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Key Points

• Platelet CD36 signaling
promotes caspase
activity through redox
sensor MAPK ERK5.

• ERK5 and caspases
link platelet CD36 to
fibrin accumulation by
exposing surface
procoagulant PSer in
dyslipidemic conditions.

Dyslipidemia is a risk factor for clinically significant thrombotic events. In this condition,

scavenger receptor CD36 potentiates platelet reactivity through recognition of circulating

oxidized lipids. CD36 promotes thrombosis by activating redox-sensitive signaling

molecules, such as the MAPK extracellular signal-regulated kinase 5 (ERK5). However, the

events downstream of platelet ERK5 are not clear. In this study, we report that oxidized

low-density lipoprotein (oxLDL) promotes exposure of procoagulant phosphatidylserine

(PSer) on platelet surfaces. Studies using pharmacologic inhibitors indicate that

oxLDL-CD36 interaction–induced PSer exposure requires apoptotic caspases in addition

to the downstream CD36-signaling molecules Src kinases, hydrogen peroxide, and ERK5.

Caspases promote PSer exposure and, subsequently, recruitment of the prothrombinase

complex, resulting in the generation of fibrin from the activation of thrombin. Caspase

activity was observed when platelets were stimulated with oxLDL. This was prevented

by inhibiting CD36 and ERK5. Furthermore, oxLDL potentiates convulxin/glycoprotein

VI–mediated fibrin formation by platelets, which was prevented when CD36, ERK5, and

caspases were inhibited. Using 2 in vivo arterial thrombosis models in apoE-null

hyperlipidemic mice demonstrated enhanced arterial fibrin accumulation upon vessel

injury. Importantly, absence of ERK5 in platelets or mice lacking CD36 displayed decreased

fibrin accumulation in high-fat diet–fed conditions comparable to that seen in chow

diet–fed animals. These findings suggest that platelet signaling through CD36 and ERK5

induces a procoagulant phenotype in the hyperlipidemic environment by enhancing

caspase-mediated PSer exposure.

Introduction

Dyslipidemia is a risk factor for clinically significant arterial thrombosis, a major cause of heart attack and
stroke. In this setting, thrombosis is initiated by activation of blood platelets and the coagulation cascade
after exposure to plaque contents and subendothelial tissue factor.1 In dyslipidemia, subthreshold levels
of platelet activation can potentiate these early thrombotic events thus increasing the risk of life-
threatening occlusive thrombosis. Micromolar levels of oxidized lipids, circulating within low-density
lipoprotein (LDL) particles (oxidized LDL [oxLDL]) and generated from the oxidative processes of plaque
formation,2 lower the threshold for platelet activation through specific pattern recognition receptors,
including CD36.3
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CD36 is highly expressed on the surface of platelets. Expression levels
vary substantially in the human populations and have been linked to
specific polymorphisms associated with risk of myocardial infarction.4

In dyslipidemia, CD36 recognizes oxLDL and potentiates platelet
activation.2,5 This is through activation of multiple signaling pathways,
including Src family kinases Fyn and Lyn6 and nonreceptor tyrosine
kinase Syk7,8; Vav family guanine nucleotide exchange factors9; the
phospholipase Cg2–protein kinase C (PKC)–nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase signaling axis that gener-
ates reactive oxygen species (ROS)7; MAPKs JNK2 and extracellular
signal-regulated kinase 5 (ERK5)6,10; and the Rho/Rho-associated
protein kinase (ROCK)–signaling module for cytoskeletal rearrange-
ment.8 CD36 also desensitizes the inhibitory platelet protein kinase
G (PKG) pathway,7 enhancing activation by classic agonists. Studies
of CD36-null mice and CD36-deficient humans suggest that CD36 is
not essential for normal hemostasis, but we and others hypothesized
that it may potentiate prothrombotic activity under conditions when its
ligands are greatly present, such as in dyslipidemia.2

Procoagulant platelets are a subpopulation of platelets generated
during thrombosis.11,12 Exposure of anionic phospholipids, such
as phosphatidylserine (PSer), on the platelet surface augments
recruitment and activity of prothrombinase and tenase complexes.13

