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Abstract

Attention-deficit/hyperactivity disorder (ADHD) and Parkinson’s disease (PD) involve 

pathological changes in brain structures such as the basal ganglia, which are essential for the 

control of motor and cognitive behavior and impulsivity. The cause of ADHD and PD remains 

unknown, but there is increasing evidence that both seem to result from a complicated interplay of 

genetic and environmental factors affecting numerous cellular processes and brain regions. To 

explore the possibility of common genetic pathways within the respective pathophysiologies, nine 

ADHD candidate single nucleotide polymorphisms (SNPs) in seven genes were tested for 

association with PD in 5333 cases and 12,019 healthy controls: one variant, respectively, in the 

genes coding for synaptosomal-associated protein 25 k (SNAP25), the dopamine (DA) transporter 

(SLC6A3; DAT1), DA receptor D4 (DRD4), serotonin receptor 1B (HTR1B), tryptophan 

hydroxylase 2 (TPH2), the norepinephrine transporter SLC6A2 and three SNPs in cadherin 13 

(CDH13). Information was extracted from a recent meta-analysis of five genome-wide association 

studies, in which 7,689,524 SNPs in European samples were successfully imputed. No significant 

association was observed after correction for multiple testing. Therefore, it is reasonable to 

conclude that candidate variants implicated in the pathogenesis of ADHD do not play a substantial 

role in PD.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous 

neurodevelopmental syndrome with an onset in childhood, which persists at least partially 

into adulthood in up to 60% of patients (Gerlach and Romanos 2014). Patients with ADHD 

show characteristic symptoms of age-inappropriate inattention, impulsiveness and motor 

hyperactivity. Parkinson’s disease (PD) is a common and complex neurological disorder 

with age as a dominant risk factor. Prevalence and incidence increase nearly exponentially 

with age and peak after the age of 80 (Kalia and Lang 2015). PD has long been 

characterized by the classical motor symptoms such as bradykinesia, rigidity and/or resting 

tremor. However, PD is now recognized as a heterogeneous disease, with clinically 

significant non-motor features including olfactory dysfunction, cognitive impairment, 

psychiatric symptoms, sleep disorders and impulse control disorders (Kalia and Lang 2015).

There is increasing evidence from imaging studies that disturbances in cortico-basal ganglia-

thalamo-cortical circuits may contribute to the development of motor, cognitive and 

impulsive symptoms seen in both ADHD and PD (Geng et al. 2006; Mehler-Wex et al. 2006: 

Gerlach and Romanos 2014; Volkmann et al. 2010). Cognitive and executive dysfunction is 

prevalent in both disorders (Craig et al. 2016; Goldman et al. 2015). Impulse control 

disorders including compulsive gambling, shopping, sexual behaviors and eating occur 

relatively frequently in PD (Ramirez-Zamora et al. 2016) and are often observed as an 

adverse reaction to PD treatment with dopaminergic drugs and deep brain stimulation of the 

subthalamic nucleus (for review, see Volkmann et al. 2010). Dopamine (DA) has long been 

known to be a crucial modulator of striatal processing of cortical and thalamic signals, 

mediated through glutamatergic synapses on the principal striatal neurons (medium spiny). 

Regulation of these neurons by DA is important for a wide array of psychomotor functions 

ascribed to the basal ganglia, including motor, cognitive and motivational functions. In PD, 

motor symptoms are largely the consequence of a progressive degeneration of cells in the 

pars compacta of the substantia nigra (SN), which constitute the nervous system’s most 

important DA suppliers (Gibb & Lees 1991). Abnormalities of the SN have also been 

demonstrated with transcranial sonography, with children with ADHD (Romanos et al. 

2010) as well as PD patients (Berg et al. 2001) showing a hyperechogenic SN. Available 

symptomatic therapies for ADHD and PD both target the dopaminergic system (Gerlach and 

Romanos 2014; Walitza et al. 2014; Kalia and Lang 2015) by using drugs that enhance 

intracerebral DA concentrations and/or stimulate DA receptors.

