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1. Introduction

Parkinson’s disease (PD), the second most 
common neurodegenerative disease following 
Alzheimer’s disease, has created a great impact 
on the elderly, the family and society. The 
average age of onset is about 60 years old, 
and the prevalence of Parkinson’s disease in 
older people over 65 increases with age[1]. 
It is estimated that approximately 10 million 
individuals worldwide suffer from this disease, 
though many cases may go undiagnosed. With 
the growth of aging populations, the number 
will double over the next 25 years, which causes 
enormous social and economic problems. 

The major pathological features of PD 
include progressive loss of dopaminergic 
(DA) neurons and formation of intracellular 
Lewy bodies (LBs) in the survival neurons of 
substantia nigra (SN). Its clinical manifestations 
include rest tremor, bradykinesia, muscle 
rigidity, posture gait abnormalities and other 
movement disorders, as well as cognitive 
disabilities, sleep disorders and other non-
motor barrier [2, 3], some of the symptoms 

of non-motor symptoms can occur prior to 
motor symptoms, and neurodegenerative 
neuropathies are not limited to SNc but have 
a broader impact[4, 5]. The etiology and 
pathogenesis of PD are complex and not yet 
fully understood. More studies suggest that 
genetic mutations in proteins play major 
role for the development and progression of 
PD[3, 6]. Neuro-inflammatory [7], oxidative 
stress[8], mitochondrial dysfunction[9] and 
cell proliferation, differentiation, apoptosis 
involve in the pathogenesis of both familial and 
idiopathic PD [10].

The MAPK cascade is a major intracellular 
signaling system that transmits extracellular 
information to the nucleus and mediates 
various cell responses and plays an significant 
role in cell proliferation, differentiation and 
apoptosis[11], it is one of the important signal-
regulated enzymes that connect the cell surface 
receptors with the decisive gene expression. 
p38 Mitogen-activated protein kinase 
(p38MAPK) is an important member of the 
mitogen-activated protein kinase family. The 
p38MAPK signaling cascade is a major signaling 

pathway for endogenous and endogenous 
stimulation (including growth factors, stress 
and cytokines) in respond to endothelial cell 
function and accordingly mediating a wide 
range of cellular effects, which provides cells 
with mechanisms to responding to external 
mitogenic signals[12-14]. p38MAPK play an 
important role in the pathogenesis of PD.

2. p38MAPK involves in neuro-
inflammation in PD progression 

The PD patients showed accumulation of 
pro-inflammatory cytokines in the brain and 
cerebrospinal fluid, which demonstrates 
that neuro-inflammation is occurring in the 
affected brain area[15, 16]. In vivo evidence 
of neuropathic inflammation in PD patients 
includes cytokines and other molecular 
mediators expression disorders[17-19], 
microglia activation[20], peripheral immune cell 
invasion and changes around the composition 
and performance in Substantia nigra pars 
compacta (SNpc) [21]. Neuro-inflammation is 
thought to be an prominent pathological factor 
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that contributes towards the development and 
progression of PD[22]. 

The development of neuro-inflammation 
plays an important role in the immune system 
of the central nervous system, which includes 
microglia and astrocytes[23]. The neuro-
inflammation process begins with the activation 
of glial cells, producing many neurotoxic 
components including reactive oxygen 
species (ROS), nitric oxide synthase (NOS), 
cytokines and other inflammatory mediators, 
all of which can lead to neurodegeneration[24, 
25]. Inflammatory triggers such as Aβ, 
lipopolysaccharide (LPS) and MPTP can trigger 
inflammation and activate microglial cells. In 
addition to the generation of large amounts of 
free radicals after microglial activation, a large 
number of pro-inflammatory cytokines are 
released, such as IL-1β, TNF-α, TNF-γ.[26, 27]. 
These inflammatory mediators can damage 
neurons and further activate microglial cells 
resulting in a vicious circle that aggravates 
neuro-inflammation and degeneration[28].

Activated microglia is observed in various 
degenerative neurological conditions such 
as PD and amyotrophic lateral sclerosis (ALS). 
Activated microglia can also increase ROS 
such as NO, superoxide Etc. As a result, these 
reactive substances can pass directly through 
the dopaminergic neurons against the 
endogenous antioxidant system and eventually 
cause oxidative stress and degeneration of 
dopaminergic neurons[29]. In addition, a series 
of enzymes, such as inducible nitric oxide 
synthase (iNOS) and cyclooxygenase (COX) 1 
and 2 can be produced, which can cause some 
damage to dopaminergic neurons[30-32]. 

