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Abstract

Genome instability is a characteristic of most cancers, contributing to the acquisition of genetic 

alterations that drive tumor progression. One important source of genome instability is linked to 

telomere dysfunction in cells with critically short telomeres that lack p53-mediated surveillance of 

genomic integrity. Here we research the probability that cancer emerges through an evolutionary 

pathway that includes a telomere-induced phase of genome instability. To implement our models 

we use a hybrid stochastic-deterministic approach, which allows us to perform large numbers of 

simulations using biologically realistic population sizes and mutation rates, circumventing the 

traditional limitations of fully stochastic algorithms. The hybrid methodology should be easily 

adaptable to a wide range of evolutionary problems. In particular, we model telomere shortening 

and the acquisition of two mutations: Telomerase activation and p53 inactivation. We find that the 

death rate of unstable cells, and the number of cell divisions that p53 mutants can sustain beyond 

the normal senescence setpoint determine the likelihood that the first double mutant originates in a 

cell with telomere-induced instability. The model has applications to an influential telomerase-null 

mouse model and p16 silenced human cells. We end by discussing algorithmic performance and a 

measure for the accuracy of the hybrid approximation.

Introduction

Cancer is driven by a process of clonal evolution, which involves the sequential 

accumulation of mutations that ultimately allow for uncontrolled cell proliferation [1, 2]. 

Often, tumors develop different types of genome instability, which impact the tumor’s ability 

to evolve and progress. One important source of genome instability is telomere dysfunction 

[3, 4]. While mathematical modeling has significantly advanced our understanding of tumor 

evolution [5], the role of telomere shortening in connection to genome instability and 

carcinogenesis remains poorly understood from a quantitative perspective.
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A serious obstacle in modeling tumor evolution in general, is that traditional fully stochastic 

algorithms, such as Gillespie’s method [6], are ill-equipped to deal with population sizes that 

are biologically relevant to the study of tumorigenesis at the scale of cell populations. 

Moreover, the low mutation rates of mammalian cells require a very large number of 

simulations to obtain statistically meaningful results on mutant dynamics. As a consequence, 

too often models are constructed and analyzed with population sizes that are unrealistically 

small and mutation rates that are unrealistically large. This is especially problematic when 

trying to compare model results to emerging clinical data. Here we draw on ideas related to 

the development of hybrid stochastic-deterministic methods to circumvent the 

aforementioned limitations of fully stochastic approaches. In particular, we outline an 

efficient hybrid stochastic-deterministic algorithm that allows for the use of realistic 

population sizes and mutation rates. This algorithm should be easily adaptable to a wide 

range of applications in the field of evolution.

In this article, we develop a mathematical model that takes into account the effects of 

telomere shortening in a clonal cell population. It examines the relative likelihood and 

frequency of the order of acquisition of the two crucial mutations in carcinogenesis, 

telomerase activation and p53 inactivation, as a function of key biological parameters. We 

also present results on the probability that the first double mutant originates in a cell with 

genome instability caused by telomere dysfunction. This probability is particularly important 

because cells that undergo telomere-induced genome instability typically acquire a large 

number of genome abnormalities associated with cancer [7], which suggests that an 

evolutionary pathway that includes transient telomere deficiency can facilitate malignant 

progression [3]. To implement the model we used the hybrid stochastic-deterministic 

algorithm. We also discuss a measure for the accuracy of the hybrid approximation, and 

compare algorithmic performance to a fully stochastic implementation of the model.

Telomeres and telomere crisis

Telomeres are repetitive sequences of DNA found at the ends of linear chromosomes. They 

play a protective role by hiding the chromosome ends from the DNA damage response 

machinery. In cells that lack telomere maintenance pathways telomere length shortens with 

each cell division. If cell cycle checkpoints are intact, critically short telomeres halt cell 

proliferation, inducing either a terminal state of arrest called cellular senescence, or 

apoptosis [7]. Thus, normal cells that lack telomere maintenance pathways are only capable 

of a limited number of divisions, a phenomenon known as Hayflick’s limit [8]. Telomerase 

is a ribonucleoprotein enzyme that extends telomere length. It is composed of a catalytic 

component that includes the protein TERT, and the RNA component TERC. Cells that 

express telomerase at sufficient levels offset the telomere shortening that occurs during cell 

division, which allows them to bypass replicative limits and divide indefinitely [3]. Since 

most mutations occur during cell division, replicative limits protect against cancer, by 

limiting the sequential accumulation of mutations and the clonal expansion of cells.

