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Speech is a critical form of human communication and is central to our daily lives. Yet, despite decades of study, an understanding of the
fundamental neural control of speech production remains incomplete. Current theories model speech production as a hierarchy from
sentences and phrases down to words, syllables, speech sounds (phonemes), and the actions of vocal tract articulators used to produce
speech sounds (articulatory gestures). Here, we investigate the cortical representation of articulatory gestures and phonemes in ventral
precentral and inferior frontal gyri in men and women. Our results indicate that ventral precentral cortex represents gestures to a greater
extent than phonemes, while inferior frontal cortex represents both gestures and phonemes. These findings suggest that speech produc-
tion shares a common cortical representation with that of other types of movement, such as arm and hand movements. This has
important implications both for our understanding of speech production and for the design of brain–machine interfaces to restore
communication to people who cannot speak.
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Introduction
Speech is composed of individual sounds, called segments or
(hereafter) phonemes (Bakovic, 2014), that are produced by co-
ordinated movements of the vocal tract (e.g., lips, tongue, velum,
and larynx). However, it is not certain exactly how these move-
ments are planned. For example, during speech planning, pho-

nemes are coarticulated—the vocal tract actions (constrictions or
releases), or articulatory gestures, that comprise a given phoneme
change based on neighboring phonemes in the uttered word or
phrase (Whalen, 1990). While the dynamic properties of these
gestures, which are similar to articulator kinematics, have been
extensively studied (Westbury et al., 1990; Nam et al., 2012; Boc-
quelet et al., 2016; Bouchard et al., 2016; Carey and McGettigan,
2017), there is no direct evidence of gestural representations in
the brain.

Recent models of speech production propose that articulatory
gestures combine to create acoustic outputs (phonemes and pho-
neme groupings such as syllables; Browman and Goldstein, 1992;
Guenther et al., 2006). Guenther et al. (2006) hypothesized that
ventral premotor cortex (PMv) and inferior frontal gyrus (IFG;
part of Broca’s area) preferentially represent (groupings of) pho-
nemes and that ventral motor cortex (M1v) preferentially repre-
sents gestures. This hypothesis is analogous to limb motor
control, in which premotor cortices preferentially encode reach
targets and M1 encodes reaching details (Hocherman and Wise,
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Significance Statement

Despite being studied for decades, the production of speech by the brain is not fully understood. In particular, the most elemental
parts of speech, speech sounds (phonemes) and the movements of vocal tract articulators used to produce these sounds (articu-
latory gestures), have both been hypothesized to be encoded in motor cortex. Using direct cortical recordings, we found evidence
that primary motor and premotor cortices represent gestures to a greater extent than phonemes. Inferior frontal cortex (part of
Broca’s area) appears to represent both gestures and phonemes. These findings suggest that speech production shares a similar
cortical organizational structure with the movement of other body parts.
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1991; Shen and Alexander, 1997; Hatsopoulos et al., 2004; Pesa-
ran et al., 2006). However, the hypothesized localizations of
speech motor control of the model were based on indirect evi-
dence from behavioral studies (Ballard et al., 2000), nonspeech
articulator movements (Penfield and Roberts, 1959; Fesl et al.,
2003), and fMRI studies of syllables (Riecker et al., 2000; Guen-
ther et al., 2006; Ghosh et al., 2008; Tourville et al., 2008). None of
the modalities used in these studies had a sufficient combination
of temporal and spatial resolution to provide definitive informa-
tion about where and how gestures and phonemes are encoded.

Electrocorticography (ECoG) has enabled the identification
of neural activity with high spatial and temporal resolution dur-
ing speech production (Kellis et al., 2010; Pei et al., 2011b;
Bouchard et al., 2013; Mugler et al., 2014b; Slutzky, 2018). High
gamma activity (70 –200 Hz) in ECoG from ventral precentral
gyrus (PCG; encompassing M1v and PMv) corroborated Pen-
field’s original somatotopic mappings of the articulators (Pen-
field and Boldrey, 1937) and approximately correlated with
phoneme production (Bouchard et al., 2013; Lotte et al., 2015;
Ramsey et al., 2018), as well as the manner and place of articula-
tion (Bouchard et al., 2013; Lotte et al., 2015). Mugler et al.
(2014b) demonstrated that single instances of phonemes can be
identified during word production using ECoG from PCG. How-
ever, the ability to decode phonemes from these areas was rather
limited, which suggests that phonemes may not optimally char-
acterize the representation of these cortical areas. Some evidence
exists that cortical activations producing phonemes differ de-
pending on the context of neighboring phonemes (Bouchard and
Chang, 2014; Mugler et al., 2014a). Moreover, incorporating
probabilistic information of neighboring phonemes improves
the ability to decode phonemes from PCG (Herff et al., 2015).
Therefore, these areas might demonstrate predominant repre-
sentation for gestures, not phonemes. However, no direct evi-
dence of gestural representation in the brain has yet been
demonstrated.

Here, we used ECoG from PCG and IFG to classify phonemes
and gestures during spoken word production. We hypothesized
that posterior PCG (approximate M1v) represents the move-
ments, and hence the gestures, of speech articulators. We first
examined the ability to determine the positions of phonemes and
gestures within words using ECoG. We next compared the rela-
tive performances of gesture and phoneme classification in each
cortical area. Finally, we used a special case of contextual vari-
ance—allophones, in which the same phoneme is produced with
different combinations of gestures—to highlight more distinctly
the gestural versus phonemic predominance in each area. The
results indicate that gestures are the predominant elemental unit
of speech production represented in PCG, while both phonemes
and gestures appear to be more weakly represented in IFG, with
gestures still slightly more predominant.

