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Biodiversity affects the structure of ecological communities, but little is

known about the interactive effects of diversity across multiple trophic

levels. We used a large-scale forest diversity experiment to investigate the

effects of tropical tree species richness on insectivorous birds, and the sub-

sequent indirect effect on predation rates by birds. Diverse plots (four tree

species) had higher bird abundance (61%), phylogenetic diversity (61%),

and functional diversity (55%) than predicted based on single-species mono-

cultures, which corresponded to higher attack rates on artificial caterpillars

(65%). Tree diversity effects on attack rate were driven by complementarity

among tree species, with increases in attack rate observed on all tree species

in polycultures. Attack rates on artificial caterpillars were higher in plots

with higher bird abundance and diversity, but the indirect effect of tree

species richness was mediated by bird diversity, providing evidence

that diversity can interact across trophic levels with consequences tied to

ecosystem services and function.
1. Introduction
Biodiversity loss is one of the fundamental consequences of human-driven global

change [1,2]. These losses are problematic not only for species conservation, but

also because of the emergent, higher order effects of biodiversity on ecosystem

function [3,4] and associated services [5,6]. Studies of biodiversity–ecosystem

function (BEF) have reported extensively on the bottom-up effects of plant diver-

sity on primary productivity [6,7] and, to a lesser extent, on the structure of

associated animal communities [8–11]. In parallel, a number of BEF studies

have addressed the top-down effects of predator diversity on lower trophic

levels [12,13], collectively demonstrating that diversity can promote ecosystem

productivity, stability, and resilience to disturbance [4,14]. However, most studies

to date have approached these processes in terms of the top-down or bottom-up

effects emanating from diversity within a single trophic level (i.e. plants or preda-

tors) without addressing the nonlinear dynamics of diversity across multiple

trophic levels. As a result, the linkages between plant diversity and consumer

(particularly predator) diversity are poorly understood.

Originally proposed to explain high rates of herbivory in simplified (non-

diverse) agricultural systems, the Enemies Hypothesis (EH) conceptually links

diversity effects across trophic levels [15]. According to Root [15], plant diversity

increases predator abundance, and this in turn strengthens top-down control

of herbivorous insects [15,16]. As such, the EH describes a compelling example

of ecosystem services from biodiversity; high-diversity agricultural systems

(i.e. polycultures) are on average associated with higher predator abundance

(44%), herbivore mortality (54%), and reduced crop damage (30%) compared to

low diversity (i.e. monoculture) systems (reviewed by Letourneau [16]). Accord-

ingly, the EH guides agricultural practices aimed at maximizing biological
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control [17,18], although the importance of such dynamics to

more complex, natural systems is unclear [19–23]. Vertebrate

predators may be particularly notable in this regard given their

prevalence in terrestrial ecosystems, sensitivity to anthropogenic

impacts, and strong top-down effects on herbivores [24–26].

Despite the demonstrated importance of the EH, the

underlying mechanisms driving plant mediation of predator

effects are not well understood. The EH predicts plant diver-

sity should increase predator abundance [15,16] through an

increase in predator niche space [27]. While not formally pro-

posed by the EH, this same mechanism can also increase

predator diversity [9]. Both predator abundance and diversity

have been demonstrated to affect top-down control of insects

[12,28], however, the relative contributions of abundance

versus diversity are rarely compared [16,29], and contingent

on the identity and composition of species’ traits [30,31].

Further, while past studies have documented the component

effects of plant diversity on predation [20,23], or predator

communities [32], these component pieces have largely

been considered in isolation. As a result, a fundamental

aspect of the EH mechanism—how predator communities

mediate the indirect effects of tree diversity on herbivore

suppression—is unknown.

