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Due to the cyclic function of the human heart, pressure and flow in the circulation are pulsatile rather than continuous. Addressing pulsa-
tile haemodynamics starts with the most convenient measurement, brachial pulse pressure, which is widely available, related to develop-
ment and treatment of heart failure (HF), but often confounded in patients with established HF. The next level of analysis consists of
central (rather than brachial) pressures and, more importantly, of wave reflections. The latter are closely related to left ventricular late
systolic afterload, ventricular remodelling, diastolic dysfunction, exercise capacity, and, in the long-term, the risk of new-onset HF. Wave
reflection may also represent a suitable therapeutic target. Treatments for HF with preserved and reduced ejection fraction, based on a
reduction of wave reflection, are emerging. A full understanding of ventricular-arterial coupling, however, requires dedicated analysis of
time-resolved pressure and flow signals, which can be readily accomplished with contemporary non-invasive imaging and modelling techni-
ques. This review provides a summary of our current understanding of pulsatile haemodynamics in HF.
...................................................................................................................................................................................................
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Introduction

Heart failure (HF) is an important clinical problem in developed
countries, with high rates of hospitalization and mortality.1 An
increased brachial systolic blood pressure (bSBP) and brachial dia-
stolic blood pressure (bDBP), starting at levels as low as 115 and
75 mmHg, respectively, predict incident HF across all adult age
groups.2 Consequently, reduction of incident HF was the most pro-
nounced benefit of intensive BP lowering in the recently published
SPRINT trial.3

Brachial systolic blood pressure and bDBP, introduced over a
century ago, are among the most widely performed measurements
in clinical medicine. Despite their wide use in daily practice, the
complex relationship between the pump (i.e. the heart) and the ar-
terial circulation cannot be fully understood from two isolated
pressure points at the brachial artery for the following reasons: (i)
physiologically, due to the pulsatile characteristics of the pump, BP
is a curve rather than two extremes (SBP, DBP), with a defined
amount of pressure [pulse pressure (PP)] fluctuating around a
mean value [mean arterial pressure (MAP)]; the curve contains fea-
tures that provide insights into arterial function.4 (ii) Systolic blood

pressure and PP increase from the ascending aorta to peripheral
measurement sites, a phenomenon called pressure amplification,
which is related to the mechanical properties of the arterial sys-
tem. Therefore, brachial BPs do not necessarily reflect the pres-
sures ‘seen’ on the heart. (iii) Most importantly, BP originates from
the interaction of cardiac and arterial function and is the result of
the flow generated by the heart and the afterload imposed by the
arterial tree. Therefore, patients with identical BP may have sub-
stantially different afterload patterns due to differences in the
blood flow generated by the left ventricle (LV). Therefore, LV
afterload (arterial load) cannot be estimated without knowledge
of both pressure and flow.

Broadly, arterial load has two components: steady (or ‘resistive’)
load and pulsatile load. ‘Steady’ load [total peripheral resistance
(TPR), largely determined by systemic microvascular resistance],
along with cardiac output (CO), determines MAP (MAP = CO�
TPR), whereas pulsatile afterload is influenced by multiple arterial
properties (aortic geometry and stiffness, timing, and magnitude of ar-
terial wave reflections). This review focuses on the pulsatile compo-
nent of cardiac afterload, its assessment, prognostic value, and
therapeutic consequences.
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Non-invasive assessment and
physiological background of the
measurements

Pulse pressure
Brachial PP (bPP) is a widely used pulsatile haemodynamic index.
It can be easily computed SBP minus DBP and is thus readily available.
It is the result of left ventricular mechanical work interacting with the
arterial tree and, as such, depends on stroke volume (SV) and for-
ward flow on the one hand, and on aortic stiffness, size, and wave
reflections on the other. When the LV chamber pump function is
preserved and significant aortic valve disease is absent, a high PP is
generally considered indicative of increased pulsatile afterload. In
heart failure with reduced ejection fraction (HFrEF), PP is directly
related to measures of LV function, such as EF, SV, CO, left ventricu-
lar (LV) dp/dt, and LV longitudinal axis shortening.5 In other words, in
HFrEF, a lower PP is often a consequence of a worse LV function.
This needs to be taken into account when interpreting studies that
assess the prognostic value of PP.