Materials and Methods
Subject pool. Nine adults (mean age, 42 years; five females) who required
intraoperative ECoG monitoring during awake craniotomies for glioma
removal volunteered to participate in a research protocol during surgery.
We excluded subjects with tumor-related symptoms affecting speech
production (as determined by neuropsychological assessment) and non-
native English speakers from the study. All tumors were located at least
two gyri (�2–3 cm) away from the recording electrodes. As per the
standard of care, subjects were first anesthetized with low doses of propo-
fol and remifentanil, then awakened for direct cortical stimulation map-
ping. All experiments were performed after cortical stimulation, hence,
during experiments, no general anesthesia had been administered for at
least 45 min; no effects on speech articulation were detected. Subjects

provided informed consent for research, and the Institutional Review
Board at Northwestern University approved the experimental protocols.

Electrode grid placement was determined using both anatomical land-
marks and functional responses to direct cortical stimulation. Electrode
grids were placed to ensure the coverage of areas that produced move-
ments of the articulators when stimulated. ECoG grid placement varied
slightly with anatomy but consistently covered targeted areas of ventral
posterior PCG (pPCG; the posterior half of the gyrus, approximately
equivalent to M1v), ventral anterior PCG (aPCG; the anterior half of the
gyrus, approximately equivalent to PMv), and IFG pars opercularis, usu-
ally aligning along the Sylvian fissure ventrally. We defined our locations
purely by anatomy to be conservative, since it was impossible to define
them functionally in vivo, but with the intention of estimating M1v and
PMv. We confirmed grid location with stereotactic procedure planning,
anatomical mapping software (Brainlab), and intraoperative photogra-
phy (Hermes et al., 2010).

Data acquisition. A 64-electrode, 8 � 8 ECoG grid (4 mm spacing;
Integra) was placed over the cortex and connected to a Neuroport data
acquisition system (Blackrock Microsystems). Both stimulus presenta-
tion and data acquisition were facilitated through a quad-core computer
running a customized version of BCI2000 software (Schalk et al., 2004).
Acoustic energy from speech was measured with a unidirectional lapel
microphone (Sennheiser) placed near the patient’s mouth. The micro-
phone signal was wirelessly transmitted directly to the recording com-
puter (Califone), sampled at 48 kHz, and synchronized to the neural
signal recording.

All ECoG signals were bandpass filtered from 0.5 to 300 Hz and sam-
pled at 2 kHz. Differential cortical recordings compared with a reference
ECoG electrode were exported for analysis with an applied bandpass
filter (0.53–300 Hz) with 75 �V sensitivity. Based on intraoperative pho-
tographs and Brainlab reconstructions of array coordinates, electrodes in
the posterior and anterior halves of the precentral gyrus were assigned to
pPCG and aPCG, respectively, while those anterior to the precentral
sulcus and ventral to the middle frontal sulcus were assigned to IFG. Data
will be made available upon request to the senior author.

Experimental protocol. We presented words in randomized order on a
screen at a rate of 1 every 2 s, in blocks of 4.5 min. Subjects were in-
structed to read each word aloud as soon as it appeared. Subjects were
surveyed regarding accent and language history, and all subjects included
here were native English speakers. All subjects completed at least two
blocks, and up to three blocks.

All word sets consisted of monosyllabic words and varied depending
on subject and anatomical grid coverage. Stimulus words were chosen for
their simple phonological structure, phoneme frequency, and phoneme
variety. Many words in the set were selected from the modified rhyme test
(MRT), consisting of monosyllabic words with primarily consonant–
vowel– consonant (CVC) structure (House et al., 1963). The frequency of
phonemes within the MRT set roughly approximates the phonemic fre-
quency in American English (Mines et al., 1978). The MRT was then
supplemented with additional CVC words to incorporate all general
American English phonemes to the word set with a more uniform pho-
neme incidence. The mean word duration was 520 ms. Consonant cluster
allophone words contained initial stop consonants; each allophone ex-
ample included a voiced, a voiceless, and a consonant cluster allophone
word (e.g., “bat,” “pat,” and “spat”; Buchwald and Miozzo, 2011).

Signal processing. We examined normalized activity in the high gamma
band (70 –290 Hz), since this band is highly informative about limb
motor (Crone et al., 2001; Mehring et al., 2004; Chao et al., 2010; Flint et
al., 2012a,b, 2017), speech (Crone et al., 2001; Pei et al., 2011a; Bouchard
et al., 2013; Ramsey et al., 2018), and somatosensory activity (Ray et al.,
2008), and correlates with ensemble spiking activity (Ray and Maunsell,
2011) and blood oxygenation level-dependent activity (Logothetis et al.,
2001; Hermes et al., 2012). ECoG signals were first rereferenced to a
common average of all electrodes in the time domain. We used the Hil-
bert transform to isolate band power in eight linearly distributed 20-Hz-
wide sub-bands within the high gamma band that avoided the 60 Hz
noise harmonics and averaged them to obtain the high gamma power.
We then normalized the high gamma band power changes of each elec-
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trode, by subtracting the median and dividing by the interquartile range,
to create frequency features for each electrode.