Here, we quantitatively decompose the strength of EH

effects operating via predator diversity versus predator abun-

dance. Working within a tropical forest diversity experiment,

we test for the effects of tree species richness directly on the

composition of foraging insectivorous birds. We use clay

model caterpillars to assess the indirect effects of tree species

richness on predation rates and compare the extent to which

these indirect effects of tree diversity were mediated by direct

effects on bird abundance versus diversity. This study thus

provides a novel test of the mechanisms underlying the EH

in a natural ecosystem and, in so doing, demonstrates the

importance of biodiversity across multiple trophic levels.
2. Material and methods
(a) Experimental design
We tested for tree diversity effects within the context of a large-

scale forest diversity experiment (7.2 ha) in the Yucatan

Peninsula (2082404400 N, 8984501300 W), ca 70 km southwest of

Merida, Yucatan (Mexico) and found at the ‘Uxmal Experimental

Site’ of the Instituto Nacional de Investigaciones Forestales,

Agrı́colas y Pecuarias (INIFAP). In 2011, we planted 74 replicate

forest plots (21 � 21 m each) as polycultures of four tree species

or single-species monocultures from a pool of six long-lived

deciduous tree species (Swietenia macrophylla King (Meliaceae),

Tabebuia rosea (Bertol.) DC. (Bignonaceae), Ceiba pentandra (L.)

Gaertn. (Malvaceae), Enterolobium cyclocarpum (Jacq.) Griseb.

(Fabaceae), Piscidia piscipula (L.) Sarg. (Fabaceae), and Cordia
dodecandra A. DC. (Boraginaceae) (electronic supplementary

material, figure S1; as described in [33]). At the time of sampling,

the site was composed of ca 4 600 trees (4 780 originally planted)

at a constant density of 64 plants per plot (3 m spacing between

trees, 6 m aisles between plots). The average tree height was

approximately 7–8 m when the experiment took place, with no

measurable effect of tree species diversity on tree height [33].

(b) Bird community metrics
In July 2015, we assessed bird community composition within 32

of the total 74 plots, using two replicate monoculture plots for

each of the six tree species (12 monocultures total) and 20
polyculture plots containing 14 unique four-species combinations

of the same six tree species (electronic supplementary material,

figure S1). To do so, two observers experienced with the local

bird fauna conducted 10 min point count surveys at peak bird

activity (06.00 to 09.30 on rain-free days), totalling 40 min of obser-

vation per plot, using 10 � 42 binoculars and field guides for

identification [34]. During these observations birds were recorded

if they were observed either perched or foraging within the focal

plot, excluding individuals that were not observed to actively

use the plot (e.g. passing through or flying high above canopy).

The bird surveys were randomized under the constraints that

each experimental plot was visited on four separate days during

a two-week period, concurrent surveys were spaced by a mini-

mum of 50 m, and neighbouring plots were not surveyed

consecutively. The plot size (0.1 ha) and that of the larger exper-

imental site are relatively small with respect to the territory sizes

of some of the species observed. Accordingly, our data reflect

the effects of tree species richness on the foraging movements of

birds among plots rather than on the diversity of site overall. Of

the total observed species (richness ¼ 54), in our analysis we

focus on the subset of species reported to feed partially or entirely

on insects (richness ¼ 44; based on [35]; electronic supplementary

material, table S1).

We characterized the effects of tree species richness on three

bird community metrics at the plot level: abundance, functional

trait diversity (FD), and phylogenetic diversity (PD). Insectivorous

bird abundance was measured as the total number of individuals

per plot. We use FD and PD to quantify the ecological and phylo-

genetic dissimilarity among species, respectively, measured as

the sum of all branches (phylogenetic or trait-based dendrogram)

connecting species observed across all plot observations [36]. We

calculate FD, the total trait diversity represented among observed

species, based on available species-level traits hypothesized to be

important for herbivore suppression: body mass, period of activity

[diurnal or nocturnal], major diet type [vertebrate, invertebrate,

fruit/nectar, plant/seed, omnivore], portion of diet by type

[vertebrate, invertebrate, fruit, nectar, seeds, other plant], and rela-

tive time foraging in forest strata [ground, understory, mid-canopy,

canopy, aerial] (compiled from [35], electronic supplementary

material, table S1). Body mass was log transformed to reduce the

influence of a few uncommon and larger-bodied species. All func-

tional traits were rescaled (mean ¼ 0, s.d. ¼ 1) and weighted

equally to calculate Gower’s pairwise dissimilarity among species

[37], from which we applied hierarchical clustering (UPGMA

method) to construct a dendrogram reflecting bird species func-

tional similarity. Here, we report on the subset of birds that

consume any insect prey in their diet and traits based on a priori
hypotheses. In addition, we quantify PD, the total evolutionary his-