p38MAPK plays an important role in neuro-
inflammation and degeneration. Microglia 
reaction is the core of dopamine neuron 
degeneration, and recent studies have shown 
that p38MAPK signaling pathway plays a key 
role in microglial activation and response 
impact[33, 34]. Rotenone, dexmedetomidine 
and paraquat can all activate microglial cells 
by directly activating p38MAPK, which release 
large amounts of cytokines and thus damaging 
dopamine neurons[22, 35, 36]. These toxins 
can also induce NF-κB activation by directly 
activating p38MAPK, and iNOS expression is 
up-regulated. In glial cells, p38MAPK induces 

iNOS to catalyze the production of nitric oxide 
(NO) in a large amount, excessive NO can cause 
lipid peroxidation and other nerve damage[37, 
38], inhibiting the synthesis of DNA, leading to 
neuron death. It can also react with superoxide 
radicals to generate peroxynitrite and initiate 
a series of cytotoxicity, eventually leading to 
neuron loss [39]. 

In the 1-methyl-4-phenyl-1,2,3,6-tetra-
hydropyridine (MPTP) induced Parkinson’s 
disease model mice, MPTP can induce the 
activation of p38 MAPK in the midbrain 
substantia nigra[40-42]. The activation of p38 
leads to the phosphorylation of p38 and the 
increase of p-p38 leads to the up-regulation 
of cyclooxygenase-2 (COX-2), and the up-
regulation of COX-2 increases prostaglandin 
E2 (PGE2)[31, 40]. COX-2 overexpression, 
COX-2-mediated inflammatory response will 
further activate caspase-3, which results in 
dopaminergic neuron degeneration[43]. In 
addition, the high expression of COX-2 can 
induce inflammatory response, make reactive 
glial cell proliferation, increase the release of 
collagen damage[43, 44]. COX-2 overexpression 
and its mediated inflammatory response 
involve in the oxidative stress response in 
the substantia nigra and cause damage to 
dopaminergic neurons [45, 46].

Lipopolysaccharide (LPS) is a major 
component of gram-negative bacterial cell 
walls and is now known to be an effective 
stimulator of macrophages in the brain. In vitro 
and in vivo studies have shown that LPS induced 
the activation of microglial cells leading to 
ROS, NOS and pro-inflammatory factors such 

as IL-1β, IL-6, TNF-α,IFNs production[47, 48]. 
p38 signaling cascade contributes to immune-
related cytotoxicity and neurodegenerative 
disease sequelae, in the LPS-induced PD model, 
LPS induces activation of the p38 and JNK 
pathways, which can increase IL-1β, TNF-α and 
the production of iNOS, which eventually leads 
to midbrain neuronal death. [24].

3. p38MAPK acts in oxidative 
stress in PD development

Oxygen is essential for all human life activities, 
and is crucial for all living cells. Oxidative stress 
exerts a causative role of in loss of dopamine 
neurons, which has been considered to be 
the  pathological hallmark of PD. Genetic, 
environmental, drugs and other factors can 
induce oxidative stress response, triggering the 
body’s redox reaction imbalance, resulting in 
dopamine neuron loss[49-51].

Oxidative stress triggers the p38 MAPK 
pathway, activating mitochondria and other 
mitochondrial apoptotic pathways in dopamine 
neurons. Paraquat, rotenone and MPTP all can 
directly or indirectly activate the p38MAPK 
pathway, resulting in increased accumulation 
of ROS [35, 52]. On the other hand, activated 
p38MAPK can enhance the oxidative stress, 
making neurodegeneration[39].

Oxidative stress increases the steady-
state levels of ROS and the ROS can regulate 
the activation of MAPKs in various stimuli-
triggered apoptosis[53, 54], the production of 
ROS activates JNK and p38 MAPK[55], which 
can induce the production of ROS increased. 
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Too much ROS can in turn affect the activation 
of p38MAPK, the formation of a feedback loop 
play an important role in the development of 
PD. 

4. p38MAPK makes an 
important role in mitochondrial 
dysfunction in PD occurrence
Mitochondria play a vital role in energy 
metabolism. They provide a large amount of 
available energy in the form of mitochondrial 
ATP for intracellular metabolic pathways[56, 
57]. Mitochondria are highly dynamic, 
multifunctional organelles, in addition to their 
primary role in energy metabolism, they are also 
essential for many cellular processes including 
neurotransmission, synaptic maintenance, 
calcium homeostasis, cell death and neuronal 
survival[58, 59].

Mitochondrial dysfunction is a common 
feature of sporadic and familial PD. The main 
manifestations of mitochondrial dysfunction 
include ROS production, mitochondrial 
electron transport complex enzymatic activity 
defection, ATP depletion, caspase-3 release 
and mitochondrial DNA consumption[60, 
61]. Inhibition of mitochondrial complex I or 
blockade of normal electron transfer may lead 
to ROS increase and ATP decrease[58], which 

may damage mitochondrial DNA, destroy 
respiratory chain and triggering a vicious 
cycle between mitochondrial damage and 
oxidation[4].