To create features in the time domain, we segmented normalized high
gamma values for each electrode in 50 ms time bins from 300 ms before
and 300 ms after the onset of each event (phoneme or gesture). This was
far enough in advance of event onset to capture most relevant informa-
tion in IFG, which starts �300 ms before word onset (Flinker et al.,
2015). This created discrete, event-based trials that summarized the
time-varying neural signal directly preceding and throughout the pro-
duction of each phoneme or gesture. Time windows for allophone fea-
ture creation were shorter (�300 to 100 ms) to further reduce the effect
of coarticulation on the allophone classification results. The phonemes
that were classified in allophone analysis (/p/, /b/, /t/, /d/, /k/, and /g/)
were all plosives (stop consonants) and had durations of �100 ms, so we
were able to use this shorter window without losing information about
the phonemes. This is in contrast to the direct classification of phonemes
and gestures, which included phonemes such as /m/ and /n/ that were
longer in duration; hence, we used activity up to 300 ms after onset to
capture this information.

Phoneme and gesture labeling. Following standard practices, we used
visual and auditory inspection of auditory spectral changes to manually
label the onset of each phoneme in the speech signal (Mugler et al.,
2014b). For plosives, phoneme onset was marked by acoustic release. For
fricatives, phoneme onset was marked by the onset of aperiodic noise.
For sonorants and vowels, onset was marked by changes to spectral prop-
erties. To label gesture onset times, acoustic–articulatory inversion was
used on the audio recordings of subjects. This technique maps articulator
trajectories from acoustic data, using a model that accounts for subject-
and utterance-specific differences in production. We used an acoustic–
articulatory inversion (AAI) model, described in (Wang et al., 2015),
based on a deep neural network trained on data from the University of
Wisconsin x-ray Microbeam corpus (Westbury et al., 1990), with missing
articulatory data filled in using the data imputation model of (Wang et
al., 2014). This model performed highly in predicting articulators in data
from the corpus that were not used in training (i.e., in cross-validation),
with a root-mean square error of only 1.96 mm averaged over all articu-
lators. This error was smaller than that reported in similar studies, in-
cluding a study that used AAI to then drive a speech synthesizer, in which
an error of 2.5 mm still produced synthesized speech that was recogniz-
able a high percentage of the time (Bocquelet et al., 2016). Moreover, we
simulated this error by adding Gaussian noise with mean of 0 and an SD
of 1.96 to the position and velocity estimates from AAI, and computed
the error in gestural time estimates in two subjects. We found that this
amount of noise translated to a mean � SD error of 5.2 � 9.8 ms in time,
which was far smaller than our time bins used for decoding. While there
could be some discrepancies in applying this model to patients in an
operating room, possibly with dry mouths, lying on their side, even an
error of 5 mm per articulator translated in simulation to errors of only
5.3 � 13 ms in timing. Even if there were errors that were larger than this,
the resulting errors in timing would bias the decoding performance re-
sults to be poorer for gestures, rather than better. Thus, any discrepancies
in gestural timing due to the limits of AAI would not affect our results.

We used AAI to generate articulator positions of the lips, tongue tip,
and tongue body at a time resolution of 10 ms (Fig. 1). The lip aperture
was defined as the Euclidean combination of vertical and horizontal
positions in the sagittal plane, and tongue apertures were defined using
vertical position. Position trajectories were smoothed with a Gaussian
kernel of 50 ms. The onsets of each gesture (closure, critical closure, and
release) were defined from the position and velocity traces, as in the study
by Marianne and Goldstein (2010). In brief, gesture onset time was de-
fined as the moment the articulator had surpassed 20% of the difference
between minimum velocity preceding movement and maximum velocity
during gesture formation. For plosives, the onset of gesture release (e.g.,
tongue tip release) was set to phoneme onset time. Since AAI does not
provide laryngeal or velar information, the Task Dynamic (TADA)
model of interarticulator coordination was used to generate expected
velar gesture onset times (Saltzman and Munhall, 1989; Nam et al.,
2012). This model (TADA) is not speaker specific, so the onset times were
scaled proportionally by the ratio of the default word duration (from

TADA) to the actual duration of each word. We used these onset times
for each event in the speech signal to segment ECoG features.

Intraword position classification. We analyzed how cortical high
gamma activity varies with the context of phonemic and gestural events
(i.e., coarticulation) in two subjects producing consonant–vowel– con-
sonant words. We used the high gamma activity on each electrode indi-
vidually to classify whether each consonant phoneme or gesture was the
initial or final consonant in each word. The coarticulation of speech
sounds means that phonemes are not consistently associated with one set
of gestures across intraword positions. Therefore, we predicted that if
gestures characterize the representational structure of a cortical area, the
cortical activity associated with a phoneme should vary across word po-
sitions. In contrast, because gestures characterize speech movements that
do not vary with context, the cortical activity associated with a gesture
should also be context invariant. Therefore, we did not expect to be able
to classify the position of a gesture with better than chance accuracy. For
this analysis, we included three types of gestures (closures of tongue tip,
tongue body, or lips) and their associated phonemes. To reduce the
likelihood of including cortical activity related to production of neigh-
boring events (e.g., vowel-related phonemes or gestures) in our classifi-
cation, we only used the high gamma activity immediately surrounding
event onset (from 100 ms before to 50 ms after, in 25 ms time bins) to
classify intraword position from individual electrodes. We classified ini-
tial versus final position using linear discriminant analysis (LDA; with

