
Chelation-controlled ester-derived titanium enolate aldol 
reaction: diastereoselective syn-aldols with mono- and bidentate 
aldehydes

Arun K. Ghosh and Jae-Hun Kim
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 
60607, USA

Abstract

A chelation-controlled and highly diastereoselective synthesis of syn-aldols is described. Aldol 

reaction of (S)-valinol-derived ester with a variety of aldehydes proceeded with high syn-

diastereoselectivities (up to 99:1) and isolated yields (94%).

Optically active syn- and anti-2-alkyl-3-hydroxycarbonyl units are inherent to numerous 

biologically active natural products.1 As a consequence, a number of stereoselective 

methodologies have been developed for their syntheses.2,3 In our recent work on ester-

derived titanium enolate aldol reactions4 we have demonstrated that the aldol reactions of 

phenylalaninol-derived sulfonamido esters with a number of bidentate oxyaldehydes 

provided syn-aldols diastereoselectively. The corresponding reactions with monodentate 

aldehydes, however, have shown little syn-selectivities. The chirality transfer presumably 

proceeds through chelation by the β-sulfonamide functionality. In our continuing effort to 

further develop these ester-derived titanium enolate aldol reactions, we have subsequently 

investigated the effect of a β-chiral substituent on aldol stereochemistry by replacing the 

phenylmethyl substituent of phenylalaninol with other alkyl groups. Herein, we report that 

the aldol reaction of an (S)-valinol-derived sulfonamido ester with a variety of mono- and 

bidentate aldehydes proceeded with good to excellent syn-diastereoselectivities and isolated 

yields. Removal of the chiral auxiliary by mild saponification provided optically active syn-

α-alkyl-β-hydroxy acids and full recovery of the chiral auxiliary. The ready availability of 

valinol and use of inexpensive TiCl4 make this methodology practical and provide rapid 

access to syn-aldols in optically active form.

Optically active N-p-tosyl-(2S)-valinol 1 was prepared in multigram quantities by reduction 

of L-valine with LiAlH4 and followed by sulfonylation of the amine functionality with p-

toluenesulfonyl chloride and tri ethylamine in the presence of DMAP at 0°C for 2 h (89% 

yield). As shown in Scheme 1, reaction of sulfonamide 1 with propionylchloride and 

triethylamine afforded propionyl ester 2 in 85% yield after silica gel chromatography (mp 

78°C, α D
23 = − 19.1 (c 0.92, CHCl3)). The corresponding titanium enolate of 2 was 

prepared by treatment with TiCl4 (1.1 equiv., 1 M solution in CH2Cl2) in CH2Cl2 at 0°C 

followed by addition of N,N’-diisopropylethylamine (3 equiv.) after 10 min and stirring of 

the resulting mixture at 0°C for 1 h. The enolate so formed was reacted with a variety of 

aldehydes precomplexed with TiCl4 (3 equiv.) at −78°C for 1.5–2 h. Interestingly, aldol 
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reaction of 2 with various aldehydes proceeded with excellent diastereoselectivity and 

isolated yields; the results are summarized in Table 1. Out of four possible diastereomers, 

formation of syn-diastereomer 3 (major) and anti-diastereomer 4 were observed by 1H and 
13C NMR as well as HPLC analysis before and after chromatography. Reaction of 2 with 

monodentate aldehydes exhibited high syn-diastereoselectivity (entries 1–5)8 except with 

phenylpropargyl aldehyde which afforded the anti-isomer as the major product (entry 6). 

Furthermore, reaction with bidentate aldehydes such as benzyloxyacetaldehyde and 

benzyloxypropionaldehyde provided a single syn-aldolate in high yield (entries 7 and 8). We 

have also carried out double stereodifferentiating experiments in which an oxyaldehyde 

bearing an α-chiral center was reacted with the chiral enolate derived from propionate ester 

2. Aldol reaction of 2 and 2(S)-benzyloxypropionaldehyde (stereochemically matched case) 

under identical conditions afforded virtually a single (by HPLC and 400 MHz 1H NMR 

analysis) aldol product 3h (entry 9) in 77% yield after silica gel chromatography. However, 

the reaction of 2 and 2(R)-benzyloxypropionaldehyde, a mismatched case, afforded a 34:64 

mixture of syn and anti isomers in 82% isolated yield (entry 10). Because of the marked 

stereo-chemical preference (matched isomer), we then attempted reaction of 2 (1 equiv.) 

with racemic benzyloxypropionaldehyde (2 equiv.) at −78°C for 0.5 h (Scheme 2).