Due to its simplicity of measurement, several epidemiological stud-
ies have investigated the prognostic role of bPP, most of them dem-
onstrating that a high bPP is associated with a poor prognosis.
According to European Guidelines on Hypertension,6 a bPP value
>_60 mmHg in elderly individuals with stiffer arteries reflects asymp-
tomatic damage of the large arteries. As the BP wave travels from
central aorta to peripheral sites (e.g. brachial artery), MAP drops only
by 2 mmHg, whereas SBP and PP can increase markedly4 [SBP and PP
amplification (PPA)], particularly in younger adults. The PPA ratio
(peripheral PP/central PP) is determined by complex interactions be-
tween many factors, including LV contractility and ejection duration,
heart rate, arterial stiffness, arterial calibre (and taper), the timing and
amplitude of wave reflections, and arteriolar tone (TPR). Central PP
cannot be calculated from bPP by a simple formula but requires dedi-
cated instruments that record the time-resolved waveforms at the
carotid site or in more peripheral locations. In the absence of ob-
structive atherosclerotic carotid disease, the carotid pressure wave-
form is considered a reasonable ‘direct’ surrogate of the aortic
pressure waveform, whereas more peripheral waveform recordings
(brachial or radial) require mathematical algorithms to estimate the
aortic pressure waveform. In all instances, the obtained aortic pres-
sure waveform needs to be calibrated with peripheral mean and dia-
stolic pressures, which unlike systolic pressure demonstrate little
variation between the aorta and peripheral sites.7 The technical
details are beyond the scope of this manuscript and can be found in
dedicated reviews.8

Wave reflections in the arterial tree
Left ventricular contraction generates a forward-travelling wave (inci-
dent or forward wave). The wave travels at a given speed [pulse
wave velocity (PWV), �5 to 15 m/s in humans] along the wall of the
aorta and more distal conduit arteries and is partially reflected at sites
of impedance mismatch (branching points, lumen diameter tapering,
and change in local stiffness).9 Innumerable reflections from distrib-
uted sites are transmitted back toward the heart, interacting to form
a ‘net’ reflected wave. In young adults, aortic PWV is low, and the
bulk of reflected waves arrive at the aortic root during diastole. With

advancing age, PWV increases, and reflected waves arrive at the heart
during mid-to-late systole.10,11 In these conditions, wave reflections
exert important unfavourable effects,4 including (i) an increase in
mid-to-late systolic load (relative to early systolic load); (ii) an in-
crease in aortic SBP, although the degree of pressure augmentation
vs. flow reduction depends on LV function; (iii) a decrease in DBP,
including the area under the pressure waveform (pressure–time inte-
gral) in diastole, which is a key determinant of coronary blood flow.
Importantly, reflected waves also re-reflect at the heart, contributing
to an increase in the amplitude of the forward pressure wave, above
and beyond the influence of the aortic root load and flow
requirements.12