Failure of cells with critically short telomeres to undergo senescence can result in telomere 

crisis. During crisis continued telomere shortening leads to telomere dysfunction increasing 

the chance of non-homologous end joining (NHEJ) and the fusion of one dysfunctional 
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telomere to another. Cells with fused telomeres become dicentric, which leads to breakage–

fusion–bridge cycles, and high levels of genome instability and cell death [3]. Genome 

instability in cells undergoing crisis can give rise to chromosome gains and losses, gene 

amplifications and deletions, and non-reciprocal translocations amongst other types of 

genomic alterations. The rare cells that escapes crisis, usually through telomerase activation, 

typically harbor a large number of genomic abnormalities associated with cancer [7]. It has 

thus been suggested that the passage and emergence from crisis can be an important 

contributor to tumor development in some cancers [9].

In this article we use mathematical models to study the emergence and population dynamics 

of cells with two types of mutations: loss of p53 function and telomerase activation. 

Inactivation of p53 is a frequent event in tumorigenesis [10]. And in particular, inactivation 

of the p53 pathway is necessary to bypass telomere-induced senescence [11]. In the paper 

we focus on the first emergence of a double mutant and in the order of acquisition of the two 

mutations. We model the effects of telomere crisis by assuming an elevated death rate for 

unstable (in crisis) cells. The order of mutations is important, because cells that undergo 

crisis can acquire a number of important genomic changes, which occur during the period of 

genome instability caused by telomere dysfunction.

Our model has a direct application to the important TERC−/− mouse model. Mouse cells 

have very long telomeres and express telomerase promiscuously; as a consequence telomere 

shortening is not a barrier to tumor progression in mice [12]. To test the function of 

telomerase in tissue biology a telomerase-knockout mouse model was developed, by 

breeding mice that do not express TERC (the RNA component of telomerase). Continuous 

breeding of TERC−/− mice over successive generations led to the progressive shortening of 

telomeres [13]. A series of studies were then conducted in late generation TERC−/− mice, in 

which a gene (Ink4a/Arf) encoding for two distinct tumor suppressor proteins was deleted. 

Mice null for this gene develop sarcomas and lymphomas with short latency; TERC−/− mice 

however, had reduced tumor incidence and increased latency, demonstrating that telomere 

shortening and lack of telomerase expression inhibits tumorigenesis in late generation TERC
−/− mice [14, 15].

Critically short mouse telomeres induce senescence by activating p53; and the loss of p53 

function in mice is sufficient to bypass senescence [16]. Studies of TERC−/− p53+/− mutant 

mice also revealed that the p53+/− phenotype is sufficient to abrogate the normal growth 

arrest that occurs in response to short telomeres [17]. Neoplastic lesions in these mice had a 

large number of genomic aberrations consistent with telomere dysfunction and the 

breakage–fusion–bridge cycles that occur during crisis.

Our model also has applications to human cells that lack p16 function. In humans, stem 

cells, germ cells, and the vast majority of cancer cells (∼ 90%) express telomerase, whereas 

other cell types do not [18]. The critical component of telomerase that is missing in most 

human cells is the catalytic subunit TERT. Unlike murine cells, human cells can trigger 

senescence by activating the p53 or the p16/RB pathways [11]. Although there is also 

evidence that suggests that p16-induced senescence is not the direct consequence of 

telomere shortening [19]. Regardless, cells lacking p16 function may not be uncommon in 
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vivo in humans, since epigenetic silencing of the p16 gene is commonly found in 

histologically normal human mammary epithelial cells (HMECs) [20]. Moreover, cell 

culture studies of HMECs repeatedly show that following the spontaneous silencing of p16, 

the rare cells that are able to bypass the p53 checkpoint undergo extended proliferation and 

eventually enter crisis [21, 22].

Model description

We consider four types of cells, which for notation purposes we call X, Y, Z, and W, see 

Figure 1A. At the base of the model we have X cells, which are telomerase negative (here 

noted as tmase–). Telomerase null cells correspond to TERC−/− cells in the context of the 

mouse model previously described, or TERT negative cells in the context of human somatic 

cells. X cells have two functioning p53 alleles (p53+/+). These are proliferating cells at early 

possibly pre-neoplastic stages of tumor development. This characterization is consistent with 

the understanding that in certain tumors telomere crisis is a very early event. In breast cancer 

for example, telomere crisis is believed to occur during progression from usual ductal 

hyperplasia (UDH) to ductal carcinoma in situ (DCIS) [9]. Being telomerase negative, X 
cells can divide only a limited number of times. To model replicative limits we assume that 

each cell has a replication capacity ρ ≥ 0. When a cell with replication capacity ρ > 0 

divides, it produces two daughter cells with replication capacities ρ−1. Cells with replication 

capacity ρ = 0 become senescent and stop dividing (Figure 1B). The maximum replication 

capacity in the model is denoted by ρm.