tory shared among species, which can be used as a proxy for FD. To

calculate PD, phylogenetic branch lengths were inferred from a

95% consensus tree containing mean branch lengths. This phylo-

geny was derived from 200 time-calibrated phylogenies of the

Hackett-backbone, pruned to the species observed [38,39].

For each bird community metric (abundance, FD, and PD),

we quantified the overall effect size of tree species richness as

the grand mean of the log of the proportional difference (LR)

between observed and expected bird communities for each poly-

culture plot, where the expected was calculated as the weighted

mean of component tree species in monoculture. A positive LR

where the 95% CI does not bracket zero indicates a significant

positive effect of tree diversity, such that polyculture bird com-

munities exceeded predictions under an additive scenario

based on tree species monocultures.
(c) Assessing predation
Concurrent with bird surveys, we assessed predation in the same

plots (all 12 monocultures and 17 of the 20 polycultures). Using
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established methods [40,41], we deployed and inspected artifi-

cial caterpillar models of light green plasticine clay (Lewis

NewplastTM) to record predation events. Tree species- and

plot-level predation rates were calculated as the proportion of

caterpillar models attacked per 24 h period. This method provides

a highly consistent, unbiased assessment of predator effects

on Lepidopteran larvae [20,40,41], one of the most abundant

herbivore groups that feed on tropical trees. Using artificial

models has the added benefit of controlling for variation in herbi-

vore morphology, size, behaviour, and density that may occur

among tree species and diversity treatments. Caterpillar models

were exposed for two consecutive days on two opposing branches

of 12 trees per plot (three trees of each species in polyculture)

using superglue (LoctiteTM) to adhere them to the upper side of

leaves. Caterpillar models were placed between 2 and 4 m in the

canopy of interior trees, to exclude perimeter trees that bordered

neighbouring plots (and potentially different tree species). After

a 24 h period, caterpillar models were visually assessed for

attack marks. Any attacked models were then replaced, and all

models were again assessed after a second 24 h period. Caterpillar

models were similar in size (4 � 25 mm) to generalist leaf-chewing

herbivores found at the experimental site, and were sufficiently

malleable that attack marks could be used to distinguish predation

by birds from that caused by other taxonomic groups such as

arthropods and mammals [40]. Caterpillar models attacked or

lost after 24 h were replaced with intact models for a constant

model density per plot (n ¼ 24) in the following survey. Cases

where the fate of the model was uncertain were excluded from pre-

dation rate calculations (n ¼ 67; 4.05% of models). This experiment

was executed twice over a three-week period in which we used the

same 12 monoculture plots (but different trees) across iterations,

and different polyculture plots between the first and second

iterations (11 and 7 polyculture plots respectively). Tree- and

plot-level attack rates were calculated from these data as the pro-

portion of models attacked per 24 h period. There was no effect

of experiment iteration on model attack rates, thus predation

rates in monoculture plots are calculated as the mean proportion

attacked across all four exposure days.