Methods to analyse waveforms
Pulse waveform analysis (PWA): The reflected wave causes a visible
notch (inflection point) and an increase (i.e. augmentation) in late sys-
tolic pressure (Figures 1 and 2). Augmented pressure (AP), expressed in
mmHg, is the increase in BP following the inflection point and is par-
tially related to the effects of wave reflection on the aortic BP curve.
Augmentation index (AIx) is the ratio between augmented pressure
and pulse pressure (AIx = AP/cPP), typically expressed as a percent-
age. Both AIx and AP are higher with increasing age, lower heart rate
(a relatively longer systolic period enables reflected waves to exert
greater pressure augmentation during systole), smaller body height
(shorter travel distance), female sex, and are lower following food in-
gestion and following exercise.15 Pulse waveform analysis-derived
indexes are dependent not only on the magnitude but also on the
timing of wave reflection. To overcome this potential limitation and
focus on the amount of wave reflection only, wave separation analysis
(WSA) can be used, which requires simultaneously acquired pressure
and flow waves at the same location to separate the pressure wave
into its forward (Pf) and backward (Pb) components.16 Reflection magni-
tude (RM) is the ratio of amplitudes of Pb/Pf. A more recent develop-
ment is wave intensity analysis (WIA),17 in which BP and flow velocity
measured at the same arterial site are considered and a separation
into forward and backward-travelling wavefronts can be achieved
(Figure 2). Waves can originate either from the proximal (forward-
travelling) or distal (backward-travelling) end of the circulation and
can be either a compression (‘pushing’) or decompression (‘sucking’)
wave. A compression wave will accelerate or decelerate blood flow
depending on its origin: if it arises proximal to the site of measure-
ment, it will increase pressure and accelerate flow, but compression
waves of distal origin will increase pressure and decelerate blood
flow.18 Wave intensity analysis is a useful approach that complements
WSA, but it overemphasizes high-frequency components of the pulse
(i.e. rapid changes in pressure and flow waves) and thus tends to
under-represent reflected waves (which are rich in low-frequency
content). A key advantage of WIA may be related to the study of
cardiac-derived compression and suction waves (rather than wave
reflection per se): the early systolic S-compression wave peak is
related to the maximum derivative of left ventricular pressure in-
crease in early systole, while the D-late systolic forward-travelling
suction wave peak is related to the time constant of pressure decay
in late systole/early diastole.19 Both may, therefore, provide insights
into ventricular function14 and LV-arterial coupling. Wave power ana-
lysis, a recently proposed technique based on volume flow rather
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.than flow velocity, has important advantages over WIA and requires
further study in humans.20

Pulse wave velocity, characteristic
impedance, total arterial compliance
Pulse wave velocity is the travel distance divided by transit time of
the pulse between two recording sites. Carotid-femoral (cf) PWV is
currently considered the gold standard metric of aortic stiffness.21

Pulse wave velocity is not a direct measure of ventricular afterload,
but is informative of arterial wall properties, and has important prog-
nostic implications.4,21,22 Proximal aortic impedance (Zc) is the slope

of the pressure–flow relation in the absence of wave reflections and
represents the pulsatile load imposed by the proximal aorta. It is high-
ly dependent on proximal aortic size and also dependent on its stiff-
ness. Total arterial compliance (TAC) represents the lumped
compliance provided by the arterial tree. In the systemic circulation,
it is largely determined by conduit arteries (including the aorta and
more distal muscular conduit arteries).

Practical recording and devices
See Supplementary material online for details.
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Figure 1 Assessment of pulsatile haemodynamics—overview. Top line: recording of signal-averaged radial or brachial pressure waveforms with
tonometry or brachial cuff. Second line: following calibration with brachial pressures, aortic waveforms are calculated with a transfer function (TF).
Pulse waveform analysis, based on pressure signals alone, yields measures of the first (P1) and second (P2) systolic peaks for computation of aug-
mented pressure and augmentation index (AP, AIx). Third line: flow waveforms are obtained, either with Doppler recording of LV outflow (which
equals aortic inflow), or as model-derived flow or triangular flow as a proxy. Bottom line: combined and time-aligned analysis of a pressure–flow pair is
used for wave separation analysis, wave intensity analysis, and other analytical approaches (Courtesy of Bernhard Hametner, modified from Parragh
et al.13 and from Hametner et al.14). DBP, diastolic blood pressure; ED, ejection duration; MAP, mean arterial pressure; PP, pulse pressure; PWA,
pulse waveform analysis, RM, reflection magnitude; SBP, systolic blood pressure; WIA, wave intensity analysis; WSA, wave separation analysis.
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..The relationship between cardiac
and arterial function

Myocardial vs. ventricular afterload
Left ventricular afterload can be defined as the hydraulic load
imposed by the systemic circulation (i.e. relationship between pres-
sure and flow as discussed above), whereas myocardial afterload is
best defined as the myocardial wall stress (MWS) required to gener-
ate fibre shortening.23–26 Myocardial afterload does not only depend
on arterial load but also on the time-varying LV geometry during ejec-
tion, which in turn affects the relationship between MWS and LV
chamber pressure. The time-varying LV geometry during ejection is
dependent on: (i) LV volume at the beginning of LV contraction (i.e.
end-diastolic volume), which in turn is determined by chronic LV
remodelling and preload and (ii) the interaction between myocardial
contraction, LV geometry, and arterial load throughout ejection.

