
Proteomics: Clinical and research applications in respiratory 
diseases

Katy C. Norman, B.S, M.S1, Bethany B. Moore, PhD2,3, Kelly B. Arnold, PhD1, and David N. 
O’Dwyer, MB, BCh, BAO, PhD2

1Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.

2Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of 
Michigan Medical School, Ann Arbor, USA.

3Department of Microbiology and Immunology, University of Michigan, Ann Arbor, USA

Abstract

The proteome is the study of the protein content of a definable component of an organism in 

biology. However, the tissue specific expression of proteins and the varied post translational 

modifications, splice variants and protein - protein complexes that may form, make the study of 

protein a challenging yet vital tool in answering many of the unanswered questions in medicine 

and biology to date. Indeed, the spatial, temporal and functional composition of proteins in the 

human body has proven difficult to elucidate for many years. Given the effect of microRNA and 

epigenetic regulation on silencing and enhancing gene transcription, the study of protein arguably 

provides more accurate information on homeostasis and perturbation in health and disease. There 

have been significant advances in the field of proteomics in recent years, with new technologies 

and platforms available to the research community. In this review, we briefly discuss some of these 

new technologies and developments in the context of respiratory disease. We also discuss the types 

of data science approaches to analyses and interpretation of the large volumes of data generated in 

proteomic studies. We discuss the application of these technologies with regard to respiratory 

disease and highlight the potential for proteomics in generating major advances in the 

understanding of respiratory pathophysiology into the future.
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1. Introduction

Proteomics is the study of “proteomes” or the study and characterization of the protein 

composition of a cell, organ or other definable compartment of living organisms. Proteins 

are compounds of one or more long chains of amino acids and are vital parts of all living 

Corresponding author: David N. O’Dwyer MB BCh BAO PhD, Division of Pulmonary and Critical Care Medicine, 2C31D, 300 North 
Ingalls Building/5413, University of Michigan, Ann Arbor, MI, USA., Fax: +1 734-615-2331, Ph: +1 734-764-4554, 
dodwyer@med.umich.edu. 

HHS Public Access
Author manuscript
Respirology. Author manuscript; available in PMC 2019 November 01.

Published in final edited form as:
Respirology. 2018 November ; 23(11): 993–1003. doi:10.1111/resp.13383.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



organisms. Amino acids are compounds composed of both a carboxyl (—COOH) and an 

amino (—NH2) group and form the building blocks of proteins. These proteins are generated 

from translation of mRNA and provide the principal information on how cells or organs 

function1. The lung is a fascinating and complex arena for proteomic studies, with innate 

and adaptive immune systems, extracellular matrix/interstitium, resident and recruited 

leucocytes, and an epithelial lining that is constantly exposed to the external environment. 

Pulmonary diseases remain a major contributor to global morbidity and mortality and there 

are many difficult questions that remain unanswered in pulmonary pathophysiology2. 

Proteomics has the potential to address many of these shortcomings.

Protein is generated from translation of mRNA, yet flow of information from DNA to 

mRNA and then protein is confounded by epigenetic changes and microRNAs which can 

work to alter, amplify or dampen these genetic signals3,4. The human genome consists of 

approximately 31,000 protein coding genes5, and remains largely unchanged throughout life. 

Therefore, study of DNA and mRNA sequences does not account for changing 

environmental influences. Nucleic acid studies provide data on the potential for organ and 

cellular pathobiology and risk of disease and perturbation5,6. However, the human proteome 

adds incredible complexity to the human genome. The tissue specific expression of genes, 

translation of protein and subsequent splice variants, post translational modifications 

(PTMs) and protein-protein complexes/interactions7 and regulation of protein abundance 

largely at a translational level8 mean that interrogating the human proteome is arguably more 

challenging than interrogating the human genome (Fig.1).

Historically, technologies available to quantify protein in biological matrices were limited, 

costly and cumbersome. There has been considerable recent progress. The human proteome 

has been tentatively mapped using an integrative omics’ approach (transcriptomics and 

antibody based techniques) and represents a major step forward for proteomic research9. 