The cause of ADHD and PD remains unknown, but there is increasing evidence that both 

seem to result from a complicated interplay of genetic and environmental factors affecting 

numerous cellular processes and brain regions (Kalia and Lang 2015; Gerlach and Romanos 

2014). Based on the common neurobiological pathways implicated in the development of 

motor, cognitive and impulsive symptoms seen in ADHD and PD, the aim of this study was 
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to examine whether there is a genetic association between ADHD and PD. Interestingly, a 

recent study has shown that copy number variations at the PARK2 locus contribute to the 

genetic susceptibility to ADHD (Jarick et al. 2014). Mutations in the PARK2 gene have been 

reported to cause autosomal recessive juvenile PD (Crosiers et al. 2011). The PARK2 gene 

encodes parkin, which has been suggested to increase DA uptake by enhancing the 

ubiquitination and degradation of mis-folded DA transporter (Jiang et al. 2004).

Nine variants in seven genes were tested for association with PD based on an extensive 

literature review of genome-wide association studies (GWAS) and meta-analyses on ADHD 

involving single nucleotide polymorphisms (SNPs): four variants in the genes coding for 

synaptosomal-associated protein, 25kDa1 (SNAP25), the DA transporter (SLC6A3; DAT1), 

DA receptor D4 (DRD4) and serotonin receptor 1B (HTR1B) (Forero et al. 2009; Gizer et 

al. 2009), three SNPs in cadherin 13 (CDH13) (Lasky-Su et al. 2008; Lesch et al. 2008; 

Neale et al. 2010), and single SNPs located within the genes coding for tryptophan 

hydroxylase 2 (TPH2) and the noradrenaline transporter SLC6A2 (Park et al. 2013; 

Sengupta et al. 2012).

Materials and methods

We re-analyzed data from a recent meta-analysis of GWAS on PD (International Parkinson 

Disease Genomics Consortium 2011) specifically for association of risk variants in ADHD 

candidate genes with PD. The International Parkinson Disease Genomics Consortium 

(IPDGC) is an international collaboration of genome-wide association studies in PD. The 

total cohort comprised 5333 PD cases and 12,019 controls from European ancestry. This 

dataset included five GWA studies with patients and controls from the USA, the UK, France 

and Germany. All samples have been genotyped using Illumina platform and underwent 

extensive quality control criteria. Imputation has been performed using the Markov Chain-

based haplotyper (version 1.0.16) yielding a total of 7,689,524 SNPs. GWAS have been 

undertaken using logistic regression models. Details on the cohort and analyses are 

published elsewhere (Spencer et al. 2011). Nine ADHD risk variants described above were 

tested for association with PD. Reported p values are not corrected for multiple testing.

Results

As listed in Table 1, the SNP rs1843809 in TPH2 was nominally associated with PD 

(uncorrected p = 0.037). Here, the more frequent T allele showed a protective effect, while 

the G allele was identified as risk variant. However, after using Bonferroni correction for 

multiple testing, the association became nonsignificant. None of the other analyzed variants 

showed a significant p value (Table 1). No substantial heterogeneity was detected in the 

analyzed cohort.

Discussion

Our hypothesis that risk variants in candidate genes for ADHD would also be significantly 

associated with PD could not be confirmed in this study.
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ADHD is a developmental disorder with an onset in childhood, while PD is a degenerative 

disease associated with older age; ADHD and PD share abnormalities in cortico-basal 

ganglia-thalamo-cortical circuits, which contribute to motor, cognitive and impulsive 

symptoms in both disorders. The SNPs analyzed in our study were selected because they 

were located within genes coding for proteins that are involved in the regulation of 

dopaminergic, noradrenergic and serotonergic neurotransmission, which in turn is implicated 

in the development of motor, cognitive and impulsive symptoms seen in ADHD and PD. 

DAT1 is a presynaptically located protein that plays a key role in regulating the DA 

concentrations in the synaptic cleft by removing DA from the synaptic cleft and returning it 

to the presynaptic neurons (Giros et al. 1996). Reduced DAT1 density and reduced binding 

of the remaining DAT1 have been reported in the striatum of PD patients (Galvin 2006). In 

contrast, neuroimaging studies demonstrated an increased density of DAT1 in the striatum of 

ADHD patients (Fusar-Poli et al. 2012). SNAP25 constitutes part of the SNARE complex 

and is crucial for general neuro-transmitter release (for a review, see Rizo and Südhof 2002). 