In accordance with Laplace’s law of the heart, MWS is lower for
any given LV pressure, as the ratio of LV chamber volume to LV wall
volume decreases. This is true not only in end-diastole or end-systole
but throughout ejection (Figure 3). Among normotensive and hyper-
tensive adults with a normal LV ejection fraction (EF), peak MWS

typically occurs in early systole, when quasi-diastolic geometry coex-
ists with systolic pressure.27–29 This is followed by a marked change
in the relationship between LV pressure and MWS during mid-
systole, which determines a lower MWS for any given LV (and aortic)
pressure (Figure 3).28 This phenomenon appears ideal to protect car-
diomyocytes against excessive load in mid-to-late systole28,30 and
depends on the dynamic reduction of LV chamber size relative to
wall volume, and its magnitude is highly variable between individu-
als.28 Subjects with lower ejection fraction,28 concentric remodel-
ling,28 or those who demonstrate poor early systolic contraction
(and ejection)31 demonstrate less pronounced shifts in the pressure–
stress relation.

Therefore, there is an important interaction between myocardial
geometry, the myocardial contraction pattern, and the effect of wave
reflections on LV hydraulic load (Figure 4). Wave reflections tend to
increase mid-to-late systolic LV load and MWS,27,28 but the time
course of LV contraction impacts the degree to which cardiomyo-
cytes are ‘exposed’ to the ill effects of wave reflections in mid-to-late
systole, a period in which there appears to be particular vulnerability
to the deleterious effects of increased afterload.30,32–35 Time-varying
MWS, therefore, provides highly relevant integrated information
about myocardial-ventricular-arterial coupling.4,27–29,36
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Figure 2 Wave separation analysis vs. wave intensity analysis. Identification of forward-travelling and backward travelling waves in the proximal
aorta using wave intensity analysis. The method is based on the assessment of changes in pressure (P) and flow velocity (left panels), which can be
multiplied to compute instantaneous wave intensity (left bottom panel). The right panel shows forward and backward wave intensity curves, which
can be analysed to identify the timing and magnitude of key wave fronts: early systolic forward compression wave (dark blue), late systolic forward
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..In rotationally symmetric ventricles, time-resolved ejection-phase
MWS can be estimated non-invasively with a combination of arterial
tonometry and either Doppler echocardiography28 or cardiac mag-
netic resonance imaging (MRI),37 using the method described by Arts
et al.38 Myocardial wall stress can be used to more directly infer late
systolic myocardial load. Prominent late systolic MWS is associated

with impaired LV relaxation29 and left atrial dysfunction.37

Furthermore, peak systolic MWS is closely and linearly related to in-
vasively measured myocardial oxygen consumption (MVO2)

39 and
therefore can be used to assess the mechanical efficiency of the car-
diovascular (CV) system, with fewer assumptions than in the pres-
sure–volume plane.
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Figure 3 Time-resolved myocardial wall stress. The first panel shows the ejection-phase aortic pressure and myocardial wall stress (MWS) pro-
files. The second panel shows the time-resolved relative myocardial geometry (ratio of wall volume to cavity volume) that correlates with wall stress
via the Laplace law; the first, second, and last thirds of systole are shown in blue, dotted red, and black lines, respectively. The third panel shows the
ejection-phase myocardial wall stress, and the fourth panel shows pressure–MWS relation. It can be seen that myocardial wall stress peaks in early
systole and subsequently decreases, even in the context of increasing pressure. This is due to a mid-systolic shift in the pressure–stress relation
(dashed arrow) which favours lower MWS for any given pressure. This shift is due to the geometric reconfiguration of the LV (decreased cavity vol-
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Figure 4 Wave reflections increase late systolic left ventricle load, which favours left ventricular remodelling and myocardial dysfunction.
However, the effect of wave reflection on myocardial load is modulated by contraction pattern and the time course of myocardial wall stress. Left
ventricles in which the mid-systolic shift in the pressure–stress relation is impaired (due to a reduced ejection fraction, concentric geometric remod-
elling, and/or reduced early systolic ejection) fail to protect cardiomyocytes against the load induced by wave reflections in late systole, a period of
vulnerability to load. This may represent a vicious cycle that favours development and furthers progression of heart failure. Modified from Chirinos.26

