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Abstract

The cellular RNA pool in animals arises from two separate genomes stored in the nucleus and 

multiple mitochondria. Chemical methods to track nascent RNA synthesis are unable to 

distinguish between these two with stringency. Herein we report that spatially restricting 

bioorthogonal nucleoside biosynthesis enables, for the first time, selective metabolic labeling of 

the RNA transcribed in the mitochondria. We envision this approach could open the door for 

heretofore-impossible analyses of mitochondrial RNA. Beyond our results revealed herein, our 

approach provides a roadmap for researchers to begin to design strategies to examine biomolecules 

within subcellular compartments.

Graphical Abstract

Understanding the synthesis and lifetime of RNA molecules is key to elucidating how cells 

behave and control their biology1, 2 Recent approaches toward understanding the dynamics 

of transcription have relied on metabolic labeling of RNA.3–5 For example, alkynyl-6–8 and 

azido-containing9 modified nucleoside metabolic intermediates can be introduced into cells 
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and nascent RNA can be tracked through bioorthogonal chemical reactions. Both Cu(I)-

catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted alkyne-azide 

cycloaddition (SPAAC) can be utilized for imaging or biotinylation and streptavidin 

enrichment of labeled RNA.

RNAs are transcribed from two DNA repositories inside cells: the nucleus and the 

mitochondria. Both organelles have distinct genome sequences and thus can give rise to 

distinct RNA pools that perform diverse biological functions. A critical missing component 

in metabolic labeling of RNA (as well as other biomolecules) is the ability to distinguish 

with high stringency between RNA that arises from the two genomes. This represents a 

major challenge to overcome and may present a unique opportunity to expand the 

capabilities of chemical methods to study RNA molecules in living systems.

Mitochondria are the powerhouses of the cell and are vitally important for the normal 

physiology of every cell type. Changes in their function have been linked to many cancer 

types and neurological disorders.10, 11 Characterizing the molecular components of the 

mitochondria is critical for understanding its function. For mitochondrial analysis the 

traditional method is fractionation and enrichment.12–17 These approaches are extremely 

laborious and suffer from a very high false-positive rate.18 This is mostly attributed to the 

reportedly high RNA content on the outer membrane of the mitochondria.12, 13, 19, 20 

Furthermore, fractionation methods suffer from the inability to track nascent RNA synthesis, 

due to mitochondria still being viable during centrifugation protocols.21–23 The canonical 

animal mitochondrial transcriptome consists of 13 mRNAs, 22 tRNAs, and 2 rRNAs, whose 

expression can be profiled by conventional RT-PCR;24 however, recent reports have 

suggested that the types of RNAs originating from the mitochondrial genome are much more 

complex than previously thought, surprisingly comprising miRNAs, antisense RNAs, and 

long non-coding RNAs.12, 13, 25–27 Moving beyond such a narrow view of mitochondrial 

RNA and identifying novel RNAs that arise from the mitochondrial genome is a major 

challenge in the field.12, 13 The lack of tools to stringently purify and identify new RNAs 

solely transcribed from the mitochondrial genome (while removing labeling of RNAs from 

the nuclear genome) prevents such analyses and discovery.

Within this Letter we report a novel approach toward addressing the many weaknesses 

described above. We demonstrate that spatially-restricting modified nucleotide biosynthesis 

within mitochondria, permits selective metabolic labeling of RNA that arises from the 

mitochondrial transcriptome (Figure 1). We also show that this approach can be used to 

specifically track mitochondrial RNA synthesis.

We recently demonstrated that nascent RNA synthesis can be tracked using 5-ethynyluracil 

(Inert Intermediate) with the enzyme uracil phosphoribosyltranferase (UPRT).28 UPRT 

converts uracil and phosphoribosyl pyrophosphate (PRPP) to 5’-phosphoro-5-ethynyluridine 

(Active Intermediate, 5’P-5EU), which is eventually incorporated into nascent RNA. Our 

original hypothesis was that we could spatially restrict UPRT to enable nascent RNA 

labeling within the mitochondria.
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Consistent with this hypothesis PRPP has been observed within chloroplasts, which are plant 

organelles with their own genomes akin to mitochondria.29 Mitochondria are also known to 

have nucleoside kinase enzymes localized within their inner matrix, which would permit the 

eventual biosynthesis of a modified nucleoside triphosphate.30, 31 As such, we rationalized 

that localizing UPRT in the mitochondria may permit specific synthesis of 5’P-5EU (Figure 

2, A) and eventual RNA labeling.