We calculated plot-level tree diversity effect on bird predation

(LR) in the same manner used to assess diversity effects on bird

community metrics. In addition, using tree-level predation data

we calculated the net biodiversity effect on predation rates as the

difference between observed predation in polyculture and

the expected predation rate based on component tree species in

monocultures. We also used tree-level predation data to compare

attack rates between monoculture and polyculture separately for

each tree species, and to decompose the net biodiversity effect on

predation into two non-mutually exclusive mechanisms: selection

effects and complementarity effects (following [42], electronic

supplementary material, figure S2). Selection effects are driven

by the increased probability of polycultures including species

that have particularly strong effects on attack rates [42,43], such

that the effect of tree species richness on predation is attributed

to individual species’ effects. In contrast, complementarity effects

may arise due to interactions among tree species leading to

non-additive increases in attack rates (e.g. niche differentiation,

facilitation), where polycultures differ from additive predictions

from monocultures due to multi-species processes [27,42].
(d) Comparing bird community metrics
We evaluated the pairwise relationships between bird community

metrics and attack rate. We first used linear regression, comparing

these models to all possible regression models (abundance, FD,

and PD alone and in combination) using Akaike’s information cri-

terion (AIC). As bird abundance, FD, and PD were all positively

correlated with plot-level attack rates, we used Structural Equation

Modelling (SEM) to evaluate which of the observed bivariate
relationships between the bird community metrics and attack

rate mediated the indirect effects of tree species richness. Because

of high covariance between bird abundance, PD, and FD (elec-

tronic supplementary material, figure S3), we only included FD

based upon its stronger bivariate relationship with attack rate.

Having dropped PD, we began with an initial SEM model that

included indirect effects of tree species richness on attack rate via

both FD and abundance; specifically, this model included the

direct pathways from tree species richness to bird abundance

and FD, the direct pathways from bird abundance and FD to

attack rate, and the covariance between bird abundance and FD.

Following the assessment of this initial hypothesized model, we

then removed the non-significant pathways in a stepwise pro-

cedure. Both the initial model and this reduced model were then

evaluated for their fit to the data using chi-square ( p . 0.05 indi-

cates valid model fit), and the significance of each pathway was

evaluated with Z-statistics [44]. In addition, for both models we

quantified the indirect effects of tree species richness as the product

of the standardized regression coefficients of component direct

pathways in the SEMs [44]. Indirect effects stemming from tree

species richness were deemed significant when the two individual

pathways making up the indirect effect were significant. The

resulting indirect effects are visualized using curved grey arrows

that encapsulate the underlying direct effects in the model, with

non-significant pathways indicated by dashed lines. SEM was

conducted using the ‘lavaan’ package in R [45,46].
3. Results
A total of 44 bird species (5.4+0.5 species per plot; mean+
s.e.) and 381 individuals (11.9+1.3 individuals per plot) that

consume insects were observed in our surveys, with only 15

bird species observed in both monoculture and polyculture

plots (three species observed exclusively in monocultures and

26 in polycultures). Tree species richness had a positive effect

on all bird community metrics, resulting in higher bird abun-

dance (61%), phylogenetic diversity (61%), and functional

trait diversity (55%) in polyculture plots relative to expected

values in monocultures (figure 1; LRabun ¼ 0.48, 95% CI ¼

0.23 to 0.73; LRFD ¼ 0.44, 95% CI ¼ 0.28 to 0.59; LRPD ¼ 0.47,

95% CI ¼ 0.35 to 0.61). Mean bird abundance per plot

increased from 8.5 (+1.99) to 13.9 individuals (+1.64) and

species richness from 3.8 (+0.58) to 6.4 (+0.64) in monoculture

and polyculture, respectively. In polycultures, mean bird PD

exceeded that of the highest tree species in monoculture

(i.e. transgressive overyielding; [47]) (figure 2). In contrast,

mean bird abundance and FD in polyculture were not signifi-

cantly different than observed for the highest tree species in

monoculture (figure 2).
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Across all experimental plots, birds were the dominant

predators with a mean attack rate (proportion of caterpillar

models attacked per 24 h) of 0.200 (+0.016 s.e.), more than

threefold the attack rate by arthropods (0.057+0.008 s.e.),

while mammal and reptile predators were negligible (only

two caterpillars attacked in total; 0.001+0.0009 s.e.). In sup-

port of the EH, tree species richness increased bird attack rate,

with polyculture plots (0.24+0.022) exhibiting a significantly

(64%) greater mean value than expected values based upon

monocultures (0.15+0.004) (figure 1). This corresponded to a

mean increase in attack rate of 0.09 (+0.022) with tree diversity

(figure 3), in which all but 3 (of 12) polyculture plots had stron-

ger attack rates than the highest monoculture (electronic

supplementary material, figure S2). Furthermore, the average

attack rate across polyculture plots exceeded that of all tree

species in monoculture plots (i.e. transgressive overyielding;
[47]), due to increased attack rates for all tree species in polycul-

ture plots compared to monoculture plots (figure 3).