Y cells are telomerase positive (tmase+) and p53+/+. Telomerase expression allows them to 

escape replicative limits, making them capable of dividing an unlimited number of times. In 

the model, a Y cell arises from a point mutation in an X cell. Recently, activating somatic 

point mutations in the core promoter region of telomerase have been identified in multiple 

cancer types [23, 24, 25, 26], with two mutations, C228T and C250T, accounting for 98% of 

the alterations [25]. If µ is the point mutation rate per base per generation, the probability of 

acquiring at least one of n point mutations during cell division is ≈ nµ. Hence, considering 

the approximate point mutation rate µ = 4.6 × 10−10 [27], in the model we set the rate of 

telomerase activation per generation to µ2 = 10−9.

Z cells are p53+/− and telomerase negative. In mice, single-copy loss of p53 is sufficient to 

affect the cell’s ability to undergo senescence in response to critically short telomeres 17]. 

Direct confirmation that these same dynamics occur in humans is currently missing. 

However, there is strong evidence that the human p53 gene is haplo-insufficient in a wide 

variety of contexts [28]. Furthermore, 80% of the most common p53 mutants have been 

found to have the capacity to exert a dominant-negative effect over wild-type p53 [10]. 

Hence, in the model we assume that the p53+/− phenotype allows cells to extend their 

replication capacity by ρe cell divisions beyond the point at which senescence occurs in 

normal cells. We call the parameter ρe the replication capacity extension. Early experiments, 

based onSV40-induced disruption of p53, suggest that the replication capacity extension is 

in the order of 20 PD [29], with a range of 20 to 30 PD being suggested [30]. The precise 

value of ρe however, is likely to vary in vivo; we thus treat it as a variable, and explore the 

effects of varying ρe on the system. In the model, Z cells arise from X cells with a rate per 
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cell generation µ1 = 10−7 (a common estimate for the rate per cell division of inactivating 

one copy of a tumor suppressor gene [31]).

W cells arise from Z cells that keep dividing past their extended replication capacity. As a 

consequence their telomeres continue to shorten, up to the point where they become 

dysfunctional, resulting in genome instability. Cells at this stage enter crisis, a phase 

characterized by non-homologous end joining, breakage–fusion–bridge cycles, and 

widespread cell death [3]. These dynamics are considered in the model by including a 

separate death rate, D, for W cells.

Breast and colorectal cancer studies suggest that telomere crisis is an early event [9, 32]. In 

colorectal cancer, there is evidence of telomere dysfunction during the adenoma–early 

carcinoma transition [32]. Moreover, in a study of colorectal adenomas with average size 2 

mm (range 1–3 mm) 55% of adenomas showed evidence of chromosomal instability 

consistent with telomere dysfunction [33]. In breast cancer, crisis is believed to occur during 

the UDH to DCIS transition [9], and according to a standard diagnostic criterium, ductal 

hyperplasias should be less than 2 mm in diameter [34]. Avascular tumors can grow up to 2–

3 mm in diameter [35]. Hence, these data suggest that telomere crisis might occur during the 

avascular phase of tumor development. Based on these observations we limit our study to 

events occurring during avascular growth.

If we use a 2–3 mm diameter for avascular tumors and the volume measurements for tumor 

cells reported in [36], we find that the maximum cell population of an avascular tumor 

ranges from 3.6 × 106 – 5.3 × 107 cells. In the article we choose the intermediate value, N = 

107, for the maximum cell population size. To incorporate this limit in population size, we 

make the cell division rate dependent on cell density, controlled by the variable f in equation 

[1]. In equations [1–5], we define K = 107/(1 −d/r), where r and d are respectively the cell 

division and cell death rate parameters. This definition of K ensures that the maximum 

population size is equal to 107, irrespective of the magnitudes of r and d; it is thus consistent 

with our understanding that maximum population size in avascular tumors is limited by 

factors such as nutrient accessibility, and not by the relative magnitudes of the cell division 

and cell death rates. Finally, we note that r, d, and D , have units of 1/time. We can then 

write the model in arbitrary units of time by setting r = 1 in the simulations and expressing 

the values of d and D in relation to this value of r (we can think of this as expressing the 

model in units of the cell division rate at low densities ≈ r). Clearly the model can be 

parametrized for specific tissues by using tissue-specific values for r,d, and D.