Central to this has been development of the human protein atlas, an invaluable research tool 

for protein localization and tissue expression, which includes a proteome map of normal 

human lung10,11. One of the major focuses of proteomic research to date has been 

identification of accurate disease biomarkers and targets for intervention12. Proteomics 

arguably has the most potential of the “omics” fields to provide new knowledge on disease 

pathogenesis, generate reliable biomarkers and facilitate discovery of new therapeutic 

strategies for human disease.

In this review, we discuss some of the recent advances in proteomic technology and describe 

current proteomic applications including mass spectrometry and aptamer approaches. We 

also detail several bioinformatics techniques and workflows to approach, analyze and 

interpret proteomic data. Finally, we highlight the application of proteomic technology to 

respiratory diseases and discuss some of the potential future uses of these technologies.

2. Proteomics applications and challenges

Herein, we provide a basic guide to some proteomic applications, namely mass spectrometry 

(MS) and aptamer approaches. An important consideration is that proteomic platforms are 

constantly evolving, have mixed versatility, difficulty and technical challenges. For instance, 
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the field includes diverse projects from cell organelle protein expression profiling to human 

blood biomarker identification. Certain platforms may be better suited to addressing 

different scientific questions over others. All proteomic approaches will not be covered here 

and the interested reader is directed to a comprehensive review of proteomic applications 

and mass spectrometry elsewhere13.

Challenges in proteomic applications have been significant and have dampened enthusiasm 

for these platforms over the years. The spectrum of proteins that exist span a dynamic 

concentration range of at least 12 logs and this has hampered progress14,15. For instance, 

albumin, a large abundant protein in plasma is separated from the rarest measurable plasma 

proteins by 10 orders of magnitude15. The complexity of proteins involving splice variant 

and PTMs has also generated difficulties. The exact frequency of PTMs is unclear although 

the top 15 experimentally validated modifications represent the bulk of reported PTMs16. 

Common PTMs are listed in Table 1. Moreover, splice variants add further complexity. 

Indeed, fibronectin, an important component of the pulmonary interstitium, has more than 

20 known isoforms17. Despite these hurdles, new advances have improved our technical 

abilities and these challenges have become less daunting.

2.1 Mass Spectrometry (MS)

Significant advances in MS technology have accumulated in the last decade. These advances 

have improved the ability of these platforms to accurately measure thousands of proteins in a 

biological matrix.

Protein extraction from biological samples requires pre-formed knowledge of study design 

as different types of biological matrices and methods of extraction may induce bias and 

affect protein quantity and activity. For instance, blood within a tissue sample may give non 

representative falsely elevated results for certain proteins. Lysis and digestion of a biological 

matrix can generate peptide mixtures which need some degree of fractionation or enrichment 

to be compatible with proteomic applications. Fractionation can be achieved based on 

charge, isoelectric point or hydrophobicity properties of peptides and is typically achieved 

using gel electrophoresis, affinity chromatography or isoelectric focusing13. Specific subsets 

of peptides can be enriched by targeting PTMs (e.g. phosphorylation, acetylation) using 

affinity resins or antibody immunoprecipitation. Liquid chromatography (LC) is then applied 

to the reduced samples for further separation and sample reduction. MS is the next crucial 

analytical step as information garnered is then used to identify varied proteins. In brief, as 

MS measures the mass to charge ratio of ions (m/z) in gas phase, peptides must be 

transferred into the gas phase and then ionized. Once ionized, peptide precursor ions are 

submitted to the mass spectrometer where the m/z ratio is measured. Single precursor ions 

are selected then and subjected to tandem MS to generate characteristic fragment ions. This 

combination of precursor m/z ratio and its fragment ions is then matched to known peptide 

sequences from curated protein databases for protein identification. There are multiple 

technologies and methods for peptide fractionation, enrichment, ionization and types of 

mass spectrometers commercially available13. MS has been used widely in biomarker 

studies of respiratory disease to date including chronic obstructive pulmonary disease 
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(COPD)18–20, acute respiratory distress syndrome (ARDS)21–23 and interstitial lung disease 

(ILD)24–26.