Procoagulant platelets are generated upon strong stimulation, which
induces scramblase activation and PSer externalization in a process
mediated by sustained elevation of cytoplasmic and mitochondrial
calcium levels and cyclophilin D–dependent mitochondrial perme-
ability transition pore (mPTP) formation.14-16 The pathways mediating
procoagulant platelet formation have been thought of as distinct
from the apoptotic pathways mediating platelet life span,17,18 and
inhibition or elimination of apoptotic pathways and proteins, such
as BH-3–mediated apoptosome formation and caspase activa-
tion, did not impact procoagulant platelet formation in response
to strong agonists.18,19 Elevated platelet procoagulant activity
has been reported in hypercholesterolemic individuals,20,21 but
mechanisms underlying this are not clear.

Platelet CD36 signaling generates reactive oxygen species (ROS),
which in turn activate the redox-sensitive MAPK ERK5.10 However, the
signaling downstream of ERK5 remains incompletely defined. ERK5, by
increasing expression of the Rho family GTPase Rac and the ribosomal
s6 family kinase p70S6K, has been shown to promote maladaptive
platelet signaling in the setting of myocardial infarction, and to
distinguish the reported different roles for platelet activation in ST-
segment elevation myocardial infarction (STEMI) compared with
non-ST segment elevation.22,23 In addition, ERK5 is a critical down-
stream component of ristocetin-induced glycoprotein Ib-IX (GPIb-IX)
activation through its enhancing effect on phosphatidylinositol 3-kinase
(PI3K)/Akt signaling through casein kinase II.24 In nucleated cells,
ERK5 promotes cell survival and proliferation and limits cell death by
enhancing the transcription and expression of survival genes,25,26 but
it is unclear whether ERK5 promotes the samemechanism in platelets.

Here, we report that oxLDL-CD36 signaling cross-talks with platelet
GPVI signaling to enhance surface exposure of PSer. Surprisingly,
unlike the intracellular processes previously implicated in strong
agonist-induced procoagulant platelet formation, oxLDL-CD36–
initiated PSer exposure requires apoptotic caspases and the
downstream CD36 signaling effectors Src kinases, hydrogen
peroxide, and ERK5. Activation of this CD36-initiated pathway by
oxLDL in vitro or hyperlipidemia in vivo leads to enhanced fibrin
formation and promotes arterial thrombosis.

Methods

Detecting PSer externalization

Washed human platelets were prestimulated with 50 mg/mL LDL or
oxLDL up to 30 minutes at room temperature in the presence or
absence of 1 mg/mL anti-CD36 FA6-152 or 1 mg/mL immunoglobulin
G (IgG) control; 10 mM PP2 or PP3; 10 mM BIX02188, XMD8-92,
or SP600125; 100 mM BAPTA-AM; 2000 U/mL polyethylene glycol
(PEG)-catalase or denatured (boiled) PEG-catalase; 100 mM
Z-VAD–FMK, or 5 mM cyclosporin A (CsA). For antibody inhibition
studies, platelets were pretreated with 10 mg/mL IV.3 to prevent
activation of platelets through FcgRIIa. Platelets were then stimulated
up to 15 minutes with a low or high dose of convulxin (CVX; 50 ng/mL
or 500 ng/mL), adenosine 59-diphosphate (ADP; 1 mM or 10 mM),
or thrombin (THR; 0.1 U/mL or 1.0 U/mL) followed by 15 minutes of
staining with fluorophore-conjugated annexin V or lactadherin. Platelets
were immediately fixed with 2% paraformaldehyde followed by flow
cytometry analysis with an LSRII flow cytometer (BD Biosciences).

Fibrin formation assay

Fibrin formation was assayed as previously described.27,28 Washed
human platelets were isolated from healthy donors and incubated
with 50 mg/mL LDL, oxLDL, or phosphate-buffered saline (PBS)
(1 hour, 37°C), followed by 250 ng/mL CVX, or a combination of
1.0 U/mL THR and 500 ng/mL CVX (7 minutes, 37°C). For some
experiments, 7.5 mg/mL annexin V, 1 mM Gly-Pro-Arg-Pro (GPRP),
1mg/mL IgG or FA6-152, 10mMBIX02188 or XMD8-92, or 100mM
Z-VAD–FMK were added to platelets before stimulation with oxLDL.
The treated, washed platelets (20 mL) were incubated with citrated
plasma (20 mL; pooled from 3 separate donors), and fibrin formation
was initiated with a mixture of 0.05 pM tissue factor and 5 mMCaCl2
(60 mL) and monitored at 405 nm for 20 minutes. Onset times,
defined as the time to reach 5% of the peak, and peak absorbance
were calculated using GraphPad Prism v.7.0d (GraphPad Software).