Double mutants can be generated through a p53+/− mutation in a Y cell (with rate µ1) or 

through a tmase+ mutation in a Z or W cell (with rate µ2). In the this article we are interested 

in the first emergence of a double mutant, for this reason when the first double mutation 

occurs the simulations stop. The ordinary differential equation representation of the model, 

including only single mutations (either tmase+ or p53+/−) is given by equations [1–5]:
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f = 1 − tot /K , tot = Y + W +
j 0

ρ

X j +
j 0

ρ ρ

Z j (1)

Ẋρm
= −rXρm

f − dXρm

Ẋρm − 1 = 2rXρm
f − rXρm − 1 f − dXρm − 1 − r μ1 + μ2 Xρm

f

Ẋρm − 2 = 2rXρm − 1 f − rXρm − 2 f − dXρm − 2 − r μ1 + μ2 Xρm − 1 f

  ⋮
Ẋ0 = 2rX1 f − dX0 − r μ1 + μ2 X1 f

(2)

Ẏ = rY f − dY + μ2
j 1

ρ

rX j f (3)

Żρm + ρe

Żρm + ρe − 1

Żρe

Żρe − 1

Ż0

=
=
⋮
=
=
⋮
=

−rZρm + ρe
f − dZρm + ρe

2rZρm + ρe
f − rZρm + ρe − 1 f − dZρm + ρe − 1 + μ1rXρm

f

2rZρe + 1 f − rZρe
f − dZρe

+ μ1rX1 f

2rZρe
f − rZρe − 1 f − dZρe − 1

2rZ1 f − rZ0 f − dZ0

(4)

Ẇ = rW f − DW + 2rZ0 f (5)

In Eqs. [1–5] we assume that both offspring of a dividing cell cannot mutate simultaneously, 

since the probability of such an event occurring is negligible [31].

Hybrid method

Studying evolutionary processes computationally requires the ability to simulate the 

dynamics of large and small populations simultaneously. Mutations are stochastic and rare, 

and at least transiently, very small mutant populations can coexist with a large number of 

wild type individuals. In such settings, tracking the stochastic fluctuations of the small 

mutant populations can be essential to determine the final outcomes of the system. A 
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problem then arises trying to simulate a multi-scale system stochastically, given that in 

classical fully stochastic algorithms, such as Gillespie’s method, as the population size 

increases the average time step decreases [6]. Recently, and especially in the field of 

Physical Chemistry, novel computational approaches have been developed (e.g. the Next 

Reaction Method and Tau-Leaping methods [37, 38]), which try to address these difficulties. 

There is also a push in the development of hybrid stochastic-deterministic approaches, such 

as in the hybrid discrete-continuous model of CML in [39]. More generalized stochastic-

deterministic algorithms can be found in [40, 41, 42]. These ideas however, have not 

significantly penetrated the studies of population dynamics and evolution, presumably 

because they can rely on theoretical concepts (e.g.Langevin’s equation), which are not very 

common in these fields. Here, we present an application of these ideas to the field of 

evolution, by outlining a hybrid stochastic-deterministic algorithm for our model.

Intuitively, the implementation of the algorithm relies on two simple ideas: (i) mutations 

should be modeled stochastically; and (ii) if, a cell population is sufficiently large, an ODE 

representation can provide a good approximation of most stochastic trajectories of the 

population. With this idea in mind we begin with the system described in equations [1–5], 

which from now on we call the full system. We can write this system as a single vector 

equation dV/dt = F(V), where V is a vector that contains all the different cell types. Let M > 

0 be a given threshold. We can classify the X population as small if ∑ Xi < m, or as large 

otherwise, and use the same criteria to classify the other cell types (W, Y and Z). At any 

given time, let Vl and Vs be vectors containing the large and small cell populations. We can 

then define the reduced system dV l/dt = Fl V l  derived from the full system by: (1) Retaining 

only the equations for the large cell populations Vl; (2) keeping constant the contributions of 

the small populations Vs; and (3) eliminating the mutation terms from the equations. If the 

Vl are sufficiently large, (t, t + τ), where the deterministic solution of the reduced ODE will 

approximate the trajectories of the large populations in a stochastic implementation of the 

full system.