A mutant mouse model of SNAP25 showed that the SNARE complex might be involved in 

the localization and accumulation of α-synuclein, a protein of unknown function that is 

located primarily in the presynaptic vesicles and modulates the DAT1 function (Sidhu et al. 

2004). CDH13 propagates neuronal growth and brain plasticity. It is an interesting candidate 

for PD since it supports motility, growth and proliferation of neuronal cells (for a review, see 

Philippova et al. 2009) and is expressed in brain regions affected in PD (Takeuchi et al. 

2000). Sequence variations in this gene may compromise the protein’s function as a negative 

regulator of axonal growth during development and its protective properties against 

oxidative stress (Philippova et al. 2009) and ultimately play a role in the progressive cell loss 

in PD.

It is conceivable that despite an underlying common genetic basis, the proposed genetic 

structure of most psychiatric disorders prevents the detection of contributing variants by 

means of GWAS. In psychiatric conditions, state-of-the-art genetic theories assume an 

interaction of a multitude of genes (both common and rare variants) with small effect. 

Precisely for this kind of genetic architecture, GWAS are ill-suited to detect the contributing 

variants. Hence, it is possible that genes showing up in GWAS on ADHD might be reflective 

of very specific forms of ADHD, where those variants are of high penetrance and immediate 

consequence and produce a distinct phenotype. The SNPs analyzed in our study were 

selected because they are situated within genes which code for products implicated in the 

etiopathogenesis of both disorders. Although no association survived correction for multiple 

testing, the putative roles of those genes for PD shall briefly be expanded upon. The negative 

finding regarding DAT1 is in line with a study on a Japanese sample, which could not 

confirm an association of the 3′ UTR VNTR polymorphism with PD, suggesting that the 

investigated polymorphism (Higuchi et al. 1995) is of limited importance for the 

etiopathogenesis of PD both in Asian and European populations. However, it has to be noted 

that there are some positive reports as well. Morino et al. (2000) found a nonfunctional base 

exchange in exon 9 (1215A/G) to be less common in PD, and there are reports of an 

association of other polymorphisms within this gene with the disorder (Juyal et al. 2006; Le 

Couteur et al. 1997).
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However, putting our findings into perspective, there is doubt on common genetic bases in 

terms of variants with large effects for both PD and ADHD. Several independent lines of 

evidence support that conclusion. Firstly, a diagnosis of ADHD demands an early onset in 

childhood despite a high tendency to persist into adulthood, whereas PD patients typically 

experience the first symptoms late in life—the exception being rare recessive PD which 

typically has an early age of onset. It is conceivable that for ADHD—a disorder which 

emerges at a time where particularly the prefrontal cortex as the seat of cognitive control is 

still undergoing maturational processes (Shaw et al. 2006) and thus making it particularly 

vulnerable for disturbances—a different set of genes or genetic variants might be acting 

together to shape the developmental course of the brain. Furthermore, it is important to bear 

in mind that the two forms of PD have extremely different heritabilities, since most 

published GWAS on PD include only the sporadic and less strongly genetically triggered 

variant of the disorder, where a putative common genetic background is more complex. 

While familial PD shows relatively consistent associations with mutations in genes like 

SNCA encoding α-synuclein, PARK2, PINK1, PARK7 and LRRK2 (Lesage and Brice 

2009), the predominant sporadic variant of the disorder seems more related to combinations 

of common variants within several genes. So it stands to reason that sporadic PD and the 

largely familial ADHD overall have divergent etiologies on a genetic level.

Conclusion

In a European sample, ADHD candidate SNPs within the genes coding for CDH13, DRD4, 

HTR1B, SLC6A2 (NET1), SLC6A3 (DAT1), SNAP25 and TPH2 were not associated with 

PD after correction for multiple testing. An overlap in the genetic architecture of both 

disorders cannot be ruled out, although traditional candidate genes in ADHD do not show a 

major effect in PD.
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