In vivo arterial thrombosis microscopy

Animals were placed on a standard chow or western high-fat diet for
6 to 10 weeks. Intravital imaging of platelet and fibrin accumulation
in mouse cremaster arterioles was performed as previously de-
scribed.29 After the mice were anesthetized, the cremaster muscle
was exposed and superfused with warm saline during the experiment.
Arteriolar wall injury was induced with a micropoint laser ablation
system (Intelligent Imaging Innovations). Fluorescence images were
captured using a high-speed camera (Orca Flash 4.0; Hamamatsu).
Data were collected for at least 5 minutes following injury.

Study approval

Healthy human subjects gave written informed consent before
standard phlebotomy. All studies with human samples were in
accordance to the Medical College of Wisconsin’s Institutional
Review Board. All animal studies were in accordance to the
Institutional Animal Care and Use Committee of Medical College of
Wisconsin and University of North Carolina.

Results

oxLDL promotes procoagulant PSer exposure

The impact of oxLDL on PSer exposure was investigated in washed
human platelets using fluorophore-conjugated annexin V and
lactadherin. In support of our hypothesis, oxLDL but not native LDL,
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led to binding of annexin V in a concentration-dependent manner,
with 22% 6 3.5% of platelets showing fluorescence at 100 mg/mL
oxLDL (Figure 1A-B). This concentration of oxLDL is within the
reported range of saturable binding to platelet CD36.2 Kinetic
analysis showed detectable binding of lactadherin at 1 minute with
maximal binding between 5 and 15 minutes (Figure 1C). Because
costimulation with both protease-activated receptor (PAR) and GPVI
is required for maximal PSer-positive procoagulant platelets,30

we also examined whether oxLDL could enhance classic agonist-
induced PSer exposure. To mimic physiologic conditions, platelets
were sensitized with oxLDL before stimulating with a low or high dose
of THR, ADP, or CVX. Consistent with previous reports, single-agonist
stimulation with THR or ADP induced only minimal Pser externaliza-
tion, whereas ;20% of platelets became PSer-positive after CVX
stimulation, similar to that seen with oxLDL (Figure 1D). oxLDL
pretreatment significantly potentiated CVX (GPVI)-mediated PSer
externalization, with .80% of platelets becoming PSer-positive.
Interestingly, the potentiating effect of oxLDL was not seen in the
context of ADP or low-dose THR stimulation, and was only modest
in the context of high-dose THR (twofold; P 5 .04), suggesting
cross-talk between the GPVI and CD36 pathways.

Rapid PSer externalization by oxLDL is mediated

predominantly through a caspase pathway, not mPTP

A hallmark of classic procoagulant platelet formation is the THR/
CVX-mediated cyclophilin D–sensitized mPTP formation,30 accom-
panied by loss of mitochondrial membrane potential (DCm). This
can be readily probed using tetramethylrhodamine methyl ester.31

Surprisingly, loss of DCm was not observed by oxLDL. This is in
marked contrast to the significant loss of DCm observed in the
classic THR/CVX-stimulated procoagulant platelets (supplemental
Figure 1A). CsA, a peptidylprolyl isomerase inhibitor, inhibits
cyclophilin D, a peptidylprolyl isomerase that links calcium flux to
mPTP-mediated PSer externalization.32 CsA completely blocked
THR/CVX-mediated PSer exposure and CVX-alone PSer exposure
(Figure 2A; supplemental Figure 1B), but had no impact on oxLDL-
mediated PSer exposure, strongly suggesting that mPTP formation
is neither associated with nor required for oxLDL-mediated PSer
externalization. Alternatively, the Bak/Bax-dependent apoptosome
pathway is known to induce slow PSer externalization contributing
to clearance of “aged” platelets.30 The pan caspase inhibitor
Z-VAD–FMK had no impact on rapid PSer externalization induced
by THR/CVX30,33,34 or CVX alone (supplemental Figure 1B),
but surprisingly, PSer exposure induced by oxLDL was largely
prevented (Figure 2A; P 5 .02), strongly suggesting a caspase-
dependent mechanism. PSer externalization observed with oxLDL
was not prevented by the caspase 3–specific inhibitor Z-DEVD–
FMK (supplemental Figure 1D), indicating a role for other caspase
members to mediate PSer externalization.