Interestingly, 2-derived Ti-enolate reacted exclusively with the 2(S)-

benzyloxypropionaldehyde (1 equiv.) under these reaction conditions providing only 

diastereomer 3i (matched case) in 82% isolated yield after silica gel chromatography. 

Separation and purification of the corresponding unreacted enantioenriched 2(R)-

benzyloxypropionaldehyde was difficult due to overlapping by-product. Subsequently, the 

crude aldehyde was reduced with NaBH4 in ethanol at 23°C to afford 2(R)-

(benzyloxy)propanol with an enantiomeric excess of 81% ee (41% recovered, α D
23 = − 36.2

(c 1.9, CHCl3); lit.:9 α D
20 = − 45 (c 1.0, CHCl3).

The relative and absolute stereochemistry of various syn-aldolates (3) were established 

based upon comparison of optical rotation as well as 1H and 13C NMR spectra of the 

resulting acids, esters or diols with literature values.5 Thus, saponification of the above 

aldolates with aqueous lithium hydroxide in THF at 23°C for 2 h furnished the 

corresponding β-hydroxy acids (5). Treatment of these acids with CH2N2 afforded the 

corresponding methyl esters (6). Various aldolates were converted to diols 7 by treatment 

with LiBH4 at 23°C for 2–4 h. In either case, the chiral auxiliary was fully recovered without 

loss of optical activity.

We subsequently investigated substituent effects on the chiral auxiliary as well as the 

influence of various achiral and chiral bases on diastereoselectivity. As shown in Scheme 3, 

we have examined ester enolate aldol reactions of N-p-tosyl-(S)-tert-leucinol and N-p tosyl-

(S)-leucinol-derived esters and a number of aldehydes. The results of these various aldol 

reactions are illustrated in Table 2. As can be seen, the sterically demanding tert-leucinol-

derived chiral auxiliary exhibited lower yield over leucinol-derived auxiliary; however, 

stereoselectivities were comparable (entries 1 and 2). The phenylalaninol-derived chiral 

auxiliary has also shown comparable syn-diastereoselectivity under the reaction conditions 

described above (entry 3). Interestingly however, the same aldol reaction with fewer 
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equivalents of TiCl4 precomplexed to isovaleraldehyde displayed anti-diastereoselectivity.10 

Such reversal in diastereoselectivity is not totally unexpected as the Lewis acid to aldehyde 

ratio is known to effect aldol stereoselectivity.11 The choice of base is quite important for 

reaction yield but does not seem to effect observed stereoselectivity (entries 3–5). The 

chirality on the base has little influence on diastereoselectivities. Bidentate oxyaldehydes are 

in general very good substrates for ester enolate aldol reactions, providing syn-aldolates in 

excellent yields and diastereoselectivities (entry 8). The valinol-derived chiral auxiliary has 

also shown very good syn-diastereoselectivity and reaction yield with isocaproate ester 

(entry 9).

In summary, we devised a chelation-controlled ester-derived titanium enolate-based highly 

diastereoselective syn-aldol reaction with various aldehydes. The current methodology is 

quite practical due to the ready availability of optically pure chiral auxiliary and use of 

inexpensive TiCl4 as the key reagent. Further mechanistic investigations, effects of various 

sulfonamido functionalities and synthetic applications are underway in our laboratories.
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Scheme 1. 
Reagents and conditions: (a) CH3CH2COCl, Et3N, CH2Cl2, 0°C, 2 h; (b) TiCl4, iPr2NEt, 

0°C, 1 h, then RCHO and TiCl4, CH2Cl2, −78°C, 2 h; (c) LiOH, THF–H2O, 23°C, 2–3 h; (d) 

CH2N2, Et2O, 23°C, 30 min; (e) LiBH4, THF–MeOH, 23°C, 2 h.
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Scheme 2. 
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Scheme 3. 
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Table 1.

Aldol reaction of ester 2 with representative aldehydes

Entry Aldehyde Compd
a

Yield (%)
b

syn:anti (3/4)
c

1 Me2CHCHO 3a 89 90:10

2 Me2CHCH2CHO 3b 93 95:5

3 trans-PhCH=CHCHO 3c 89 96:4

4 PhCHO 3d 94 88:12

5 Me(CH2)6CHO 3e 96 82:18

6 Ph-C≡C-CHO 3f 86 36:64
d

7 BnOCH2CHO 3g 74 99:1

8 BnOCH2CH2CHO 3h 81 99:1

9 3i 77 99:1

10 3j 82 34:66
d

a
Major isolated product.

b
Isolated yield after chromatography.

c
Ratios determined by 1H MR and HPLC analysis before and after chromatography. Reaction time=1.5–2 h.

d
Ratio after removal of chiral auxiliary.
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