein excretion 
was unaffected, due to the early stage and modest glomeru-
lar injury. Whether the contralateral kidney influences the 
growth of collateral vessels should be further examined.

Limitations

Our study is limited by short duration of the disease, yet 
renal physiology and pathophysiology in our model resem-
ble those in humans, and thus, our study has translational 
power. We cannot rule out the possibility that collateral ves-
sels smaller than the resolution of our CT scanner were over-
looked (<0.02 mm). However, many native collateral vessels 
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Figure 3.  Kidney tissue injury in RAS and MetS-RAS pigs. Interstitial fibrosis and glomerulosclerosis in the stenotic kidney increased in RAS and MetS-
RAS compared with normal (a, c, d). MetS-RAS induced greater tissue scarring in both cortex and medulla. Tubular injury scores evaluated in PAS staining 
were increased in the stenotic kidney compared with normal kidney and in MetS-RAS vs. RAS (b, e). *P < 0.05 vs. normal, †P < 0.05 vs. RAS. Abbreviations: 
MetS-RAS, metabolic syndrome and renal artery stenosis; PAS, periodic acid–Schiff; RAS, renal artery stenosis.
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are considered to be visible angiographically.30 Medullary 
vascular volume fraction in MetS-RAS exhibited larger vari-
ability than cortical microvascular density, possibly due 

to relatively smaller medullary size compared with cortex. 
The mechanisms underlying the development, progression, 
and patterns of the collateral vessels (e.g., their origin and 

Figure 4.  In immunofluorescence, MCP-1-expressing cells (red) were more abundant in MetS-RAS compared with normal and RAS (a, c), as was TNF-α 
expression (pink) (b, d). CD31 (pink) and Vimentin (green) colocalization was higher in MetS-RAS than in RAS and normal, suggesting increased endo-
thelial to mesenchymal transition (e, f).  (Please refer to color online only for indicated colors). *P < 0.05 vs. normal, †P < 0.05 vs. RAS. Abbreviations: 
MCP-1, monocyte chemoattractant protein-1; MetS-RAS, metabolic syndrome and renal artery stenosis; RAS, renal artery stenosis; TNF-α, tumor necrosis 
factor-alpha.
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termination) in normal and MetS kidneys need to be pur-
sued in future studies. The mechanisms that sustain measur-
able renal function in the presence of amplified tissue injury 
in MetS-RAS also warrant additional studies.

In conclusion, this study shows that the kidney distal to 
RAS coexisting with obesity metabolic disorders had rela-
tively preserved hemodynamics, despite collateral circulation 
growth being comparable with that observed in RAS alone. 
These findings suggest that the collateral circulation is unlikely 
a major contributor to blood flow maintenance in MetS-RAS; 
its complex mechanisms should be further investigated.
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