Figure 1. Defining phoneme and articulatory gesture onsets. A, Cerebral cortex of Subject 5
(S5) with recorded regions of speech motor cortex highlighted: IFG (green), aPCG (blue), and
pPCG (purple). B, Vocal tract with positions of the lips, tongue body, and tongue tip during
production of a single word. Each trace represents the position, at 10-ms intervals, generated by
the AAI model, from word onset (green) to word offset (magenta; see corresponding colors in
C). C, Example audio signal, and corresponding audio spectrogram, from S5 with labeled pho-
nemic event onsets (blue vertical lines) mapped to vocal tract articulatory gesture positions.
Target apertures for each articulatory gesture action are marked from open (open circle), to
critical (half-filled circle), to closed (filled circle). Note that larynx has opposite open/close
orientation as its default configuration is assumed to be near closure (vibrating; Browman and
Goldstein, 1992). Also note that while the initial and final consonants are associated with a
specific velum-closing action, the vowel does not specify such a gesture (thus, the state of the
velum during the vowel depends on the surrounding gestures).
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10 � 10 cross-validation repeats), since there were only six features for
each classifier.

To quantify the significance (and effect size) of our results, we exam-
ined the discriminability index d� between accuracy (percentage correct)
of phonemic or gestural position and chance accuracy. The d� between
two groups is defined as the difference of their means divided by their

pooled SD. For example, d� �
��g � �p	

��ng�g
2 � np�p

2	/(ng � np)
, where �g is

the mean of gestural position accuracy, ng is the number of gesture in-
stances minus one, and �g is the SD of gesture instances, and the same
symbols with subscript p stand for phonemes. Mean values of d� were
computed from electrodes that were related to the corresponding gesture
type. This was determined by classifying all gestures (except larynx) using
the high gamma activity from each individual electrode, in 25 ms time
bins, from 100 ms before to 50 ms after gesture or phoneme onset as
features; and classifying using classwise principal component analysis
(PCA; see below). Each electrode was designated as being related to the
gesture that was classified most accurately.

Event classification and statistical analysis. To obtain more detailed
information about the encoding of each cortical area, we also used ECoG
high gamma activity to classify which phoneme or gesture was being
uttered at each event onset. We classified consonant phonemes and all
gestures except for larynx. We limited our phoneme/gesture classifica-
tion analysis to consonant phonemes for two reasons. First, the TADA
model assumes that the larynx (or glottis) is closed by default (Browman
and Goldstein, 1992), which makes it very difficult, if not impossible, to
assign meaningful onset (closure) times to this gesture that is present in
all vowels. In addition, we wished to avoid the influence of coarticulation
of neighboring phonemes. Therefore, we removed vowels and /s/ pho-
nemes, as well as the larynx-closing gesture, from the analysis. To ensure
sufficient accuracy of our classification models, we included only pho-
nemes with at least 15 instances, resulting in approximately the same
number of phoneme classes as gesture classes (average of 15.2 phonemes
across subjects). The phonemes most commonly included were {/p/,/b/
,/m/,/f/,/d/,/t/,/n/,/l/,/r/,/g/,/k/,/v/,/j/}. We classified 12 gestures—lips
(open, close, critical), tongue tip (open, close, critical), tongue body
(open, close, critical), and velum (open, close, critical) in all subjects.

Due to the large number of potential features and the relatively low
number of trials, we used classwise PCA (CPCA) to reduce the dimen-
sionality of the input feature space and hence to reduce the risk of over-
fitting. CPCA performs PCA on each class separately, which enables
dimensionality reduction while preserving class-specific information
(Das and Nenadic, 2009; Das et al., 2009). For each class, the procedure
chose a feature subspace consisting of all components with eigenvalues
larger than the mean of the nonzero eigenvalues (Das and Nenadic,
2009). LDA was then used to determine the feature subspace with the
most information about the classes. The high gamma features were then
projected into this subspace, and LDA was used to classify the data
(Slutzky et al., 2011; Flint et al., 2012b). We used one-versus-the rest
classification, in which one event class was specified and events not in
that class were combined into a “rest” group. We reported only the
accuracy of classifying a given class (e.g., in /p/ vs the rest, we reported the
accuracy of classifying the /p/ class, but not the rest class), to avoid bias in
accuracy due to the imbalance in “one” and rest class sizes. We used
10-fold cross-validation with randomly selected test sets (making sure
that at least some of the target events were in each test set) to compute
classification performance. We repeated the 10-fold cross-validation 10
times (i.e., reselected random test sets 10 times), for a total of 100-fold.
Chance classification accuracies were determined by randomly shuffling
event labels 200 times and reclassifying. We created an overall perfor-
mance for each subject as a weighted average of all the events; the perfor-
mance of each phoneme or gesture was weighted by the probability of
that phoneme or gesture in the dataset. The Wilcoxon signed-rank test
was used for all statistical comparisons reported.