The events in the model are cell division, mutation, and death. In Gillespie’s method, every 

event ν has a given propensity aν (V). The time at which the next event ν will occur is 

exponentially distributed with intensity aν (V). In the hybrid approach, cell division and 

death of large populations are modeled deterministically (using the reduced system), while 

cell division and death of small populations and all mutations are modeled stochastically, 

with propensities aν (Vs, Vl(t)) that now vary continuously with time. Hence, the next 

occurrence of a stochastic event ν is a non-homogeneous Poisson process, with a time 

varying intensity aν (Vs, Vl(t)). In this case, if the system is updated up to a time t and rν is a 

uniform random number in [0, 1), we can set the time for the next ν event as the solution, 

τν, to the equation [41]:

∫
t

t + τv
av Vs, V l s ds + log rv = 0 (6)
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It is well known that the stochastic formulation reduces to the deterministic formulation in 

the thermodynamic limit [43]. However, one important practical question is how large 

should the threshold M be to provide a satisfactory approximation in the implementation of 

the hybrid algorithm. In this article, we use a numerical criterion to determine this value. 

First, to simplify the notation let G(t) stand for the total number of cells of any one of the 

cell types as a function of time (i.e. let G(t) be one of the following: ∑ Xi t , Y t , ∑Zi t , or 

W (t)). We can consider the function E[G(M)(t)] equal to the expected number of G type cells 

using the hybrid method with the threshold M. The L2 norm (here denoted as || · ||) is a 

measure for the distance between two functions. We can then define the normalized error 

ϵ M1, M2 = E G
M1 t − E G

M2 t / E G
M2 t , which provides a measure of the 

difference in the expected number of G cells using the two thresholds, M1 and M2, during a 

specific time interval I. To determine an acceptable threshold M, we define a tolerance tol 

and require that ϵ(M, 2M) < tol. In the result section we discuss the accuracy of the 

approximation for the telomere model and improvements in the computational efficiency of 

the hybrid algorithm compared to a fully stochastic implementation (Figure 4 and Table 1).

Results

To study the effects of replicative limits and the emergence of double mutants (p53+/− and 

tmase+), we implement the model using a hybrid stochastic-deterministic algorithm detailed 

in the previous section of the paper.

Figures 2A–C plot simulations showing the three possible outcomes of the model. All ρm= 

50 imulations start with a single X type cell (tmase–, p53+/+) with replication capacity ρm = 

50.(a commonly used value for human somatic cells [8]). Figure 2A depicts a simulation 

where a double mutation did not occur. In this panel the X population first rises to a value 

close the maximum population (N = 107), as the replication capacity of X cells is gradually 

exhausted X cells stop dividing, but continue to die, which leads to their eventual extinction. 

During the simulation p53+/− mutations take place, this allows Z cells to extend their 

replication capacity by ρe divisions. When Z cells exhaust their extended replication 

capacity, they become unstable and acquire the W cell phenotype, which is characterized by 

a high death rate D. Without the acquisition of a tmase+ mutation both the Z and W cell 

populations eventually go extinct. During this simulation tmase+ mutants do emerge (red 

line); however, because they do so at a time when most X cells have not exhausted their 

replication capacity they initially have no fitness advantage and in this simulation go 

stochastically extinct. Figure 2B depicts a simulation where a double mutant emerges from 

the Y cell population (tmase+ followed by p53+/−). The emergence of the double mutant is 

indicated by the red dot. Figure 2C plots a simulation where a double mutant emerges from 

the W cell population (p53+/− unstable followed by tmase+; purple dot).

Figure 2D plots the probability that the first double mutant emerges from the Y cell 

population (tmase+ first), calculated from those simulations where a double mutation 

occurred. The figure includes plots for two different values of the death rate, D, of W cells 

(p53+/−unstable), and two different values for the replication capacity extension, ρe, of Z 
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cells. In the model the death rate for cells in crisis (W ) must be greater than one, otherwise 

cells in crisis can go on dividing indefinitely, with ever shortening telomeres and increasing 

levels of chromosome instability (a scenario which is not biologically feasible). For this 

reason, we simulated two values for the death rate of W cells: D = 1.05, which represents a 

case where the death and birth rate are nearly balanced; and D = 2 (twice the size of the birth 

rate parameter r). Figure 2D also demonstrates that the size of the replication capacity 

extension, ρe, is crucial in determining the likelihood of the sequence of mutations (tmase+ 

followed by p53+/− vs. p53+/− followed by tmase+). Indeed, as shown in the simulations, a 

difference of only 10 cell division (ρe = 20 vs. ρe = 30) can dramatically alter the likelihood 

of the sequence of mutations. There is limited data for the value of ρe, although a range of 

20–30 PD has been suggested [29, 30]. The actual value of ρe however, is in an all likelihood 

cell type dependent, and influenced by multiple factors, such as the level of telomere 

restriction factor two (TRF2) expression [3]. Note that for D = 1.05 (red lines), as d 

increases, there is a switch from p53+/− followed by tmase+ as the most likely sequence of 

mutations giving origin to the first double mutant, to tmase+ followed by p53+/−. This 

behavior is explained by the fact that lower values of d allow for more Z cell divisions, 

which also result in higher W cell populations. The higher the number of Z and W cells, the 

more likely that the first double mutant originates in a p53+/− cell.