2.2 Aptamer based techniques

Aptamers are short single stranded RNA or DNA oligonucleotides that bind specific parts of 

a target molecule with high affinity and specificity27. Aptamer generation is less expensive 

and less arduous than antibody generation, and aptamers are not known to be toxic or 

immunogenic28. In recent years a new class of aptamer has been developed, termed slow off-

rate modified aptamers (SOMAmers), which consist of single stranded DNA-based 

molecular recognition elements29,30. They are fully synthetic and developed in vitro using 

libraries of randomized sequences through modifications of the systematic evolution of 

ligands by exponential enrichment (SELEX) process. The selected SOMAmers have distinct 

recognizable nucleotide sequences and act as protein binding elements with defined shapes. 

The nucleotide sequences can be recognized by complimentary hybridization probes. The 

assay takes advantage of the slow dissociation rate between SOMAmers and their cognate 

proteins. Non-cognate interactions between SOMAmers and protein will dissociate rapidly. 

The cognate SOMAmers are hybridized to complementary probes on a standard DNA 

microarray. The SOMAmer data quantitatively represents the protein concentration in the 

sampled matrix. This is achieved by converting the assay signal in relative fluorescent units 

to protein concentration31. SOMAmers have been used to develop biomarker tools in several 

forms of respiratory disease including lung cancer32–34, pulmonary tuberculosis35,36 and 

idiopathic pulmonary fibrosis (IPF)37,38.

3. Bioinformatics Analysis of Proteomic Data

New proteomic experimental technologies generate large volumes of data, but a major 

challenge lies in analyzing these data to provide new biological insight. The fields of 

bioinformatics, computational biology and systems biology have developed techniques to 

facilitate curating, analysis and interpretation of “omics” data with many of these 

approaches described as either data-driven or knowledge-based39. Data-driven approaches 

rely only on protein data to identify proteins of interest in differentiating clinical or 

biological groups, and knowledge-based approaches rely on previously reported functions 

and pathways.

3.1 Data-driven Analysis

The goal of data-driven analysis is to use proteomic data to discover new proteins that are 

associated with certain experimental or clinical groups, without employing prior knowledge 

of these proteins’ functions. One way to begin analysis of a new proteomics dataset involves 

employing data-driven tools to enable visualization of the overall differences in protein 

expression data between clinical or biological groups. A common method used to visualize 

protein expression is a volcano plot, which displays information about each protein’s fold 

change in expression across groups on the x axis, vs. the significance of this change 

(determined by t test or other statistical analysis) on the y axis40 (Fig.2A). Since determining 

statistical significance in large proteomic data sets may involve performing many statistical 

tests, it is important to correct for multiple comparisons to control for the Type I error rate in 
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order to reduce the number of false positive findings. The Bonferroni41 or Benjamini-

Hochberg42 correction are common tests used in order to control for this, and can also be 

displayed on the volcano plot (Fig.2A).

Hierarchical clustering is another visualization technique that additionally highlights the 

presence of protein clusters that differentiate multiple groups of interest. The hierarchical 

clustering algorithm employs a distance metric (such as Pearson’s correlation coefficient, 

Euclidean distance, or others described by Jaskowiak et al.43) to cluster samples and proteins 

in terms of similarity. Identified clusters can then be displayed as dendrograms, with an 

associated heat map of color intensity to display changes in expression of each protein 

across groups of interest (Fig.2B).

Two other data-driven analytical approaches used to visualize differences between clinical or 

biological groups employ linear algebra: principal components analysis (PCA) and partial 

least squares discriminant analysis (PLSDA)44,45. PCA and PLSDA algorithms identify 

weighted linear combinations (or “patterns”) of measured proteins that capture variance 

across the samples. Each sample can then be plotted on these key combinations (called latent 

variables (LV) in PLSDA and principal components (PC) in PCA), generating an 

interpretable scores plot in which differences between groups of interest may be visualized. 

Although PCA and PLSDA create figures that can look similar, an important difference 

between them is that the PLSDA algorithm also receives information about patient groups 

and searches for variance that differentiates these groups, making it a “supervised” approach 

(Fig.2C, 2D). In contrast, PCA only evaluates overall variance (without information about 

groups), making it “unsupervised”.

Another approach for evaluating large proteomic datasets is correlation network analysis, 

which enables graphical visualization of significant correlations between protein pairs. 