Next, we tested the role of intracellular calcium in oxLDL stimulation
because calcium is a critical component to PSer externalization by
classic agonists.35 In the absence of exogenous calcium, oxLDL
induced PSer externalization from 18% 6 1.8% in 5 minutes up to
40% 6 3.8% in 30 minutes (Figure 2B). Platelet sensitization by
oxLDL before activating with CVX induced further PSer external-
ization maximizing at 58% 6 1.9% within 5 to 15 minutes. Platelets
were then treated with the calcium chelator BAPTA-AM followed
by stimulation with either oxLDL alone or oxLDL with CVX. The
presence of BAPTA-AM completely prevented PSer externalization

by oxLDL either alone or in the presence of CVX, suggesting a
critical role for intracellular calcium in PSer externalization by oxLDL.

We then studied platelets from wild-type (WT) C57Bl/6 mice or
mice lacking CD36, cyclophilin D, or Bak/Bax to provide genetic
confirmation of the human pharmacologic studies. As shown in
Figure 2C, murine platelets stimulated with oxLDL displayed
time-dependent increase in PSer, which was further substantially
increased in the presence of CVX. oxLDL-induced PSer external-
ization alone was inhibited by.50% in CD36, CypD, and Bak/Bax-
null platelets. PSer by oxLDL sensitization followed by CVX
stimulation was partially inhibited in CD36, CypD, and Bak/Bax-
null platelets.

oxLDL-mediated platelet PSer exposure requires

CD36 signaling through the redox sensor MAPK ERK5

CD36 is the major high-affinity platelet receptor for oxidized lipids
in oxLDL particles.2,36 In the presence of the CD36-blocking
monoclonal antibody FA6-152, oxLDL-stimulated PSer exposure in
human platelets was completely inhibited (Figure 3A), consistent
with the results seen using CD36-null murine platelets.

ROS, including superoxide radical anion and hydrogen peroxide
are generated from NADPH oxidase downstream of platelet CD36
signaling.7,10 We previously showed that PEG catalase, an enzyme
that degrades hydrogen peroxide, prevented platelet aggregation
induced by oxLDL.10 As shown in Figure 3B, PEG catalase
significantly decreased oxLDL-induced platelet PSer from 24%
down to 14%. Inactivating the enzyme by denaturing had no impact
on PSer exposure, suggesting that ROS induced by CD36
signaling plays a role in PSer externalization.

ROS activate redox-sensitive signaling pathways in platelets, in-
cluding the MAPK ERK5.10 As shown in Figure 3C, the pharmaco-
logic MEK5/ERK5 inhibitor BIX02188, which we previously showed
to prevent oxLDL-induced platelet activation and aggregation,10

similarly inhibited PSer exposure by oxLDL. Another MAPK, JNK,
can be activated in the settings of CD36 signaling6 and oxidant
stress.37 To determine whether JNK has a role in promoting CD36-
dependent PSer externalization by oxLDL, the pharmacologic
inhibitor of JNK, SP600125, was used at concentrations previously
demonstrated to inhibit CD36 signaling.6 Surprisingly, oxLDL-
induced PSer exposure was not prevented. Furthermore, Src family
kinases, particularly Fyn and Lyn, are recruited to platelet CD366

and have been proposed to primarily function upstream
of both MAPKs ERK5 and JNK.6,10,24,38 Pretreating platelets with
the broad-spectrum Src family kinase inhibitor PP239 decreased
oxLDL-induced PSer exposure to the same extent as BIX02188,
whereas the control analog PP3 inhibitor had no effect. These data
suggest that ERK5, acted upon by upstream Src family kinases,
is the major MAPK redox sensor for CD36 to promote PSer
externalization.