To localize UPRT into the mitochondria we constructed a Mito-GFP-UPRT fusion construct 

(Figure 2, B). Cellular imaging of the fusion demonstrated precise localization into the 

mitochondria, with strong overlap with a mitochondrial localized red fluorescent protein 

(Figure 2, C) and mitotracker fluorescent dye, which localizes into the mitochondrial matrix 

(Figure S1).

To demonstrate that the Mito-GFP-UPRT fusion converts 5EU to 5’P-5EU, with eventual 

incorporation into RNA, we performed a time-course dot blot analysis. 5EU was fed to cell 

media and RNA incorporation was assayed using dot blot analysis as shown in Figure 3, A 

and Figure S2. Comparison to whole-cell UPRT, there was markedly less RNA signal, which 

may be attributed to either weak activity or the extremely low percentage of total RNA that 

is comprised of mitochondrial RNA. Normal fractionation of mitochondria (inner matrix, 

outer membrane, and cytosolic RNA) demonstrated that the majority of signal is in 

mitochondrial-enriched RNA, with undetectable labeling of cytoplasmic RNA (Figure S3). 

Furthermore, to test for potential toxicity, we isolated mitochondria and performed a 

Cytochrome c oxidase assay, which reports on the activity and concentration of Cytochrome 

c at the mitochondrial membrane. As shown in Figure S4, there was no observed difference 

in Cytochrome c activity in the presence of 5EU or not, even after 8 hours of 5EU 

incubation. Overall, these data suggest that our approach can be utilized to metabolically 

label RNA in the mitochondrial matrix.

To identify RNA synthesis within the mitochondria with higher stringency we used confocal 

imaging. After treatment with 5EU, cells were fixed, permeabilized, and stringently washed. 

RNA was imaged using CuAAC-mediated reaction to append Cy5-azide at 5’ethynyl uracil 

residues. As shown in Figure 3, B, cells expressing Mito-GFP-UPRT had RNA signal (Cy5-

N3) that overlapped with Mito-GFP-UPRT localization. In contrast, cells expressing 

spatially-unrestricted UPRT had the large majority of their signal in the nucleus, which is 

consistent with our previous results with significant metabolic labeling of rRNA within the 

nucleolus (Figure 3, C).32 RNase treatment of labeled Mito-GFP-UPRT cells or Mito-GFP-

UPRT cells lacking 5EU showed loss of signal in mitochondria, further demonstrating that 

CuAAC-mediated staining is specific for RNA (Figure S5).

To explore the selectivity of RNA incorporation we assayed RNA enrichment by RT-PCR. 

We chose five RNAs to compare: (1) GAPDH mRNA, which is one of the most highly 

abundant RNAs transcribed from the nuclear genome, (2) 18S rRNA a highly abundant RNA 

from the cytoplasmic ribosome, (3) U6 snRNA, an abundant splicing RNA that is 

transcribed in the nucleus, (4) 12S mitochondrial rRNA, and (5) MT-CO2 mRNA 

(cytochrome-c oxidase 2), mitochondrial mRNA.
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Briefly, Mito-GFP-UPRT-containing cells were incubated with 5EU for 5 hours, and total 

RNA isolated. CuAAC-mediated reaction appended biotin to total RNA. Biotin-appended 

RNA was enriched and profiled by RT-PCR (Supplementary Information). As shown in 

Figure 4, A, enrichment RT-PCR clearly demonstrates enrichment of all assayed RNAs in 

cells expressing UPRT. RNAs transcribed from the mitochondrial genome are selectively 

enriched and those from the nuclear genome are not in Mito-GFP-UPRT expressing cells. 

This result is especially impressive because the raw copy numbers of the RNAs coming from 

the nuclear genome (such as 18S rRNA) are much higher than those of mitochondria, and as 

such any incorporation of 5EU into these RNAs would be robust. These results nicely 

demonstrate that mitochondrial RNA is selectively labeled over RNA transcribed from the 

nuclear genome.