Correlation networks are constructed by calculating Pearson or Spearman correlation 

coefficients between measured proteins. A map is then created indicating significant 

connections and the strength of each correlation (Fig.2E). These graphs allow quick 

identification of highly connected proteins that may be network regulators, and how these 

interactions change across groups. Again, multiple comparison tests should be used to 

reduce Type 1 Error.

In addition to visualization, data-driven approaches are also useful for eliminating proteins 

that are not relevant to a biological or clinical question of interest. In proteomics datasets, 

considerably large numbers of proteins may be unchanged between groups of interest, 

masking the important and differentially regulated proteins. In this case, quantitative feature 

selection techniques inherent to some data-driven approaches can be used to identify 

subsets, or “minimum signatures,” of proteins that best separate the groups of interest. Two 

such examples are the least absolute shrinkage and selection operator method (LASSO)46 

and selection using variable importance in projection (VIP) scores in PLSDA47.

3.2 Knowledge-based Analysis

Knowledge-based bioinformatics tools take advantage of prior knowledge to analyze 

proteomics datasets in the context of known protein function and ontology. These tools 
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enable identification of biological pathways that are both enriched in the dataset and known 

to be involved in specific functions and processes.

Knowledge-based analysis employs previously generated databases where proteins have 

been tagged with unique identifier labels. Uniprot IDs48 are the most commonly used 

protein identifiers, though gene IDs (with gene identifiers given by Ensembl49) or the 

Enzyme Commission numbering system50 are also often used in proteomics. The choice in 

which identifier to use depends on the type of proteins that are being measured, and on 

which identifiers a given knowledge-based database will accept. Once proteins are linked 

with unique identifiers, prior knowledge databases with annotated information about 

biological functions and pathways can be employed to identify associated processes. One 

such tool is Gene Ontology (GO)51. GO terms, which standardize the naming of genes and 

gene products, are used to report the specific “biological processes,” “molecular functions,” 

and “cellular compartments” annotations associated with measured genes and proteins. 

Similar to GO terms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) links protein 

and gene names with their functions and chemical information52. KEGG differs from GO in 

that it is more focused on known protein interactions. KEGG’s mapped pathways include 

those describing metabolism, human disease, signal transduction, and many others. Other 

pathway databases include Reactome53, PANTHER pathways54, and WikiPathways55.

In addition to biological annotation, knowledge-based analysis can be used to identify 

functions or pathways that are significantly enriched in datasets of interest. This involves 

comparing how many times a certain pathway is included in the protein set of interest with 

how many times it appears in a reference (control) set of proteins or genes, (such as that 

organism’s genome). A p-value can be calculated and used to determine if the pathway is 

significantly enriched in the proteomic dataset of interest. One such tool that both annotates 

proteins and performs functional enrichment analyses is the Database for Annotation, 

Visualization and Integrated Discovery (DAVID)56. DAVID’s strength is that it performs 

enrichment analyses on multiple annotation types (such as GO terms and KEGG pathways) 

and displays the results in both charts and clustered heat maps. Other knowledge-based 

enrichment analysis and visualization tools include Cytoscape57 and its ClueGO plug in58, 

EnrichNet59, and the commercial Ingenuity Pathway Analysis (IPA)60, as well as others as 

described by Laukens et al.61.

3.3 Combining Data-driven and Knowledge-based Analysis Techniques

Data-driven and knowledge-based proteomic analyses complement each other well when 

combined. In this process, data-driven tools can identify key minimum signatures of proteins 

that differentiate the groups of interest, with knowledge-based tools providing a deeper 

biological context for this smaller list of proteins. For example, a feature selection technique 

(LASSO or VIP scores) or a volcano plot can be used to narrow down the proteomics dataset 

into a list of the proteins that vary between the groups of interest. These identified 

significant proteins can subsequently be labeled with Uniprot IDs and input into DAVID to 

discover enriched pathways and biological processes, generating new hypotheses regarding 

mechanisms of action associated with disease.
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4. Proteomic Applications in Respiratory Disease:

Diseases of the respiratory system remain a major source of global morbidity and mortality2. 