Because we observed potentiation of surface PSer exposure by
stimulating platelets with oxLDL before adding CVX, we hypothesized
that caspases, cyclophilin D, Src family kinases, hydrogen peroxide, and
ERK5 are functionally important in the crosstalk between CD36 and
GPVI. Therefore, we pretreated platelets with the inhibitors to these
mediators before stimulating with oxLDL and CVX. As shown in
Figure 3D and supplemental Figure 1E, pretreatment with Z-VAD–FMK,
PP2, PEG catalase, and the 2 ERK5 inhibitors BIX02188 and XMD8-92
prevented the incremental PSer exposure induced by oxLDL prior to
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Figure 1. oxLDL promotes procoagulant PSer exposure. To detect exposed PSer, fluorophore-tagged annexin V or lactadherin binding to washed human platelets

(1 3 108/mL) was measured by flow cytometry. Representative dot plots of annexin V binding to platelets stimulated with PBS, 50 mg/mL LDL or oxLDL for 15 minutes (A). Percent

(%)-positive platelet staining with annexin V after exposure to PBS, 50 mg/mL or 100 mg/mL LDL or oxLDL (B), percent-positive staining with lactadherin up to 30 minutes with

50 mg/mL oxLDL (C) and oxLDL pretreatment followed by a low or high dose of classic agonists (D). Data represented as mean 6 standard error of the mean (SEM). P value was

determined by 1-way analysis of variance (ANOVA) with Tukey posthoc analysis in panel B or Dunnet post hoc analysis in panel C. P value was determined by 2-way ANOVA with

Tukey post hoc analysis in panel D. N 5 5 different donors in panel B, 3 different donors in panels A and C, and 4 different donors in panel D.
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CVX stimulation. As expected, pretreatment with CsA, PP3, and boiled
PEG catalase had no impact.

CD36/ERK5 signaling is a key driver of platelet

caspase activation by oxLDL

Next, we investigated the function of the CD36/ROS/ERK5
pathway in mediating caspase activation in response to oxLDL.

Caspase activity, quantified as the ratio of cleaved caspase 3
to procaspase 3, was elevated in oxLDL-treated platelets
comparable to that seen in platelets treated with the BH-
3–mimetic ABT-737 (Figure 4A). Caspase activation was also
confirmed using a colorimetric assay for caspase 3 cleavage of
the substrate DEVD (Figure 4B), which showed that oxLDL
indeed induced caspase activity and ABT-737 stimulated 20%
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Figure 2. Rapid PSer externalization by oxLDL is by a calcium-dependent caspase pathway. (A) Human platelets (1 3 108/mL) were pretreated with 100 mM

Z-VAD–FMK or 5 mM CsA followed by 15 minutes of stimulation with 50 mg/mL oxLDL or 7 minutes stimulation with 0.1 U/mL THR in the presence of 500 ng/mL CVX.

(B) Human platelets (30 3 103/mL) were pretreated with 100 mM BAPTA-AM followed by oxLDL sensitization up to 30 minutes followed by 5 minutes of GPVI activation by

500 ng/mL CVX. (C) Gel-filtered platelets (30 3 103/mL) from WT, CD36-null, CypD-null, or Bak/Bax double-null mice were sensitized with 50 mg/mL oxLDL up to 30 minutes

followed by 5 minutes of GPVI activation with 500 ng/mL CVX or buffer as a control. Percent-positive for annexin V binding was measured by flow cytometry. Data represented

as mean 6 SEM and analyzed by 1-way ANOVA with Tukey posthoc analysis. **P , .01 compared to WT no stimulation (no oxLDL, no CVX). ##P , .01 compared to WT

with CVX alone (no oxLDL). †P , .05, ††P , .01, compared to their respective WT with oxLDL and CVX stimulation group. N of .3 different donors in panels A and B;

platelets from 3 different age-matched mice per strain in panel C.
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more activity than oxLDL. We postulated that CD36 and ERK5
are upstream activators of caspases by oxLDL. Pretreatment
of platelets with the CD36-blocking antibody FA6-152, but not
control IgG, prevented oxLDL-induced caspase 3 cleavage
(Figure 4C). Similarly, the MEK5/ERK5 inhibitor BIX02188
abrogated caspase 3 cleavage (Figure 4D). These data indicate
that oxLDL promotes caspase activation through platelet CD36
and ERK5.