Accordingly, the net effect of tree diversity was attributed to a

small, negative selection effect (20.011+0.004 s.e.; t-test,

t16¼ 22.78, p ¼ 0.011) and a larger, positive effect of tree

complementarity (0.105+0.023; t-test, t16¼ 4.52, p ¼ 0.0003)

(figure 3), indicating the positive effect of tree diversity on

attack rate was due to non-additive effects among tree species.

Differences in bird attack rate between monoculture and

polyculture plots were mediated by the direct effects of tree

species richness on bird communities; attack rate was posi-

tively correlated with bird abundance (R2 ¼ 0.27, F1,27 ¼

10.37, p ¼ 0.003), FD (R2 ¼ 0.36, F1,27 ¼ 15.55, p ¼ 0.0005),

and PD (R2 ¼ 0.31, F1,27 ¼ 12.36, p ¼ 0.0016), with bird diver-

sity (FD and PD) showing slightly stronger associations with

attack rate than abundance (figure 4). When these bivariate

models were compared with all possible multiple regres-

sion models using Akaike’s information criteria, we found

that models with bird FD and PD (alone) best explained vari-

ation in attack rate. Of the two top models (DAICc , 2),

FD had the highest weight (0.437 compared to 0.180) but

the relative effects of FD and PD were similar (bFD¼ 0.578,

bPD¼ 0.534; table 1). In contrast, abundance was not included

as a parameter in the top competing models and the bivariate

model including abundance had weak support (weight ¼

0.053, DAICc ¼ 4.21).

We used structural equation modelling to quantitatively

compare the extent to which tree species richness indirectly

affected attack rate via bird abundance versus diversity.

Preliminary analyses indicated the multicollinearity between

bird PD and FD (electronic supplementary material, figure

S3; R2 ¼ 0.87, p , 0.001) was too high to include both variables

in our model, and suggested FD to be superior to PD in predict-

ing variation in attack rates (table 1). Thus we compare bird FD

and abundance as mediators of the indirect effect of tree species

richness on attack rate (i.e. product of two partial beta coeffi-

cients for direct effects [44]). In our initial hypothesized

model, the indirect effect of tree species richness mediated by

bird FD had a positive effect on attack rate (indirect effect ¼

0.32, p ¼ 0.043) while the bivariate relationship between bird

abundance and attack rate was not significant ( p ¼ 0.82),

suggesting that the indirect effect of tree species richness on

attack rate was mediated largely, or entirely by bird diversity

(figure 5a; SEM, X2 ¼ 3.25, p ¼ 0.071). When non-significant

paths were removed from this initial model in a stepwise

procedure, the resulting final model reflected a full mediation
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Table 1. Comparing bird community metrics as predictors of model attack rates. Summary of AIC model selection results evaluating bird community metrics as
predictors of model attack rates at the plot level (n ¼ 27), ranked by model weight. For each model, parameter estimates for bird abundance (ABUN),
functional diversity (FD), and phylogenetic diversity (PD) are provided as standardized beta coefficients (b) for comparison among bird community metrics.