LVH, left ventricular hypertrophy.
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Differences in the effects of arterial load
in heart failure with preserved ejection
fraction and heart failure with reduced
ejection fraction
When LV pump function is preserved, the reflected wave typically
induces a late systolic pressure peak in the pressure waveform, aug-
menting aortic pressure in mid-to-late systole. These features are
prominent in patients with heart failure with preserved ejection frac-
tion (HFpEF)40–43 and may be useful in the diagnostic workup of the
condition41: measures of pulsatile arterial function (including brachial
PP, but favouring central haemodynamics) were as good as tissue
Doppler echocardiography in separating patients with HFpEF from
those without the condition in a population of patients with exer-
tional dyspnoea. When LV pump function is reduced, however, wave
reflection may exert more pronounced effects to decrease flow, with
no apparent alteration in the appearance of the pressure waveform
(when the latter is analysed in isolation). In patients with severe LV
systolic dysfunction (LVEF <_30%), wave reflections truncate flow, re-
duce SV, and induce a shortening of ejection duration.13,44,45 In add-
ition, forward waves are also altered: in patients with severely
reduced EF (mean value 27.8%), WIA derived ratio of first to second
systolic peak is reduced,46 as compared to individuals with normal EF,
and divided patients with HFrEF from controls with normal EF with
an area under the curve of 0.879.14

Disadvantages of effective arterial
elastance
Given the value of the pressure–volume plane to study LV chamber
function and energetics, an ‘extension’ of the pressure–volume ap-
proach to assess arterial load and ventricular-arterial coupling was
proposed, primarily to understand the determinants of SV.47–50

In this proposed paradigm, arterial load is quantified as an ‘effective
arterial elastance’ (EA), which is computed as the ratio of end-systolic
pressure to SV.

However, arterial load is time-varying, complex, and cannot be
expressed as a single number.9,25 EA fails to capture key features of
pulsatile load and ventricular-arterial coupling, particularly time-
varying phenomena during ejection51 and the LV loading sequence
(early vs. late systolic load), which as reviewed above, is an important
determinant of maladaptive remodelling, hypertrophy, diastolic dys-
function, atrial dysfunction, and HF risk.9,29,33,40,52–55 In addition, the
assumption that EA is a lumped parameter of resistive and pulsatile
arterial load, is in fact incorrect. 25,56–58 EA is not a true elastance (i.e.
the inverse of a compliance) and is almost exclusively dependent on
vascular resistance (a microvascular, rather than a conduit artery
property)57 and heart rate.57,58 EA bears an almost perfect relation-
ship to the product of TPR and heart rate, but demonstrates weak,
inconsistent and in some cases, erratic/paradoxical relationships with
gold standard measures of pulsatile load.58 Importantly, EA is not
related to aortic wall stiffness58; therefore, an increase in EA should
not be interpreted as arterial ‘stiffening’ and, by extension, and paral-
lel increase in EA and EES should not be interpreted as a state of ‘ven-
tricular-arterial stiffening’.