Nascent tracking of RNA synthesis is an important experimental approach toward 

characterizing RNA expression dynamics. Although there has been considerable analysis of 

nuclear RNA expression through pulse-labeling of nucleoside analogs, the approach has yet 

to be demonstrated in an approach only labeling mitochondrial RNA. We sought to test if 

our strategy could be used to track RNA synthesis for mitochondrial RNA. For this, we 

tracked several mitochondrial RNAs: MT-CO1/MT-CO2 mRNAs (cytochrome c oxidase 

subunit I & II enzymes, also known as COX1 and COX2), CYB mRNA (cytochrome B), 

ND2/ND3/ND5 mRNAs (NADH dehydrogenase subunits 2, 3 and 5), 33, 34 and along with 

nuclear transcribed RNA such as GAPDH and U6. Mito-GFP-UPRT-containing cells were 

treated with 5EU and total RNA isolated at different time points. RNA was enriched and 

quantified using RT-qPCR. As shown in Figure 4, B, we were able to enrich and track the 

nascent transcription of the mitochondrial RNAs, but not RNAs from the nuclear genome. 

Overall, these results demonstrate the ability to stringently label mitochondrial RNA (and 

not nuclear RNA), they also show the power of our approach in being able to track nascent 

RNA synthesis and dynamics.

Herein we have developed a method for spatially-restricted tracking of RNA biosynthesis in 

cells, through the controlled localization of an enzyme controlling bioorthogonal nucleotide 

biosynthesis. We have demonstrated, through imaging, that our Mito-specific UPRT-

mediated analog and nascent RNA labeling with a bioorthogonal handle co-localize inside 

cells. Furthermore, we have demonstrated distinct populations of the controlled labeling of 

mitochondrial RNA, and undetectable labeling of RNA arising from the nuclear genome. 

This approach is well-positioned to enable controlled and high-stringency analysis of the 

dynamics of mitochondrial RNA synthesis, as demonstrated in Figure 4. This approach can 

be married with more unbiased analyses, such as RNA sequencing, to preferentially uncover 

novel RNA molecules produced from the mitochondrial genome. Furthermore, as the 

analogs and enzymes used herein have already been demonstrated to work in animals we 

anticipate our approach may also be used to study the dynamics of mitochondrial RNA 

expression in living animals,7 even perhaps in complex environments such as the central 

nervous system.35 Future efforts will be focused on extending these findings into complex 

cellular environments, in vivo.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Outline of mitochondria-specific metabolic labeling of RNA.
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Figure 2. Design and localization of a UPRT enzyme construct to mitochondria.
A. Schematic of proposed UPRT-mediated RNA synthesis in the mitochondria. B. Design of 

a mitochondria-targeted UPRT construct. C. Imaging of the mitochondria-targeted UPRT 

construct displays overlap with a Mito-RFP construct. Hoechst stains nuclear DNA.
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Figure 3. Mitochondria-targeted UPRT enables metabolic incorporation of 5EU into 
mitochondrial RNA.
A. Dot blot analysis of equal amount of RNA derived from Mito-GFP-UPRT and spatially-

unrestricted UPRT expressing cells in a time titration of 5EU treatment (left to right): 0, 0.5, 

1, 2, 3 and 5h. MB: methylene blue stain-served as loading control B. Imaging of Mito-GFP-

UPRT-transiently expressed cells and metabolically labeled RNA (Cy5-azide) show overlap 

in mitochondria. C. Imaging of spatially-unrestricted UPRT cells show RNA labeling in 

nucleolus, indicative of whole-cell RNA labeling. Hoechst stains nuclear DNA.
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Figure 4. Selectively labeled mitochondrial transcripts in Mito-GFP-UPRT expressing cells.
A. Enriched cDNA templates derived from RNA of spatially-unrestricted UPRT vs. Mito-

GFP-UPRT expressing cells were assayed by PCR with specific primer pairs for nuclear or 

mitochondrial transcripts (nc: negative control = DMSO; 5EU = 5’Ethynyl uracil). B 

Assessment of six mitochondrial and two nuclear transcripts (served as negative controls) 

from RNA of transiently transfected Mito-GFP-UPRT cells exposed to 5EU in a time course 

by SYBR Green RT-qPCR analysis (n = two technical duplicates)
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