Energy failure, oxidative stress, genetic 
mutations and environmental toxicants 
in PD are closely linked to mitochondrial 
dysfunction[61]. Neurotoxins such as MPTP, 
rotenone and paraquat induce the death 
of dopamine neurons directly related 
to the mitochondrial complex I activity 
inhibition, which in turn may cause different 
mitochondrial disorders and subsequently 
neuronal degeneration[60, 62].

Mitochondria metabolism is the major 
sources for ROS that may contribute to 
intracellular oxidative stress, mitochondrial 
respiratory chain disorder, particularly complex 
I deficiency, and the increase of ROS may 
directly or indirectly lead to the production of 
sporadic PD[63-65]. Existing research shows 
that ROS can regulate intracellular signal 
cascades. Excessive ROS production can lead 
to intracellular stimulation and mitochondrial 
damage, eventually leading to apoptosis and 
necrosis.

MPTP, rotenone and paraquat can cause 
mitochondrial dysfunction, triggering other 
stimuli in neurons[42, 66]. MPTP is selectively 

toxic to dopaminergic neurons, it can cross 
the blood-brain barrier in minutes and is 
rapidly metabolized by monoamine oxidase 
B (MAOB) to the active metabolite MPP+ in 
the brain, which is selectively transported to 
dopaminergic neurons[67], then accumulates 
in the mitochondria[68, 69]. MPP+, an active 
metabolite in mitochondria, suppresses 
mitochondrial complex I in the electron 
transport chain, thereby disrupting the 
flow of electrons, leading to a decrease 
in ATP production and an increase in ROS 
production[68-70]. The expression of MAOB is 
regulated by the activation of p38 MAPK, and 
the activation of p38 MAPK is accompanied 
by astrocyte proliferation, and then causes 
astrocytes and neuron loss. The activation of 
MAOB can be prevented by inhibiting the p38 
MAPK pathway[67, 71, 72].

One possibility that cytoplasmic p38 affects 
mitochondria is that p38 activation induces 
the translocation of its substrate (p53) into 
mitochondria, which in turn eliminates 
unhealthy mitochondrial proteins and thereby 
protect mitochondrial dysfunction[73, 74].

On the other hand, activating the 
p38MAPK pathway may indirectly induce the 
mitochondrial pro-apoptotic protein Bax to 
produce CytC by activating p53, and CytC 
can activate caspase-3 and cause apoptosis 
of dopamine neurons[49, 58, 75]. In the study 
done by Fengsen Duan, ROS was found to 
regulate the expression of p38MAPK, eventually 
resulting in mitochondrial damage, which fed 
back each other and formed a vicious circle[55].

Mitochondrial dysfunction splays an 
important role in PD occurrence, progression 
and development. Currently there are many 
substances against mitochondrial damage 
used in PD treatment, such as antioxidant 
enzymes (SOD, CAT), α-lipoic acid, green tea 
polyphenols, melatonin, ginseng water extract, 
all showed an improved effect against PD[76, 
77].

5. Conclusion  

Parkinson’s disease affects approximately 
1–2% of the population over 65 years of age, 
and up to 5% of the population by age 85. 
Though efforts have been made to elucidate 
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the PD pathogenesis, the mechanisms are still 
not understood clearly. Neuro-inflammation, 
oxidative stress can accelerate the progress 
and development of Parkinson’s disease. 
Mitochondrial dysfunction plays an important 
role in the occurrence of PD[39].

p38, as a key member of the signal 
transduction pathways, plays a crucial role 
during the process of apoptosis. More and 
more evidence has shown that the activation 
of p38 MAPK signal pathway has a  vital role 
in promoting the development of PD and 
the inhibitory effect of p38 can appropriately 
improve the therapeutic effect of PD, which 
may provide a new medicinal strategy for the 
treatment of PD, this pathway can be used as 
a breakthrough in the study of Parkinson’s 
disease, and then find effective control disease 
treatment. In vitro experimental studies 
showed that minocycline could prevent NO-
induced phosphorylation of p38 and cell death 
associated with NO-induced toxicity, which was 
neuroprotective in many neurodegenerative 
models, such as the 1-methyl-4-phenyl-1, 
2,3,6-hydrogen pyridine (MPTP) model of 
PD[78, 79].

Although there are many researches and 
some medicines have a therapeutic effect on 
Parkinson’s disease, none of them cure the 
disease fundamentally. Neuro-inflammation, 
oxidative stress and mitochondrial dysfunction 
in PD are closely liked to p38MAPK, it may be 

Fig 3. p38MAPK makes an important role in mitochondrial in PD occurrence
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a target to PD. So for best understanding this 
signal pathway in PD occurrence progress and 
development is essential[80].
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