Proteomic discovery in lung is a rapidly evolving field, and currently much of the focus has 

been centered on the role of proteomics in lung cancer (Fig.3).

4.1 IPF

IPF is the most common form of ILD and is invariably fatal with a median survival of 2 to 3 

years62. IPF etiology and pathogenesis are poorly understood63. The disease results in 

aberrant accumulation of extracellular matrix within the interstitium of the lung, promoting 

impaired gas exchange and respiratory failure37.

However, recent studies have started to explore differences in protein expression and 

profiling in IPF patients. Comparative proteomic analysis of lung tissue samples derived 

from IPF patients and human donor transplant lungs using 2D gel electrophoresis and 

matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS demonstrated 

significant differences in protein expression25. Fifty-one proteins were upregulated and 38 

down-regulated in IPF lung compared to normal. Proteins involved in unfolded protein 

response (UPR) were upregulated and immunohistochemistry confirmed induction of 

markers of UPR within type 2 pneumocytes. Furthermore, there was downregulation of anti-

oxidants and structural epithelial proteins supporting epithelial cell injury as a key feature of 

IPF pathogenesis. The ability to differentiate between different types of ILD pathology using 

proteomic profiles would mark a major advancement in ILD management. Landi et al. 
employed bronchoalveolar lavage fluid (BALF) derived from IPF, sarcoidosis, Langerhans 

cell histiocytosis and scleroderma (SSc) associated ILD patients to examine differentially 

expressed protein profiles26. They reported novel findings supporting the regulation of ILD 

pathogenesis by factors in alternative complement activation, blood coagulation, protein 

folding and Slit-Robo signaling. The acquisition of BALF however may be challenging in 

chronic lung disease. Recent work by our group applied novel aptamer approaches to 

investigate the blood plasma proteome in IPF patients from the COMET study38. 

SOMAmers were measured in IPF patients and then analyzed to generate a panel of 6 

plasma biomarkers to predict disease progression based on a composite disease progression 

index. IPF patients with high levels of inducible T cell costimulatory (ICOS) and trypsin 3 

(TRY3) and low levels of ficolin-2 (FCN2), cathepsin-S (Cath-S), legumain (LGMN), and 

soluble vascular endothelial growth factor receptor 2 (VEGFsR2) predicted poorer 

progression-free survival. We next examined the differential expression of plasma proteins in 

healthy volunteers and IPF patients. In this recent proof of concept study, we employed 

hierarchical clustering of statistically significant differentially expressed proteins in IPF 

patients and healthy volunteers, demonstrating visually distinct plasma proteomes between 

healthy volunteers and IPF patients37 (Fig.4). This study highlights the potential use of 

proteomic profiles derived from easily accessible blood in the diagnostic workup of ILD 

patients. Foster and colleagues recently employed two different proteomic platforms to 

BALF from IPF patients and demonstrated the increased expression of osteopontin64. This 

work importantly validating previous studies and results across quantitative proteomic 

platforms65. Schiller et al. recently applied quantitative label free mass spectrometry to 
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address common protein regulations across apparently heterogeneous lung fibrosis tissue 

from human patients (including IPF)66. They report a possible common regulator, MZB1 + 

plasma B cells, present at high prevalence in both fibrotic lung and skin tissue including IPF, 

hypersensitivity pneumonitis (HP), cryptogenic organizing pneumonia (COP), scleroderma 

associated ILD and unclassifiable ILD.

4.2 Asthma

Asthma is a chronic inflammatory airway disorder characterized by variable airflow 

obstruction67. The disease is associated with exposure to aeroallergens which leads to 

immunological changes within the airway epithelium. To date, there are several studies that 

have examined the role of proteomic technologies in both development of biomarkers and 

improved understanding of asthma pathogenesis.