Allophone classification. Four participants read aloud a specific set of
spoken, monosyllabic words from the speech control literature that in-
cluded allophones to amplify the distinction between phonemic and ges-
tural representation in specific cortical areas (Buchwald and Miozzo,

2011). Allophones are different pronunciations of the same phoneme in
different contexts within words, which reflect the different gestures being
used to produce that phoneme (Browman and Goldstein, 1992). For
example, consonant phonemes are produced differently when isolated at
the beginning of a word (e.g., the /t/ in “tab,” which is voiceless) com-
pared with when they are part of a cluster at the beginning of a word (e.g.,
the /t/ in “stab,” which is acoustically more similar to a voiced /d/; see Fig.
5A). Using word sets with differing initial consonant allophones (either
CVC or consonant– consonant–vowel– consonant in organization) en-
abled us to dissociate more directly the production of phonemes from the
production of gestures. This can be thought of as changing the mapping
between groups of gestures and an allophone, somewhat analogous to
limb motor control studies that used artificial visual rotations to change
the mapping between reach target and kinematics to assess cortical rep-
resentation (Wise et al., 1998; Paz et al., 2003).

We trained separate classifiers (CPCA with LDA, as in the prior sec-
tion) for voiceless consonants (VLCs) and voiced consonants (VCs), and
tested their performance in decoding both the corresponding isolated
allophone (VLC or VC) and the corresponding consonant cluster allo-
phone (CClA). For example, we built classifiers of /t/ (vs all other conso-
nants) and /d/ (vs all other consonants) and tested them in classifying the
/t/ in words starting with “st.”

Results
We simultaneously recorded ECoG from PCG and IFG (pars
opercularis) and speech audio during single-word, monosyllabic
utterances by nine human participants (eight with left hemi-
spheric recordings) undergoing functional mapping during
awake craniotomies for the resection of brain tumors (Fig. 2).

Phoneme-related, but not gesture-related, cortical activity
varies with intraword position
We first analyzed how high gamma activity varies with the posi-
tion of phonemes and gestures within words. We found that the
high gamma activity in pPCG and aPCG did not change with the
intraword position of the gesture (Fig. 3A, right, examples). In
contrast, when aligned to phoneme onset, high gamma activity in
pPCG and aPCG did vary with intraword position (Fig. 3A, left).
Figure 3B shows an example of the classification of tongue body
and tongue tip closure position from all electrodes that predom-
inantly encoded those gestures (based on single-electrode decod-
ing of all gesture types; see Materials and Methods). Gesture
classification accuracies were not larger than chance, while accu-
racies of classifying associated phonemes ({/k/,/g/} for tongue
body and {/t/,/d/,/l/,/n/,/s/} for tongue tip) were indeed larger
than chance. To quantify the accuracy of classification compared
with chance over electrodes, we computed the d� value on each
electrode (Fig. 3C, examples). d� is the difference of means (in this
case, between phoneme or gesture position and chance accuracy)
divided by the pooled SD (see Materials and Methods); a d� value
of 
1 is considered large. We computed the mean d� value over
all electrodes in pPCG and aPCG that were modulated with lip,
tongue tip, or tongue body gestures (see Materials and Methods).
We found that, over all of these electrodes in both subjects, d� was
large for the associated phonemes (2.3 � 0.6; mean � SEM) and
no different from zero for gestures (�0.06 � 0.6). We also exam-
ined all electrodes in pPCG and aPCG, regardless of modulation,
and found similar results: d� was large for phonemes (2.7 � 0.3)
and no different from zero for gestures (0.2 � 0.3). Thus, cortical
activity for gestures did not vary with context, while cortical ac-
tivity for phonemes varied substantially across contexts.

pPCG, aPCG, and IFG more accurately represent gestures
than phonemes
To further investigate sublexical representation in the cortex, we
used high gamma activity from eight participants to classify
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which phoneme or gesture was being uttered at each event onset.
We first classified phonemes and gestures separately using re-
cordings combining all precentral gyrus electrodes (pPCG/
aPCG). Combined pPCG/aPCG (PCG for short) activity classified
gestures with significantly higher accuracy than phonemes, as
follows: 63.7 � 3.4% vs 41.6 � 2.2% (mean � SEM across sub-
jects; p � 0.01) as seen in Figure 4A. Gestural representations
remained significantly dominant over phonemes after subtract-
ing the chance decoding accuracy for each type (mean 34.3 �
3.4% vs 17.5 � 2.2%; p � 0.008; Fig. 4B).

M1v, PMv, and IFG have been theorized to contribute differ-
ently to speech production, movements, and preparation for
speech. We therefore investigated the representation of each in-
dividual area by performing gesture and phoneme classification
using the ensemble of electrodes from each cortical area, in each
subject, separately. Classification performance of both types in-
creased as the area used moved from anterior to posterior loca-
tion. In each area, gestures were classified with greater accuracy
than phonemes (IFG: 48.8 � 6.8% vs 39.1 � 5.6%, p � 0.03;
aPCG: 58.3 � 3.6% vs 40.7 � 2.1%, p � 0.016; pPCG: 62.6 �
2.2% vs 47.3 � 2.0%, p � 0.008; Fig. 4C). This predominance
remained after subtracting chance accuracy across subjects (IFG:
17.9 � 6.4%, p � 0.016, aPCG: 25.3 � 12.0%, p � 0.008, pPCG:
27.7 � 16.4%, p � 0.016; Fig. 4D). The difference was significant
in pPCG and aPCG, but not in IFG, when using Bonferroni’s
correction for multiple comparisons. The difference in accuracy
was not due to gestures having a greater incidence than pho-
nemes (mean � SEM; 61 � 13 vs 147 � 44 instances per pho-
neme vs per gesture, respectively), as significant differences
remained when we performed decoding on a dataset with maxi-
mum numbers of gesture and phoneme instances matched (data

not shown). To quantify the difference further, we computed the
d� values between accuracies of gestures and phonemes in each
area. The d� values in pPCG and aPCG were both very high (3.6
and 2.9), while that in IFG was slightly less (2.0), suggesting a
more decreased gestural predominance in IFG than in pPCG or
aPCG.