oxLDL-mediated fibrin formation ex vivo is prevented

by inhibiting CD36, ERK5, and apoptotic caspases

To assess the functional importance of oxLDL-mediated procoa-
gulant platelet formation, the ability to facilitate tissue factor
(TF)-induced fibrin formation was investigated. Fibrin formation in
platelet-rich plasma can be readily detected by light absorbance at
405 nm after addition of Ca21 and picomolar levels of TF.28 This assay
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Figure 3. oxLDL-mediated platelet PSer exposure requires CD36 signaling through the redox sensor MAPK ERK5. Human platelets (1 3 108/mL) were pretreated

with 1 mg/mL CD36 blocking antibody FA6-152 or nonimmunizing IgG isotype control (A), 2000 U/mL denatured boiled PEG catalase or native PEG catalase (B), 10 mM Src
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demonstrated rapid initiation and potentiation of fibrin formation by
“classic” costimulation with THR and CVX (Figure 5A; supplemental
Table 1). PSer dependence was shown by inhibition of fibrin formation

by annexin V, which masks exposed PSer. The peptide GPRP, which
blocks fibrin polymerization, was used to validate that the change in
absorbance was due to fibrin polymer formation.
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Surprisingly, despite the presence of externalized PSer on
the platelet surface, oxLDL treatment alone did not potentiate
TF-induced fibrin formation. The amount and rate of fibrin
formation was similar in oxLDL, LDL, and buffer-stimulated
platelets (Figure 5B; supplemental Table 1). oxLDL, however,
significantly amplified the effect of CVX as shown in Figure 5C
and supplemental Table 1; oxLDL pretreatment decreased

CVX-stimulated lag time for fibrin formation from 5.6 6 0.06
minutes to 3.4 6 0.1 minutes. Pretreatment of platelets with the
CD36 inhibitory antibody FA6-152 abrogated oxLDL-sensitized
CVX-initiated fibrin formation (Figure 5D; supplemental Table 1).
Similarly, treatment with the MEK5/ERK5 inhibitor BIX02188 or
ERK5 inhibitor XMD8-92 also abrogated oxLDL-enhanced lag
time and peak fibrin formation induced by CVX (Figure 5E;
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supplemental Table 1). Finally, the relevance of caspase activity
to the oxLDL-enhanced fibrin formation by platelets was tested
by pretreating platelets with the caspase inhibitor Z-VAD–FMK.
Although caspase inhibition had no effect on fibrin formation in
THR/CVX-stimulated platelets, consistent with previous reports,18,19

treating platelets with Z-VAD–FMK largely abrogated the increase in
peak fibrin formation induced by oxLDL and CVX (Figure 5F;
supplemental Table 1).

Hyperlipidemic apoE-null mice have increased fibrin

accumulation in vivo after vascular injury and the

phenotype is rescued by CD36 or platelet

ERK5 deletion

Our previous studies demonstrated the importance of platelet
CD36 in the development of atherothrombosis in mice. In FeCl3-
induced carotid artery thrombosis, absence of CD36 eliminated
the accelerated thrombotic occlusion observed in animals on a
high-fat diet.2,5 Fibrin formation was not tested initially in this
model. Thus, we more closely examined the role of platelet-
mediated fibrin formation in diet-induced thrombosis. Using a
laser-induced cremasteric artery injury model, as shown in
Figure 6A-C and supplemental Videos 1 and 2, apoE-null mice
fed a high-fat diet demonstrated both increased platelet and fibrin
accumulation compared with chow-fed animals. In the high-fat-
diet–fed animals, a procoagulant phenotype with elevated fibrin
and platelet accumulation was observed within 30 seconds of
laser injury (Figure 6A and B-C left panel) and the thrombus
occasionally occluded the vessel without resolving. In control
chow-diet–fed mice, the laser-induced thrombi resolved over time
with no vessel occlusion observed (Figure 6A and B-C right
panels; supplemental Video 3). The role of CD36-mediated
signaling was investigated using apoE:CD36 double-null mice.2

On the high-fat diet, these mice showed similar platelet and fibrin
accumulation as control-diet–fed animals (Figure 6A-C; supple-
mental Videos 2-4).