Figure 2E plots the probability of a double mutation occurring for different values of ρe and 

D. We note that the outcomes are sensitive to the value of ρe (red vs. blue lines). One 

interesting result is that when there is no cell death of stable cells (d = 0), the probability of a 

double mutation occurring is basically zero. The reason why this occurs is that tmase+ 

mutations are only advantageous against a background of cells that senesce and die. 

Otherwise Y cells have a neutral fitness and are thus likely to go stochastically extinct. In a 

setting where X cells die, Y mutants might emerge and linger on until the time when they 

become advantageous, but without X cell death, Y cells never gain an advantage. Here and 

in all figures, we performed simulations up to a maximum time T = 1000 (relative to a 

division rate parameter r = 1). This value of T was sufficient for every simulation with d > 0 

to result in either complete population extinction, or the emergence of a double mutant. This 

would not have been the case however, if we simulated very small positive values of d. To 

understand why, we note that if the simulated time was unbounded (T = ∞), the probability 

of a second mutation occurring would be monotonically decreasing for d > 0. Indeed, as d 

gets smaller, the average number of X cell divisions increases, and thus so does the 

probability of a double mutant emerging. However, as d decreases, the expected time of 

arrival of the first double mutant goes up (Figure 2F). In fact, by the arguments in the 

discussion of Figure 2F, it is straightforward to see that as d goes to zero, the expected 

arrival time of the first double mutant goes to infinity. Hence, for any finite time interval [0, 

T ], the probability of a second mutation emerging will not be monotonic for positive d, but 

instead will have the same basic shape as the plot in Figure 2E.

Figure 2F plots the time when a double mutation first emerges. In the simulations the mean 

arrival time of the first double mutant is not very sensitive to either the replication capacity 

extension, ρe, or the death rate of unstable cells, D. The reason why is that mutants are not 

selected for until X cells start becoming senescent. As soon as the number of X cells starts 

declining (the time of which is unaffected by ρe and D), pre-existing mutant clones gain an 
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advantage, which can lead to the arrival of the first double mutant. In the simulations as d > 

0 increases, there are on average fewer cell divisions, which means that the probability of a 

double mutation occurring goes down (Figure 2E). Higher d values also cause X cells to 

become senescent sooner, which on average decreases the time at which mutants start to 

become advantageous. For this reason, even if higher values of d decrease the probability of 

a double mutation occurring, in those instances where a double mutation does happen, larger 

d values reduce the expected arrival time of the first double mutant (Figure 2F).

Figures 3A and 3B plot the probability that the first double mutant emerges from the 

unstable cell population (W), calculated from those instances where a double mutation 

occurred. As expected, decreasing the death rate of unstable cells increases the probability 

that the first double mutation originates in a W cell (dashed vs. solid lines). Also, increasing 

ρe by just 10 PD, from ρe = 20 to ρe = 30, significantly raises the likelihood that the first 

double mutant originates from an unstable cell. The dependence on d can be more nuanced. 

This is best exemplified by the curve corresponding to ρe = 30 and D = 1.05 (Figure 3B, 

solid line). While Figure 2D shows that the probability that the first double mutant originates 

in a p53+/− cell goes down as d increases, it is clear from Figure 3 that the likelihood that the 

the first double mutant emerges from the W cell population can be a non-monotonic function 

of d. The reason behind this behavior is that smaller values of d result in more Z and W cell 

divisions, making the emergence of the first double mutant from a p53+/− cell more likely; 

however, when the value of d is sufficiently small, the number of Z cells divisions can be 

large enough, so that the first double mutant can more often originate in Z cells directly, i.e., 

before p53+/− cells enter crisis.

Figures 3C and 3D present histograms depicting the distribution for the time of the first 

emergence of a double mutant, originating from two different sequence of events: tmase+ 

followed by p53+/−, or p53+/− followed tmase+. The figure underscores the importance of 

the parameter ρe in determining the likelihood of the sequence of events. One interesting 

result is that, independent of the value of ρe, the expected time for the emergence of the first 

double mutant is smaller when the second mutation originates in the Y cell population. In 

other words, the average time of emergence of the first double mutation is faster when the 

first mutation is tmase+.