Allophone classification supports predominance of
gestural representations
In four participants, we used word sets emphasizing consonant
allophones (voiced, voiceless, and clustered with /s/) to amplify
the distinction between phonemic and gestural representations.
The /t/ in st words was acoustically more similar to, and produced
with high gamma activity more like, a /d/ in aPCG electrodes, and
more like a solitary initial /t/ in aPCG and IFG (Fig. 5A,B). We
investigated the extent to which CClAs behaved more similarly to
VLCs or to VCs in each area. If CClAs were classified with high
performance using the voiceless classifier (Fig. 5C, blue rectan-
gle), we would infer that phonemes were the dominant represen-
tation. If CClAs were classified with high performance using the
voiced classifier, we would infer that gestures were the dominant
representation (Fig. 5C, orange rectangle). If CClAs were classi-
fied with low performance by both classifiers (Fig. 5C, green rect-
angle), it would suggest that the CClA were a distinct category,
produced differently from the voiced and from the voiceless
allophone.

Cluster consonants behaved less like the phoneme and more
like the corresponding gesture when moving from anterior to
posterior in the cortex (Fig. 5D,E). For example, in IFG and
aPCG, the CClAs behaved much more like the VLC phonemes
than they did in pPCG (p � 0.6, 0.5, and 0.008 and d� � 0.1, 0.2,

Figure 2. Electrode array locations for all nine subjects. Top schematic shows the approximate area of cortex (rectangle) displayed for each subject. Shaded areas represent the different cortical
areas: IFG (green), aPCG (blue), and pPCG (purple). Note that Subject 2 was implanted in the right hemisphere and so anterior–posterior direction is reversed. IFG electrodes in Subject 9 were
excluded because they were too close to the tumor margin. CS, Central sulcus; SF, Sylvian fissure.
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and 0.4 in IFG, PMV, and pPCG, respectively for performance of
the VLC classifier on VLCs vs CClAs). The CClAs behaved more
like the VC phonemes in pPCG than in aPCG and IFG (d� � 0.4,
0.7, and 0.3 in IFG, aPCG, and pPCG, respectively), although
there was still some difference in pPCG between CClA perfor-
mance and VC performance. The CClAs were produced substan-
tially more like VC phonemes than like VLC phonemes in pPCG,
which implies that pPCG predominantly represents gestures. The
difference between CClAs and VC phonemes suggests that the
cluster allophones may represent another distinct speech sound
category.

Discussion
We investigated the representation of articulatory gestures and
phonemes in precentral and inferior frontal cortices during
speech production. Activity in these areas revealed the intraword
position of phonemes but not the position of gestures. This sug-
gests that gestures provide a more parsimonious, and more accu-
rate, description of what is encoded in these cortices. Gesture
classification significantly outperformed phoneme classification
in pPCG and aPCG, and in combined PCG, and trended toward
better performance in IFG. Consonants in clusters behaved more
similarly to the consonant that shared more similar gestures
(voiced), rather than the consonant that shared the same pho-

neme (voiceless) in more posterior areas; this relationship tended
to reverse in more anterior areas. Together, these results indicate
that cortical activity in PCG (M1v and PMv), but not in IFG,
represents gestures to a greater extent than phonemes during
production.

This is the most direct evidence of gesture encoding in speech
motor cortices. This evidence supports theoretical models in-
corporating gestures in speech production, such as the TADA
model of interarticulator coordination and the Directions-Into-
Velocities of Articulators (DIVA) model (Saltzman and Munhall,
1989; Guenther et al., 2006; Hickok et al., 2011). DIVA, in partic-
ular, hypothesizes that gestures are encoded in M1v. These results
also suggest that models not incorporating gestures, instead pro-
posing that phonemes are the immediate output from motor
cortex to brainstem motor nuclei, may be incomplete (Levelt,
1999; Levelt et al., 1999; Hickok, 2012b).

The phenomenon of coarticulation (i.e., phoneme produc-
tion is affected by planning and production of neighboring pho-
nemes) has long been established using kinematic, physiologic
(EMG), and acoustic methods (Ohman, 1966; Kent and Minifie,
1977; Whalen, 1990; Magen, 1997; Denby et al., 2010; Schultz and
Wand, 2010). Our results showing the discrimination of intra-
word phoneme position and differences in allophone encoding