Initial studies using high performance liquid chromatography (HPLC) resulted in discovery 

of the chemokine CCL5 (RANTES) as a BALF biomarker of allergic inflammation and 

eosinophilic activation in asthma patients68. A further study of endobronchial biopsies in a 

small number of asthma patients and healthy volunteers using mass spectrometry also 

identified CCL5 as a biomarker. These authors used pathway analysis to identity 

biologically important functional pathways including acute phase response, cell-cell 

signaling and tissue development in asthmatic airways compared to controls69. Hamsten and 

colleagues also demonstrated alterations in CCL5 plasma protein levels with significantly 

lower levels reported in children with persistent asthma compared to controls70. Wu et al. 
used LC-MS/MS of BALF samples after allergen challenge in asthma patients to describe 

the complex biological pathways activated in the lung71. They found approximately 150 

proteins that were upregulated in response to allergen exposure in BALF, and the 

upregulated proteins were associated with wide ranging functional pathways including 

proteolysis, inflammation, cell proliferation and signal transduction. Potentially interesting 

upregulated proteins included MMP9 and SERPINA3. MMP9 is a matrix metalloproteinase 

involved in lung remodeling that is generated in part by airway neutrophils72. Proteomic 

studies of sputum samples from asthma patients have also been employed to study asthma 

pathobiology. Gharib et al. examined airway sputum samples from 10 patients and reported 

17 target proteins including alpha 1-antichymotrypsin73. Sputum samples are acquired by 

non-invasive means and therefore provide an advantage over other types of pulmonary 

sampling. Aptamer approaches have also been reported in studies of asthma. Loza et al. 
reported increases in serum CRP and IgE and reductions in serum carbonic anhydrase 6 and 

osteomodulin in severe asthma74.

4.3 COPD

COPD is a common disease with global impact and high related morbidity and mortality. 

COPD is characterized by airflow obstruction that is poorly reversible75. There is 

obstruction of small airways and destruction of distal alveolar structures resulting in air 

trapping, impaired gas exchange, cough, dyspnea and sputum production76. Proteomic 

approaches have been utilized in studies of COPD from BALF, tissue and blood for 

biomarker discovery. Nano-LC-MS techniques identified 76 differentially expressed proteins 

in BALF from COPD patients, and pathway analysis identified biological processes 
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including inflammatory processes, glycolysis, and oxidation reduction77. Given the issues 

with dilution of epithelial lining fluid (ELF) on BALF acquisition, one investigative group 

obtained ELF directly from the airway using microprobes during bronchoscopy and then 

applied microfluidics based nano-LC-MS/MS to identify and quantify proteins in the ELF of 

COPD patients. They identified elevated levels of lactotransferrin, high-mobility group 

protein B1 (HGMB1) and alpha-1 antichymotrypsin in ELF from COPD patients compared 

to healthy controls78. Interestingly, alpha-1 antichymotrypsin encoded for by the SERPINA 

3 gene is reportedly elevated in the sputum of asthma patients, possibly reflecting a shared 

mechanism in chronic inflammatory airway disorders71. Studies have also examined 

proteins in sputum to better understand COPD pathogenesis. Baraniuk and colleagues 

identified a higher abundance of mucin 5AC in sputum from COPD and healthy smokers. 

Patients with emphysema features had higher levels of defensins and protein components of 

neutrophil extracellular traps (NETS)79. Lee et al. employed MALDI-TOF-MS in tissue 

samples from COPD patients and healthy smokers19. They reported significant upregulation 

of MMP-13 mainly in alveolar macrophages and thioredoxin-like 2 (TXL2) in bronchial 

epithelium compared to healthy smokers. A further comprehensive study of tissue, plasma 

and sputum in COPD, IPF and alpha-1-antitrypsin deficiency patients identified the protein 

transglutaminase 2 (TGM2) as a COPD specific protein80. Tissue levels of TGM2 associated 

with disease severity, and sputum and plasma levels of TGM2 correlated with FEV1% 

predicted values.

4.4 Lung Cancer

The detection of lung cancer during the early phases of disease is crucial to providing 

optimal management strategies and potential cure, as it is often diagnosed at an advanced 

stage81. Therefore, the discovery of accurate and reliable biomarkers is an important goal. 

Extensive use of proteomic research applications has occurred in the lung cancer field but 

the proposed biomarkers have yet to be adopted for clinical applications82. Most lung cancer 

proteomic studies have been undertaken in diseased tissue samples, however some studies 

have been carried out on serum, blood, BALF, pleural fluid and saliva82.