We previously reported that ERK5 is essential in promoting platelet
accumulation in hyperlipidemic conditions using an adventitial tissue-
mediated carotid artery thrombosis model.10 This model promotes
thrombosis by exposing the thrombogenic surface of the adventitial
tissue of the epigastric artery to arterial flow in the carotid artery by
transplantation,40 and, importantly, is not mediated by oxidative
damage to the vessel wall. Using this model, we now demonstrate
that irradiated apoE-null mice transplanted with bone marrow from
ERK5-expressing (ERK5flox/flox) mice and then fed a high-fat diet for
6 weeks showed enhanced peak fibrin accumulation (Figure 6D top
and E left; supplemental Figure 2). Transplant of platelet-specific
ERK5-deficient bone marrow (ERK5flox/flox:PF4-cre1), however, into
irradiated apoE-null mice fed a high-fat diet did not show enhanced
fibrin accumulation (Figure 6D bottom and E right; supplemental
Figure 2) and had similar levels of fibrin accumulation as chow-
diet–fed mice. Fibrin formation, however, ultimately reached the same
peak with either ERK5 replete or deficient platelets, reflecting
the rapid dynamics of fibrin formation and breakdown in this
model.

Discussion

Atherothrombosis is a major complication of dyslipidemia and can
lead to myocardial infarction and stroke. Platelet activation and fibrin

formation play essential roles in atherothrombosis, but underlying
mechanisms that promote these processes remain incompletely
defined. As modeled in Figure 7, we showed that ERK5 links
platelet CD36 to a procoagulant phenotype induced by oxLDL. This
mechanism is mediated by direct activation of the ERK5 pathway by
CD36 requiring Src family kinases and hydrogen peroxide. ERK5
then promotes cellular caspase activation leading to procoagulant
PSer externalization. Furthermore, crosstalk between the CD36
and GPVI pathways potentiates PSer externalization requiring Src
kinases, ERK5, and intracellular calcium. CD36/ERK5 signaling
promotes fibrin formation and accumulation, as shown by 2 models
of arterial thrombosis. Although the procoagulant phenotype medi-
ated by the cyclophilin D–mPTP pathway is a well-described pathway
to promote TF-mediated thrombosis and hemostasis,14,30 this is the
first report of a rapid PSer externalization mechanism mediated by an
alternative oxLDL-initiated caspase-dependent pathway that is rele-
vant in the pathophysiology of arterial thrombosis.

The PSer externalization mediated by caspases and the apopto-
some is known to be important in the physiologic processes of
platelet cell death and clearance.41 This can be inhibited
pharmacologically or through genetic deletion of Bak/Bax.18

Caspases promote cell death and PSer externalization by
cleaving and activating the scramblase Xk–related protein 8 on
the membrane.42 Bak/Bax has primarily been thought to function
as a regulator of platelet clearance through a yet-to-be-defined
mechanism.34,41 Bak/Bax-initiated caspase function in mice are
both dispensable for platelet production and hemostasis. In
caspase-9-null mice, homeostatic platelet clearance was un-
affected, and the only procoagulant defect identified was a
marked abrogation of pharmacologically-initiated (BcL-xL inhibitor
ABT-737) and caspase-dependent PSer externalization.34 Thus,
the relevance of caspase activation in thrombosis and hemostasis
is unclear.

In this article, we report a pathophysiologic role of caspase-
mediated platelet procoagulant activity in the context of dyslipide-
mia. Caspase activation in platelets requires CD36 to recognize
oxLDL and activate ERK5. Caspases in turn promote procoagulant
PSer externalization. Although the direct mechanism for ERK5 to
induce the apoptosome is unclear and under investigation, we
propose ERK5 as a mediator for CD36 to trigger maladaptive
apoptosome formation in platelets. Genetic interruption of apopto-
some formation using Bak/Bax double-null mice showed abrogation
of PSer externalization by oxLDL (Figure 2C). Surprisingly, CypD-
null mice also showed inhibition of PSer externalization by oxLDL
alone or by sensitization of the CVX-induced GPVI activation. This
phenotype was not observed by preventing CypD activation using
the peptidylprolyl isomerase inhibitor cyclosporin A (Figure 2A),
but only with the pan caspase inhibitor Z-VAD–FMK. The specific
caspase member mediating PSer externalization by oxLDL is not
defined, but likely involves multiple caspases because the caspase
3–specific inhibitor Z-DEVD–FMK showed limited inhibition of PSer
(supplemental Figure 1D). Although we do not discount a potential
role for CypD, we suggest caspases as the major pathway for
oxLDL-induced PSer externalization.