Figure 3. Variation of cortical activity with intraword position of phonemes and gestures. Phoneme-related activity changes with context, while gesture-related activity does not. A, Mean (�SD;
shaded areas) high gamma activity on two electrodes in subject Subject 5 aligned to onset of the phoneme (left) or gesture (right) event. Activity is separated into instances of all events [/t/ or /k/
for phonemes, tongue tip closure (TTC) or tongue body closure (TBC) for gestures] occurring either at the beginning of a word (light green) or at the end of a word (dark green). Gray dashed lines
represent a-100 to 50 ms interval around onset. B, An example of classification accuracy (mean � 95% CI) of intraword position on one electrode (e56) related to either tongue body (left, same as
bottom plots in A) or tongue tip (e46; right, same as top plots in A) in S5 for phonemes (blue) and gestures (red). Gestural position classification does not outperform chance (gray), while phonemic
position classification performs significantly higher than chance. C, Spatial distribution of d� for differences between phonemic and gestural position accuracy and chance. Phonemic position
accuracy is much higher than chance while gestural position accuracy is not on tongue tip- and tongue body-related electrodes (outlined electrodes). Shaded areas correspond to cortical areas as in
Figure 2A.
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confirm the existence of phoneme coarticulation in cortical ac-
tivity as well. Bouchard and Chang (2014) first demonstrated
evidence of PCG representation of coarticulation during vowel
production. Our results demonstrate cortical representation of
coarticulation during consonant production. Some have sug-
gested that coarticulation can be explained by the different ges-
tures that are used when phonemes are in different contexts
(Browman and Goldstein, 1992; Buchwald, 2014). Since gestures
can be thought of as a rough estimate of articulator movements,
our results demonstrating gesture encoding corroborate the find-
ings of a recent study (Conant et al., 2018) of isolated vowel
production showing that PCG encodes the kinematics of articu-
lators to a greater extent than the acoustic outputs.

The use of allophones enabled us to dissociate the correlation
between phonemes and gestures, as a single consonant phoneme
is produced differently in the different allophones. In pPCG, the
CClAs did not behave like either the VLC phonemes or VC pho-
nemes, though they were more similar to the VC phonemes. This
suggests that the CClAs are produced differently than either VCs
or VLCs. It is also possible that there may have been some features
in the CClAs that were related to /s/ production, in the time from
300 to 200 ms before plosive onset, that affected the results. Over-
all, these results support the following previous findings: before
the release of the laryngeal constriction, the CClAs are hypothe-
sized to be associated with a laryngeal gesture that is absent in VC
phonemes (Browman and Goldstein, 1992; Cho et al., 2014).
Thus, it is not surprising that we observed this difference in clas-
sification between CClAs and VCs (Fig. 5D). These results, there-

fore, still support a gestural representation in M1v as well as in
PMv and IFG.

This study provides a deeper look into IFG activity during
speech production. The role of IFG in speech production to date
has been unclear. Classically, based on lesion studies and electri-
cal stimulation, the neural control of speech production was de-
scribed as starting in the inferior frontal gyrus, with low-level,
nonspeech movements elicited in M1v (Broca, 1861; Penfield and
Rasmussen, 1949). The classical view that IFG was involved in
word generation (Broca, 1861) has been contradicted by more
recent studies. Electrical stimulation sites causing speech arrest
were located almost exclusively in the ventral PCG (Tate et al.,
2014). Other recent studies have provided conflicting imaging
evidence in IFG of phoneme production (Wise et al., 1999), syl-
lables (Indefrey and Levelt, 2004), and syllable-to-phoneme se-
quencing and timing (Gelfand and Bookheimer, 2003; Papoutsi
et al., 2009; Flinker et al., 2015; Flinker and Knight, 2016; Long et
al., 2016). Flinker et al. (2015) showed that IFG was involved in
articulatory sequencing. The equal classification performance for
gestures and phonemes using IFG activity suggests that there is at
least some information in IFG related to gesture production.
While our results cannot completely address the function of IFG
due to somewhat limited electrode coverage (mainly pars oper-
cularis) and experimental design (monosyllabic words likely lim-
ited IFG activation and classification performance somewhat),
they do provide evidence for gesture representation in IFG.

These results imply that speech production cortices share a
similar organization to limb-related motor cortices, despite clear

Figure 4. Classification of phonemes and gestures. A, Mean (�SEM over subjects) classification accuracy using combined aPCG and pPCG activity of phonemes (blue squares) and gestures (red
circles). Shown are both raw accuracy (left; dotted lines showing chance accuracy) and accuracy relative to chance (right). Gestures were classified significantly (*) more accurately than phonemes.
B, Classification accuracy for phonemes (blue) and gestures (red) using activity from IFG, aPCG, and pPCG separately, for subject S5 (left; �SD) and population mean (right; �SEM). C, Accuracy
relative to chance in each area for S5 (left) and population mean (right). Gesture classification was significantly higher than phoneme classification in pPCG and aPCG (*). D, d� values (mean � SEM
over subjects) between gesture and phoneme accuracies in each area.
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differences between the neuroanatomy of articulator and limb
innervation (e.g., cranial nerve compared with spinal cord inner-
vation). In this analogy, gestures represent articulator positions
at discrete times (Guenther et al., 2006), while phonemes can be
considered speech targets. Premotor and posterior parietal corti-
ces preferentially encode the targets of reaching movements (Ho-

cherman and Wise, 1991; Shen and Alexander, 1997; Pesaran et
al., 2002, 2006; Hatsopoulos et al., 2004), while M1 preferentially
encodes reach trajectories (Georgopoulos et al., 1986; Moran and
Schwartz, 1999), force (Evarts, 1968; Scott and Kalaska, 1997;
Flint et al., 2014), or muscle activity (Kakei et al., 1999; Morrow
and Miller, 2003; Cherian et al., 2013; Oby et al., 2013). This