The inability of EA to properly capture pulsatile arterial load is
explained by the multiple simplifying assumptions made during its ori-
ginal derivation (as previously discussed in detail),24,25,57,58 which

translate into important limitations to the application of this approach
to characterize physiologic abnormalities and obtain useful clinical
inferences. For example, in a recent study, measures of wave reflec-
tion, but not EA or TPR, were significantly correlated with the inva-
sively measured time constant of isovolumic relaxation, the gold
standard index of diastolic relaxation.59 Similarly, a recent study dem-
onstrated that EA did not predict incident HF in the Multiethnic Study
of Atherosclerosis (MESA) cohort,60 whereas wave reflections (RM)
and late systolic load were strong predictors.61,62 The use of EA to
assess pulsatile or ‘global’ arterial load is therefore strongly
discouraged.

Clinical impact of pulsatile
arterial load

Arterial load and left ventricular
hypertrophy
Left ventricular hypertrophy (LVH) is an important marker of asymp-
tomatic organ damage in hypertension6 and an important intermedi-
ate step from hypertension to HF.63 Animal models have shown that
an increase in aortic stiffness without any change in TPR leads to
LVH.64 Moreover, late systolic loading resulted in much more prom-
inent hypertrophy than early systolic loading in rats.53 Humans with
isolated systolic hypertension, a condition related to increased aortic
stiffness, exhibit higher left ventricular mass (LVM) than those with
systolic–diastolic hypertension. Moreover, LVM is more strongly
related to PP than to MAP, underlining the importance of pulsatile
phenomena.65 This relationship is stronger for cPP,66,67 in particular
when measured over 24-h.68 The relationship between LVM and ar-
terial stiffness/wave reflections is apparent even in adolescents and
young adults.69 In a recent study including >4000 adults from the gen-
eral population, the contribution of steady state load (TPR) and pul-
satile haemdynamics (TAC, Pf, Pb) on LVM and geometry was
investigated.70 In multivariable models, systemic vascular resistance
(SVR), TAC, and Pb were directly, and Pf was inversely associated
with LVM, with wave reflection (Pb) demonstrating the strongest re-
lationship, and SVR demonstrating a relatively weak relationship. In a
longitudinal study in a family-based population sample, progression to
LV concentric remodelling pattern over 4.7 years was independently
associated with higher baseline cfPWV.71 Moreover, in women,
higher cPP at baseline predicted the longitudinal increase in LVM.
Reductions in LVM, which have proven prognostic benefit, are more
closely associated with reductions in wave reflection than with reduc-
tions in brachial BP.54,72 When different drugs (angiotensin convert-
ing enzyme (ACE)-inhibitor-diuretic combination vs. a beta-blocker)
were compared, those favourably affecting pulsatile haemodynamics
(reducing cSBP and cPP) were superior in reducing LVM,73 whereas
both therapeutic regimens did not differ regarding steady state
haemodynamics (CO and TPR).

Arterial load and exercise capacity
Consistent with the important role of pulsatile arterial load on the
myocardium, pulsatile arterial properties have been shown to be
associated with exercise capacity, as discussed in the Supplementary
material online.
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Arterial load and risk of incident heart
failure
In the Framingham study, bPP (and bSBP) were stronger predictors
than DBP for congestive HF (CHF)74 in middle-aged men and
women.75 In 5690 participants from the MESA study, RM was strong-
ly and independently predictive of new-onset HF.62 In particular, RM
compared favourably to other risk factors for CHF as per various
measures of model performance, reclassification, and discrimination
and predicted CHF even in patients with normal BP. Along the same
lines of evidence, independently of the absolute level of peak BP, late
systolic hypertension was strongly associated with incident HF.61 In
the same population, and in contrast, SVR, TAC, and EA did not pre-
dict HF, indicating the importance of the loading sequence.60 In the
Framingham Heart study, after adjustments for standard risk factors
including MAP, cfPWV was independently associated with incident
clinical HF76 after a follow-up of 10.1 years. Moreover, greater
cfPWV was associated with both HFpEF and HFrEF, although the
findings did not achieve statistical significance, in part due to a modest
number of HF events. In 2602 patients with chronic kidney disease
(mean glomerular filtration rate (GFR) 45 mL/min/1.73 m2), after a
mean follow-up of 3.5 years, cfPWV as well as bSBP, cSBP, and PP
predicted hospitalized HF, with cfPWV showing the best relation-
ship.77 In another community-based cohort of 2290 older adults
(mean age 74 years),78 cfPWV was associated with overall HF and
HFrEF only in unadjusted analysis and, with respect to overall HF,
only in partially, but not in fully adjusted models. Finally, in asymptom-
atic patients at risk for HF, worsening of arterial stiffness (increase in
brachial-ankle PWV) within 5 years was associated with increased
risk of incident HF.79 In summary, available evidence supports a rela-
tionship between arterial stiffness and particularly, measures of wave
reflection/late systolic load, and the risk of incident HF in the
community.