Several reports indicated that oxLDL activation of CD36 promotes
signaling components common to GPVI. These components
include activation of Fyn and Syk, which are critical for signal
transduction from the GPVI/FcRg chain to the Lat signalosome.43
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In addition, Vavs are key signaling adaptors within the LAT signal-
osome and are phosphorylated downstream of CD36 through a Src
family kinase-dependent mechanism.9 Sensitization of the CVX/
GPVI-induced PSer externalization by oxLDL may be related
mechanistically to activation of components of the GPVI pathway,
including a role for Src family kinases, ERK5, and intracellular
calcium (Figures 2B and 3C-D). It is expected that coordinated
activation of 1 or more members of the Src family kinases by both a
GPVI agonist and CD36 ligand will potentiate platelet activation and
subsequent PSer externalization. The surprising finding that the pan
Src family kinase inhibitor prevented sensitization of the GPVI
pathway (oxLDL with CVX) could be mechanistically linked to the Src

family members involved (Figure 3D). However, the specific member
involved is unclear because the pan Src family kinase inhibitor PP2
only partially prevented PSer externalization by GPVI (supplemental
Figure 1C).

Generation of ROS is characteristic of oxidant stress during
hyperlipidemia.7,10 THR and CVX are potent activators of ROS
pathways in platelets30 with clinical evidence suggesting that
PAR1 antagonists, such as vorapaxar, are efficacious in prevent-
ing recurrent atherothrombosis in patients with known coro-
nary artery disease.44 Furthermore, differential roles for classic
agonists in ERK5 activation, such as with THR/PAR1,22 were
shown to be dependent on ROS.45 Despite a role for ROS in
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mice at 8 weeks of age were fed a control or high-fat diet for at least 6 weeks before performing laser-induced in vivo arterial thrombosis on the cremasteric artery (A-C). Video
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2858 YANG et al 13 NOVEMBER 2018 x VOLUME 2, NUMBER 21



platelet activation, H2O2 degradation by catalase only partially
prevented oxLDL-induced PSer externalization (shown in Figure 3B),
which predictably corresponded with catalase partially preventing
platelet aggregation by oxLDL.10 These data suggest that signaling
mechanisms independent of ROS are important for PSer externaliza-
tion by oxLDL.

Molecular events driving fibrin formation ex vivo and in vivo are
initiated by recruitment of the prothrombinase and tenase complex.13

Spectrophotometric analysis of fibrin formation is sensitive and
quantitative ex vivo.27,28 Interestingly, oxLDL sensitization of the GPVI
pathway (oxLDL with CVX) induces an earlier onset time for fibrin
formation that is CD36, ERK5, and caspase dependent (Figure 5).
The difference in CVX-induced fibrin formation in Figure 5C-F may be
due to the solvent used. Dimethyl sulfoxide (DMSO) could inhibit
several aspects of platelet activation, so it is not surprising that it
inhibits platelet procoagulant activity. Furthermore, these experiments
were performed with equal platelet numbers between treatment, and
the accelerated fibrin formation ex vivo by oxidized lipids supported
our hypothesis. We complimented these studies with diet-induced
murine models of thrombosis (Figure 6), which showed that diet-
induced dyslipidemia promoted fibrin and platelet accumulation
in vivo, but was rescued when CD36 and platelet ERK5 are
absent. However, the enhanced fibrin accumulation in vivo could
potentially be correlated with the levels of platelet accumulation,
which could not be distinguished in the thrombosis models used
and requires further analysis.

Together, these data suggest that activating caspases by CD36
signaling could be targeted to reduce thrombosis risk in conditions
where CD36 ligands are greatly generated, such as in hyperlipid-
emia,2 diabetes mellitus,46 and chronic inflammation,5 without
impacting normal hemostasis.
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