model d.f. logLik AICc DAICc weight bABUN bFD bPD

FD 3 35.68 264.41 0.00 0.437 0.578

PD 3 34.80 262.64 1.77 0.180 0.534

ABUN þ FD 4 35.84 262.02 2.38 0.132 20.189 0.749

FD þ PD 4 35.68 261.71 2.70 0.113 0.565 0.014

ABUN 3 33.58 260.20 4.21 0.053 0.474

ABUN þ PD 4 34.86 260.06 4.35 0.050 0.099 0.452

ABUN þ FD þ PD 5 35.84 259.08 5.33 0.030 20.189 0.742 0.007

(none) 2 29.78 255.11 9.30 0.004
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of tree diversity effects by bird FD (figure 5b; SEM, X2 ¼ 3.25,

p ¼ 0.072).
4. Discussion
Whereas past tests of the EH have documented the com-

ponent relationships between plant diversity, predator

communities, and their effects on herbivores [16,20,29], our

findings demonstrate that the indirect effects of plant diver-

sity on top-down control are primarily mediated by

predator diversity in this tropical forest system. We link the

positive effects of tree species richness on attack rate (65%

higher) to tree species complementarity and increases in the

functional diversity of foraging birds (55%), indicating that

multi-species processes are responsible for the observed

effects at multiple trophic levels. Decomposing EH effects,

we highlight the importance of predator diversity over

abundance in driving such dynamics.

Bird diversity may increase attack through several, non-

mutually exclusive mechanisms. Predator diversity is most

often presumed to increase prey attack due to predators fora-

ging in separate microhabitats and thus eliminating enemy

free space [48]. Our design likely underestimates such effects,

as we placed caterpillar models in a uniform location across

tree species (upper side of leaves on lower branches) and thus

did not capture the breadth of foraging niches that span forest

strata, microhabitats, and prey type. Alternatively, increased
bird diversity may have reduced time spent on intra-specific

interactions including territory defence or courtship [49,50],

while abundance could increase competitive interactions. Con-

sistent with our results, previous meta-analyses found that bird

effects on arthropods in tropical agroforestry systems were cor-

related with bird diversity, but not abundance [28,51]. Together,

these findings suggest a feedback linking diversity on multiple

trophic levels to the top-down effects of predators.

Whereas other studies have found arthropod predators to

be the dominant drivers of predation rates in forested systems

and tropical regions [41,52], we found that birds were respon-

sible for the majority of attacks on the artificial caterpillars and

arthropod predation was very low in comparison. Our exper-

imental system may differ because it lacks understory

vegetation and is of relatively low diversity (even in high diver-

sity plots) compared to typical forests at this latitude.

Arthropod predators may be more sensitive to associated vari-

ation in fine-scale habitat structure compared to vertebrate

predators, as well as lose enemy-free space from intraguild pre-

dators in this simplified system [53]. Further, the timing of

experiments (spring versus summer) and corresponding differ-

ences in the phenology of arthropod and bird communities

could have dramatic effects on predator foraging behaviour.

Future research investigating predation pressure over time

from complex predator communities will be valuable in

understanding the mechanisms driving diversity effects.

Our work extends the mechanisms of the EH to forest

ecosystems and vertebrate predators, both of which dominate
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and the product of component standardized coefficients for indirect effects.
R2 values of component models are provided in boxes with the response
variable.
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terrestrial communities globally and provide valuable ecosys-

tem services. While our focus is on plants and predators, it is

likely that similar mechanisms influence other ecological
processes contingent on species interactions. Birds in particu-

lar are exceptionally diverse and contribute to a variety of

functions including pollination, nutrient cycling, and seed

dispersal [54]. Accordingly, the consequences of biodiversity

loss are likely more complex and far-reaching than is cur-

rently appreciated. This is exceedingly important given

human dependence on forest services and products, and

the rapid pace of environmental change [1].

Biodiversity effects are commonly studied with regard to

a single trophic level, but the interactive effects of diversity

across multiple trophic levels may affect ecosystem processes

synergistically. Consequently, biodiversity loss at one trophic

level has not only direct implications, but also indirect effects

through the disruption of such synergies, that could result in

negative feedbacks across trophic levels. As such, conserva-

tion strategies that consider multi-trophic biodiversity may

support an array of community dynamics that are critical to

ecological function.
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