Figure 5. Classification of consonant allophones using ECoG from each cortical area. A, Examples of audio waveforms, averaged spectrograms, and gestures for an allophone set ({/t/,/st/,/d/})
aligned to vowel onset (black vertical line). Only the trajectories for articulators that show differences for these phonemes are depicted (filled circle, close; open circle, open; half-filled, partial closure
(critical)). Colors throughout the figure represent VLC (/t/, blue), VC (/d/, orange), and CClA (/st/, gray). B, Examples of normalized high gamma activity (mean � SE) at three electrodes during /t/,
/d/, and /st/ production in S5. Allophone onset is at time 0. One electrode from each cortical area is shown. CClA activity (gray) in these IFG and aPCG electrodes is more similar to the VLC (blue),
especially at approximately time 0, while in pPCG it is more similar to VC (orange). C, Schematic depicting three different idealized performance patterns in a single cortical area. Solid circles denote
the performance of the classification of VLCs (blue) and VCs (orange) using their respective classifiers. Gray-filled circles denote CClA classification performance using the VLC (blue outline) and VC
(orange outline) classifiers. High CClA performance (close to that of the respective solid color) would indicate that the allophone behaved more like the VLC or VC than like other consonants in the
dataset. Blue rectangle, CClA performed similarly to the VLC; orange rectangle, CClA performed similarly to the VC; green rectangle, CClA performed differently than both VLCs and VCs. D,
Classification performance (mean � SEM across subjects and allophone sets) in each cortical area of VLCs and CClAs in voiceless classifiers, and VCs and CClAs in voiced classifiers. CClAs show much
lower performance on VLC classifiers than VLCs perform in pPCG, while the performance is much closer in IFG and aPCG. The opposite trend occurs with CClA performance on the VC classifiers. E,
d’values (mean � SEM across subjects and sets) between the singlet consonant performance and allophone consonant performance for each area; larger values are more discriminable. Blue circles,
VLC vs CClA performance using VLC classifiers; orange circles, VC vs CClA performance using VC classifiers. In summary, CClAs perform more like VLCs and less like VCs moving from posterior to anterior.
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suggests that M1v predominantly represents articulator kinemat-
ics and/or muscle activity; detailed measurements of articulator
positions are starting to demonstrate this (Bouchard et al., 2016;
Conant et al., 2018). Although we found that gesture representa-
tions predominated over phonemic representations in all three
areas, there was progressively less predominance in aPCG and
IFG, which could suggest a rough hierarchy of movement-related
information in the cortex (although phonemic representations
can also be distributed throughout the cortex (Cogan et al.,
2014). We also found evidence for the encoding of gestures and
phonemes in both dominant and nondominant hemispheres,
which corroborates prior evidence of bilateral encoding of sub-
lexical speech production (Bouchard et al., 2013; Cogan et al.,
2014). The homology with limb motor areas is perhaps not sur-
prising, since Broca’s area is thought to be homologous to pre-
motor areas in apes (Mendoza and Merchant, 2014). This
analogous organization suggests that observations from studies
of limb motor control may be extrapolated to other parts of mo-
tor and premotor cortices.

As in limb movements, sensory feedback is important in
speech production (Hickok, 2012a). However, it is unlikely that
auditory or somatosensory feedback accounts for the relative rep-
resentations of gestures and phonemes observed here. Motor cor-
tical activity during listening is organized based on acoustics,
rather than on articulators (Cheung et al., 2016); thus, any effect
of auditory feedback would be to improve phoneme perfor-
mance. The contribution of somatosensory feedback to activity
should be limited by the very short amount of time after events
included in location and allophone analyses. Overall, consistent
findings across multiple types of analyses strongly favor gestural
predominance. Possible sensory contributions to speech produc-
tion representations is an important area for future research.

Brain–machine interfaces (BMIs) could substantially improve
the quality of life of individuals who are paralyzed from neuro-
logical disorders. Just as understanding the cortical control of
limb movements has led to advances in motor BMIs, a better
understanding of the cortical control of speech will likely im-
prove the ability to decode speech directly from the motor cortex.
A speech BMI that could directly decode attempted speech would
be more efficient than, and could dramatically increase the com-
munication rate over, current slow and often tedious methods for
this patient population (e.g., eye trackers, gaze communication
boards, and even the most recent spelling-based BMIs; Brumberg
et al., 2010; Chen et al., 2015; Pandarinath et al., 2017). Although
we can use ECoG to identify words via phonemes (Mugler et al.,
2014b), these results suggest that gestural decoding would out-
perform phoneme decoding in BMIs using M1v/PMv activity.
The decoding techniques used here would require modification
for closed-loop implementation, although signatures related to
phoneme production have been used for real-time control of
simple speech sound-based BMIs (Leuthardt et al., 2011; Brum-
berg et al., 2013). Also, the analysis of preparatory (premotor)
neural activity of speech production, which our study was not
designed to examine, would be important to investigate for
speech BMI control. Overall, improving our understanding of
the cortical control of articulatory movements advances us to-
ward viable BMIs that can decode intended speech movements in
real time.

Understanding the cortical encoding of sublexical speech pro-
duction could also improve the identification of functional
speech motor areas. More rapid and/or accurate identification of
these areas using ECoG could help to make surgeries for epilepsy
or brain tumors more efficient, and possibly safer, by reducing

operative time and the number of stimuli and better defining
areas to avoid resecting (Schalk et al., 2008; Roland et al., 2010;
Korostenskaja et al., 2014). These results therefore guide future
investigations into the development of neurotechnology for
speech communication and functional mapping.
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