Prognostic value of pulsatile
haemodynamics in established heart
failure
Due to the ease of assessment, most of the evidence available is
related to bPP (Supplementary material online, Table S1). In advanced
HFrEF, a lower bPP often is associated with a worse prognosis. In
these patients, a low bPP is due to a poor LV function. In patients
with less severe HFrEF, which can be indicated by higher bPP or
higher SBP, the relationship may become direct (i.e. a higher bPP
being associated with a worse prognosis). In these patients, PP is
more reflective of arterial stiffness and increased pulsatile afterload.
In HFpEF, the relationship between bPP and outcomes tends to be
direct. In some studies, however, particularly in acute HFpEF, patients
with the lowest bPPs also demonstrate a worse prognosis. These
patients may have pronounced concentric remodelling with lower
SVs, despite a preserved EF (which does not prove preserved myo-
cardial contractility in HFpEF80).

Given the important confounding effect of LV function on PP, dir-
ect estimations of arterial load are likely to be more informative. One
single-centre study demonstrated the adverse prognostic value of
wave reflections in patients with acute decompensated HF.81

Similarly, PWV as a more direct measure of arterial stiffness seems to

be directly related to prognosis (HF hospitalization, CV, and all-cause
mortality) in HFrEF and HFpEF.82,83

Therapeutic implications

Role of pulse pressure in heart failure
with preserved ejection fraction studies
No proven effective pharmacologic treatment is currently available
to reduce morbidity or mortality in patients with HFpEF
(Supplementary material online, Table S2). Given the important
pathophysiological role of impaired pulsatile haemodynamics in
HFpEF, it is worth assessing haemodynamic characteristics of study
populations in various trials, and the effects of interventions on pulsa-
tile haemodynamics. Unfortunately, current evidence is largely lim-
ited to bPP. In two recent Phase II trials, ALDO-DHF84 and in
PARAMOUNT,85 a substantial decrease in bPP was achieved in the
active intervention arm (Spironolactone or Sacubitril-Valsartan, re-
spectively), associated with an improvement in filling pressures or
natriuretic peptides. In clinical endpoint trials, baseline bPP has gener-
ally been <60 mmHg, the cutoff defined by European Hypertension
Guidelines,6 suggesting that enrolled populations exhibited a relative
paucity of pulsatile haemodynamic abnormalities demonstrated in
other HFpEF studies. Moreover, in most clinical endpoint trials in
HFpEF, bPP was not substantially reduced. For instance in the largest
study (I-PRESERVE86), which showed a neutral outcome, bPP was
lowered by only 1.7 mmHg by Irbesartan (and unchanged with
placebo).

Wave reflections as a potential
therapeutic target
In HFrEF, standard pharmacologic therapy may substantially reduce
arterial load and wave reflections in some patients, although the re-
sponse is variable and not readily judged by standard clinical parame-
ters. A recent preliminary randomized study of arterial pressure
waveform-guided therapy for HFrEF (aimed at reducing AIx) demon-
strated that this strategy resulted in a greater improvement in peak
oxygen consumption compared to standard care.87 Drugs more
often used in the active treatment group were aldosterone antago-
nists, hydralazine, and nitrates. Higher wave reflections at baseline
and their larger decrease during treatment were associated with
functional improvement.88