Figure 4A plots the expected number of cells using the stochastic-deterministic thresholds M 
= 2000 (circles) and M = 4000 (solid lines), for simulations where double mutations did not 

occur –for all cell types depicted the normalized error ϵ(M, 2M) < 0.05 over the time 

interval I = [0, 1000]. Figure 4B plots the distribution of the times when the first double 

mutant emerges, using a parameter set that makes the generation of a large number of fully 

stochastic independent trials computationally reasonable. This figure compares the results 

from a fully stochastic simulation algorithm with the results from an implementation of the 

hybrid method. Table 1 shows the average computational run time per trial for different max 

population sizes using the fully stochastic and the hybrid algorithm. For a maximum 

population size of N = 107 the hybrid algorithm is more than 2,200 times faster.
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Discussion

Recently we presented a mathematical model with the aim of quantifying the effectiveness 

of replicative limits as a tumor suppressor pathway [44]. We also developed a Luria-

Delbruck mutational framework to estimate the probability of escaping replicative limits 

through a mutation that activates telomerase [45]. These models assumed that the only 

constraint to cell proliferation was set by replicative limits. Here, we extend these results by 

studying the population dynamics in a setting where population size is also constrained by a 

fixed carrying capacity. We also consider the emergence of two of the most frequent events 

in tumorigenesis: Loss of p53 function and telomerase activation. The model has direct 

applications to an important telomerase negative mouse model and to p16 deficient human 

cells. Our work adds to growing body of literature that investigates mathematically the 

effects of replicative limits in cancer at the scale of cell populations (see e.g. [46, 47, 48]).

To implement our model we used a hybrid stochastic-deterministic algorithm. The algorithm 

simultaneously models large populations deterministically, and small populations and 

mutations stochastically. It provides good agreement with fully stochastic implementations 

of the model, and very significant improvements in terms of speed (up to several orders of 

magnitude faster). These improvements in performance allows us to use biologically 

relevant population sizes and mutation rates, circumventing some of the traditional 

limitations of fully stochastic methods. The development of hybrid algorithms has received 

considerable attention in physical chemistry applications and related fields. These ideas 

however, have yet to find widespread use in the field of evolution. The hybrid methodology 

outlined in this paper could be easily adapted to model many aspects of tumor evolution, and 

more broadly, it can also be applied to a wide range of evolutionary models.

In this article we examined the relative frequency of the order of acquisition of the two 

mutations as a function of key biological parameters. We found that for any finite time 

interval, the probability of a double mutation occurring is a non-monotonic function of the 

death rate of stable cells (d). However, if we exclude very small values of d, then increasing 

the death rate of stable cells decreases the probability that a double mutation occurs. Our 

simulations also revealed that higher death rates of stable cells increase the likelihood that 

the first double mutant originates in a telomerase positive cell. The probability that the first 

double mutant emerges from an unstable cell has a more complex dependence on d. Indeed, 

depending on the sizes of the replication capacity extension of p53 mutants and the death 

rate of unstable cells, the probability that the first double mutation originates in an unstable 

cell can peak at intermediate values of d. We also found that the size of the replication 

capacity extension of p53 mutants is crucial in determining the probability of a double 

mutant occurring and the likelihood of the sequence of mutations. In particular, we found 

that a difference of just ten population doublings in the replication capacity extension can 

significantly impact the behavior of the system. Interestingly, the expected arrival time of the 

first double mutant is only weakly dependent on the replication capacity extension and the 

death rate of unstable cells. Instead it is most influenced by the time at which the telomerase 

negative p53 wild-type cell population starts to senesce, since only then do pre-existing 

mutants become advantageous.
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Compared to sarcomas and hematopoietic malignancies, epithelial cancers require a large 

number of mutations and genome rearrangements to achieve a malignant state [49]. It has 

thus been suggested that a mutator phenotype must take place to account for the 

constellation of genome abnormalities found in many malignant carcinomas. In this respect, 

telomere-based crisis has been identified as a key mutator mechanism driving epithelial 

carcinogenesis in cells that initially lack telomerase [3]. Here we presented a mathematical 

model that takes into account replicative limits and examines the dynamics of two mutations 

central to the entrance and escape from crisis. One important extension to the model will be 

the inclusion of mutational events, such as translocations and loss of heterozygosity (LOH), 

which occur at increased rates during crisis. In particular, this will require modeling the 

population dynamics and possible fitness differences between different types of double 

mutants. This analysis will be fundamental to understand quantitatively under which 

conditions telomere shortening shifts from being a powerful tumor suppressor pathway to a 

driving force behind carcinogenesis.
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Highlights