Wu et al. studied plasma samples from lung adenocarcinoma (NSCLC) patients and age and 

gender matched healthy controls and reported nine candidate proteins that discriminated 

between cancer and health83. These proteins included gelsolin (GSN), galectin-1 (LGALS1) 

and actin cytoplasmic 1 (ACTB). It may be possible to use blood proteomics to stratify risk 

of developing lung cancer. One study applied proteomics to plasma from never, current or 

former smokers and reported a significant association with plasma apolipoprotein E (APOE) 

levels and the development of squamous metaplasia in the lungs, supporting the potential to 

develop proteomic plasma biomarkers capable of predicting pre-malignant and early forms 

of lung cancer84. However, lung tissue samples from cancer patients have received more 

extensive analysis. Numerous studies have analyzed proteomic changes within lung tissue 

samples. Pernemalm et al. used isobaric tags for relative and absolute quantitation (ITRAQ) 

based quantitative proteomics to compare lung cancer tissue samples associated with 2-year 

relapse and those without relapse. Using pathway analysis, they reported tumors associated 

with relapse had a higher dependence on glycolysis and higher hypoxia inducible factor 

(HIF) activity85. Kikuchi et al. pooled samples of lung adenocarcinoma (AC), squamous 
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carcinoma (SCC) and control tissue and used shotgun proteomics to profile the lung tumor 

proteome. They found higher levels of Mapsin (SERPINAB5) in SCC tissue samples and 

identified for the first time, dysregulation of the p21-activated kinases in NSCLC86.

5. Translating Proteomic studies

To date, the results of many proteomic studies in medicine have been centered on the 

development of reliable biomarkers for disease and outcomes. For instance, the largest 

aptamer study of plasma proteins to date was employed to risk stratify patients with 

cardiovascular disease87. However, it is important to note that the study of proteins may have 

vast implications in medicine and science. Proteomics platforms may be used to generate 

hypothesis on disease pathophysiology, develop new therapies and novel strategies and 

assess for clinical efficacy and safety of new drugs88–91. Given the array of proteomic tools 

available including ELISA, aptamer and MS platforms, an important goal for the field is an 

improved understanding of accuracy and reproducibility across proteome specific platforms. 

These questions remain difficult to address without large scale cross platform studies in 

humans. We have previously shown significant correlations between protein measured by 

both ELISA and aptamer techniques within the same human cohort38. However, this is an 

area where further study is required. The future of proteomics is exciting and likely to yield 

major advances in medicine. Recent work has shown how proteomics may be integrated 

with genomic data to demonstrate overlap between quantitative gene, protein and disease 

associated loci, with evidence of causal links between specific proteins and disease92. These 

advances may lead to accurate mapping in real-time of disease states, biological pathways 

and therapeutic targets.

6. Conclusion

The last two decades have ushered in a timely revolution in proteomics. New technologies 

and modifications of old ones are facilitating studies of thousands of proteins in biological 

samples, allowing for an ever improved understanding of protein expression, function and 

dynamics. Leveraging the power of proteomics to provide an accurate estimate of immediate 

health or disease remains an achievable and vital goal. The continued evolution and 

expansion of proteomic technologies such as aptamer approaches and the parallel 

development of bioinformatics tools and applications will facilitate this goal. While 

challenges remain, evolving proteomic applications and the era of integrating genomic and 

proteomic human data in disease and health will alter the current architecture of how we 

understand, diagnose and manage human disease in the lung and elsewhere in the body.
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PCA principal component analysis

PLSDA partial least squares discriminant analysis

LV latent variables

LASSO least absolute shrinkage and selection operator

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

DAVID Database for Annotation, Visualization and Integrated 

Discovery

MALDI matrix-assisted laser desorption/ionization

TOF time of flight

UPR unfolded protein response

BALF bronchoalveolar lavage fluid

SSc scleroderma

ICOS inducible T cell costimulatory

TRY3 trypsin 3

FCN2 ficolin-2

Cath-S cathepsin-S

LGMN legumain

VEGFsR2 soluble vascular endothelial growth factor receptor 2

HP hypersensitivity pneumonitis

COP cryptogenic organizing pneumonia

MZB Marginal Zone B And B1 Cell Specific Protein

HPLC high performance liquid chromatography

CCL5/RANTES Regulated Upon Activation, Normally T-Expressed And 

Presumably Secreted

MMP9 matrix metalloprotease 9

SERPINA3 Serpin Family A Member 3

2D-DIGE 2 dimensional difference gel electrophoresis

VEGF vascular endothelial growth factor

FABP5 fatty acid binding protein 5
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CRP C reactive protein