Not all vasodilators are equally effective at reducing wave reflec-
tions. In HFrEF, nitroprusside has been shown to reduce wave reflec-
tions at rest and during exercise.89 Oral nitric oxide donors also
reduce wave reflection in the acute setting. However, despite the
well-documented acute effect on nitroglycerine and other organic
nitrates on wave reflection,90 the combination of isosorbide dinitrate
and hydralazine administered chronically (24 weeks) did not reduce
wave reflection in patients with HFpEF in a recent study.91 This may
be due to tolerance associated with long-term use.92

There is increasing interest in the role of inorganic nitrate and
nitrite as potential therapeutic agents in HF. These agents harness the
endogenous nitrate–nitrite–NO pathway, in which inorganic nitrate
(derived from dietary ingestion or from the oxidation of endogenous
NO) undergoes a regulated two-step reduction process to NO
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(nitrate!nitrite!NO). In addition to the well-known hypoxia/acid-
osis-dependent microvascular reduction of nitrite to NO (which
favours microvascular vasodilation during exercise), a normoxia-
dependent reduction pathway that operates in the wall of conduit
muscular systemic arteries has recently been described.93 Normoxia-
dependent activation accounts for the high selectivity of inorganic
nitrate and nitrite for conduit muscular arteries, and the recently
described effect of exogenously administered inorganic nitrate/nitrite
on arterial wave reflection.41,93–95 Among patients with HFpEF, ex-
ogenous inorganic nitrate has been shown to reduce late systolic LV
load by wave reflections, and to shift the reflected wave into diastole,
during which it boosts coronary perfusion pressure, improving the
myocardial oxygen supply–demand ratio.41,94 Unlike organic nitrates,
these effects were achieved without significantly reducing MAP or
cerebrovascular resistance and without increasing pulsatile power
penetration into the cerebrovascular circulation.94,96

Several Phase IIa studies have suggested a therapeutic potential of
inorganic nitrate/nitrite in HFpEF41,94,95,97 and non-ischaemic
HFrEF.98–100 So far, mainly an improvement in exercise haemo-
dynamics101 and exercise capacity42 has been shown. The main
agents being investigated are inhaled sodium nitrite and potassium ni-
trate. Inhaled sodium nitrite has a very short half (<40 min), and its
intermittent administration results in pronounced circulating nitrite
level fluctuations, which are unlikely to exert sustained therapeutic
effects throughout the day. This issue may underlie the negative
results in the INDIE trial [NCT02742129], which studied inhaled in-
organic nitrite in HFpEF. Inorganic nitrates, on the other hand, have a
much longer half-life, which allows for dosing with milder circulating

level fluctuations. The KNO3CK OUT HFpEF [NCT02840799] with
potassium nitrate will provide further insights into the role of this ap-
proach and pharmacologic differences between these agents in
HFpEF. The effects of soluble guanylate cyclase stimulators/activators
on pulsatile load and wave reflections are critical areas of future
research.

Outlook

Non-invasive techniques are now available to comprehensively char-
acterize arterial pulsatile haemodynamics in the clinic (Figure 5). The
availability of contemporary modelling techniques, the ongoing shift
towards personalized medicine, and the emergence of drugs that
may favourably target pulsatile LV load independently of blood pres-
sure, provide a framework for the clinical translation of arterial
haemodynamics into therapeutic approaches. However, it is essential
that mechanistic studies continue and that future trials incorporate
deeper phenotyping of arterial haemodynamics (which can now be
done with minimal patient burden even in multicentre trials), in order
to truly advance our clinical approach to the treatment of HF using
these concepts. In particular, despite its popularity, AIx appears to be
inferior to WSA-based parameters as RM62 or Pb.88 Therefore,
WSA should be more broadly applied in future studies. Finally, sev-
eral haemodynamic principles and analytic techniques (such as wave
separation, wave intensity, and wave power analyses) can be applied
in sites other than the aorta,69,102 which can provide important
insights into cerebrovascular and coronary haemodynamics in
patients with HF.

Supplementary material

Supplementary material is available at European Heart Journal online.
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