• A model of passage and emergence from telomere crisis in cancer is proposed

• Telomere shortening and mutations in telomerase and p53 influence tumor 

evolution

• P53 mutants’ death rates and replicative capacity determine the probability of 

crisis

• Hybrid algorithm supports realistic population sizes and mutation rates

• Hybrid methodology could be adapted to a wide range of evolutionary 

applications
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Figure 1. 
(A) Each cell has a replication capacity ρ ≥ 0. When a cell with replication capacity ρ > 0 

divides, it produces two daughter cells with replication capacities ρ −1. Cells with 

replication capacity ρ = 0 become senescent and stop dividing. (B) Different pathways by 

which cells can acquire two cancer associated mutations: Activation of telomerase (tmase+) 

and inactivation of one p53 allele (p53+/−). The mutation rate for acquiring the p53+/− 

phenotype is set to µ1 = 10−7 (loss of one tumor suppressor allele). The mutation rate to 

activate telomerase is set to µ2 = 10−9 (point mutation). p53+/− cells have a defective DNA 

damage response, which allows them to undergo extra rounds of cell division beyond the 

normal replication capacity ρ. In p53+/− cells telomere length continues to decrease with 

each cell division, eventually leading to telomere crisis. Crisis is characterized by critically 

short telomeres causing chromosome breakage–fusion–bridge cycles and widespread cell 

death. Cells in crisis are referred in the diagram as p53+/− unstable cells. Telomerase 

activation allows cells to escape replication limits, making them capable of dividing an 

unlimited number of times.
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Figure 2. 
Times series of a simulation when: (A) a double mutation never occurs; (B) the first 

mutation emerges from Y cell population (tmase+ first); and (C), the first mutation emerges 

from the W cell population (p53+/− first). In each panel, the first emergence of a double 

mutation is indicated by s solid dot. In panels A–C, ρe = 20, d = 0.1, and, D = 1.05. (D) 

Probability that the first double mutant emerges through the pathway tmase+ first followed 

by p53+/−. Error bars indicate 95% confidence intervals. Blue and red colors correspond to 

different values of the replication capacity extension ρe, defined as the number of extra 

division that p53+/− cells can undergo before entering crisis. Solid and dashed lines indicate 

different values D for the cell death of unstable cells (compared to a dimensionless division 

rate parameter r = 1). The maximum replication capacity of of X cells (tmase– and p53+/+) is 

set to ρm = 50. (E) Probability of the emergence of a double mutant. (F) Expected time of 
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the first emergence of a double mutant. Results based on 105 − 106 simulations per data 

point.

Rodriguez-Brenes et al. Page 19

J Theor Biol. Author manuscript; available in PMC 2020 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(A) and (B): Probability that the first double mutant emerges from the population of unstable 

(W ) cells –conditioning over those instances where a double mutation occurred. Two 

different death rates of unstable cells are depicted, D = 1.05 (solid lines) and D = 2 (dashed 

lines). (C) and (D): Distribution of the arrival time of the first double mutant. The panels 

correspond to two different values of the replication capacity extension ρe, defined as the 

number of extra division that p53+/− cells can undergo before entering crisis. In (A) and (C) 

ρe = 20; in (B) and (D) ρe = 30. In all panels ρm = 50. In (C) and (D), d = 0.1 and D = 1.05.
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Figure 4. 
(A) Expected number of cells using two different thresholds, M, for the size that determines 

the stochastic to deterministic transition. Solid lines M = 2000; circles M = 4000. The panel 

corresponds to simulations where a double mutant did not emerge. Parameters: ρm = 50, ρe = 

20, d = 0.1, and D = 1.05. (B) Outcome comparison from the fully stochastic and hybrid 

algorithms. Distribution of the arrival time of the first double mutant for a parameter set that 

makes the generation of a large number of fully stochastic independent trials 

computationally reasonable. Blue: Results from fully stochastic simulations. Red: Results 

using the hybrid method. Parameters: K = 104, µ1 = 10−4, µ2 = 10−6, ρm = 30, ρe = 15, d = 

0.1, and D = 1.05.

Rodriguez-Brenes et al. Page 21

J Theor Biol. Author manuscript; available in PMC 2020 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rodriguez-Brenes et al. Page 22

Table I.

Execution time. Average execution time. Algorithms written in C. Simulations performed on a MacBook Pro 

with a 2.9 GHz CPU and 16 Gb memory running macOS Sierra.

 Max Population Size  Hybrid (s)  Fully Stochastic (s)

 10 000  0.10  0.76

 100 000  0.11  6.55

 1 000 000  0.12  58.47

 10 000 000  0.22  503.39
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