IgE immunoglobulin E

ELF epithelial lining fluid

HGMB1 high-mobility group protein

NETS neutrophil extracellular traps

MMP-13 matrix metalloproteinase 13

TXL2 thioredoxin-like 2

TGM2 transglutaminase 2

FEV1 forced expiratory volume in 1 second

NSCLC non-small cell lung carcinoma

SCLC small cell lung carcinoma

GSN gelsolin

LGALS1 Galectin-1

ACTB actin cytoplasmic 1

SERPINA4 Serpin Family A Member 4

PON1 arylesterase 1

APOE Apolipoprotein E

ITRAQ Isobaric tags for relative and absolute quantitation

HIF hypoxia inducible factor

AC adenocarcinoma

SCC squamous carcinoma

SERPINAB5 Mapsin

PCA principal components analysis

PLSDA partial least squares discriminant analysis

LV latent variable

PC principal component

LASSO least absolute shrinkage and selection operator

VIP variable importance in projection

GO gene ontology
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KEGG Kyoto encyclopedia of genes and genomes

DAVID database for annotation, visualization and integrated 

discovery

IPA Ingenuity Pathway Analysis
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Figure 1. The increasing complexity of the proteome.
The flow of information from DNA to mRNA and then protein is associated with ever 

increasing complexity. This is emphasized at the protein stage where subcellular 

localization, spatial transiency, multiple isoforms, large numbers of potential post 

translational modifications and protein-protein interactions lead to changes in expression and 

function.
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Figure 2. Data-driven analysis aids in proteome visualization.
(A) A volcano plot highlights significantly differences in expressed proteins between Groups 

A and B. Red indicates proteins that were significantly different (p < 0.05) between the two 

groups after correcting for multiple comparisons with the Bonferroni test. (B) Hierarchical 

clustering illustrates groupings of proteins that differ in expression between Group A and B. 

Color intensity indicates abundance, with increased expression in red, white unchanged, and 

decreased expression in blue compared to mean values (color bar to left of figure). Pearson’s 

correlation was used as the distance metric in this cluster. (C) A PLSDA scores plot 

illustrates distinct clustering between Groups A and B with loadings (D) indicating a distinct 

signature (determined using LASSO) of 22 proteins that best classified Groups A and B. (E) 

A protein correlation network based on protein expression in Group A. Each node is a 

protein, with lines indicating significant correlations (p < 0.05) to other proteins. Line 

thickness and color indicates Pearson’s correlation coefficient, with node size indicating the 

number of significant correlations. Significance was determined after correcting for the Type 

1 error with the Bonferroni method.
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Figure 3. Proteomic studies in respiratory disease: increasing interest and number of 
publications.
The number of PubMed citations from the year 2000 to 2017 were recorded for each of the 

following: Lung Cancer, COPD, Asthma, Pneumonia, and IPF. MESH terms “proteomics” 

and “specific lung disease” (i.e IPF) were used as input. No filters were applied.
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Figure 4. The peripheral blood proteome of IPF differs from healthy.
Hierarchical clustering of 1129 measured blood proteins in healthy and IPF patients 

illustrates visually distinct expression in the two groups. Proteomic abundance is displayed 

with color intensity, with red indicating overabundant proteins and blue indicating 

underabundant proteins compared to the mean expression level. Clustering was created using 

unsupervised average linkage with Pearson’s correlation as the distance metric.
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Table 1

Common post translational modifications

Phosphoserine 4-hydroxyproline

Phosphothreonine Pyrrolidone carboxylic acid

N-linked glycosylation N-acetylalanine

N-6 acetyllysine O-linked glycosylation

Glycyl lysine isopeptide Phosphotyrosine

Citrullination
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