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The mammalian dentition is uniquely characterized by a combination of pre-

cise occlusion, permanent adult teeth and a unique tooth attachment system.

Unlike the ankylosed teeth in most reptiles, mammal teeth are supported by

a ligamentous tissue that suspends each tooth in its socket, providing flexible

and compliant tooth attachment that prolongs the life of each tooth and

maintains occlusal relationships. Here we investigate dental ontogeny

through histological examination of a wide range of extinct synapsid

lineages to assess whether the ligamentous tooth attachment system is

unique to mammals and to determine how it evolved. This study shows

for the first time that the ligamentous tooth attachment system is not

unique to crown mammals within Synapsida, having arisen in several

non-mammalian therapsid clades as a result of neoteny and progenesis in

dental ontogeny. Mammalian tooth attachment is here re-interpreted as a

paedomorphic condition relative to the ancestral synapsid form of tooth

attachment.
1. Introduction
The origin and evolution of the complex mammalian dentition from the modest

heterodonty and continually replaced dentitions of non-mammalian synapsids

is a major topic in vertebrate palaeontology [1–7]. In addition to having limited

tooth replacement and complex cusp patterns, mammals are unusual among

amniotes in having teeth that are not fused to the jaw but suspended in

tooth sockets by periodontal ligaments (PDLs) [2,3,8,9]. The dental gomphosis

(socketed, ligamentous tooth attachment, sensu [10,11]), unlike dental ankylosis

(fused tooth attachment) in most other vertebrates, provides a cushion to resist

the compressive and shear forces associated with chewing and a means through

which teeth can maintain precise positioning and occlusion [12–15]. Paradoxi-

cally, among extant amniotes, the ‘mammalian’ mode of tooth attachment is

elsewhere only seen in crocodilians [9,16–19]. The tissues forming the tooth

attachment systems in mammals and crocodilians are identical, but the evol-

ution of a gomphosis in the two groups was clearly a case of convergence,
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given that early synapsids and reptiles had teeth that were

fused to the jaws [8,9,20,21].

Hypothetical transitional series have been used to explain

how the three-part tooth attachment system in mammals—

consisting of cementum, alveolar bone and PDL—might

have differentiated from an ancestral ‘bone of attachment’, a

single-tissue attachment system that fuses teeth to the jaws

in most non-mammalian vertebrates [9–11,22]. These

hypotheses treat the mammalian gomphosis as the most com-

plex form of tooth attachment and posit that it has increased

in complexity through evolutionary time in association with

dental occlusion, culminating in the mammalian condition

[10]. This view has been challenged more recently, because

even when teeth are fused to the jaws, all amniote teeth pos-

sess homologous tooth attachment tissues to those in

mammals [19,20,23]. These recent findings are re-framing

our understanding of amniote dental evolution, but they

still do not provide an evolutionary or developmental process

to explain how mammals evolved a gomphosis from the

ancestral synapsid condition of ankylosis. Further complicat-

ing this question, numerous studies have lauded the excellent

fossil record spanning the evolutionary transition towards

crown mammals [2,7,10,24], but none have pinpointed

when during the 300 Myr evolutionary history of Synapsida

this important shift in dental development occurred, and

thus it is often assumed that the gomphosis is a mammalian

synapomorphy [3,5,9]. Both the evolutionary origins and

mechanism explaining how mammals evolved this condition

can be empirically tested using histological data from the

fossil record of non-mammalian synapsids.

In order to trace and propose a novel mechanism to

explain the origins of the mammalian tooth attachment

system, we examined histological sections and micro-

computed tomography (mCT) scans to document dental

ontogeny in a large sample of Permo–Triassic stem-

mammalian taxa (figure 1). These data allow us to assess

the non-mammalian homologues of cementum, alveolar

bone and PDL, and derive a novel method for characterizing

dental evolution and ontogeny across synapsid phylogeny.

We use this method to test for fundamental shifts in the

timing and sequence of dental ontogeny in Palaeozoic and

Mesozoic synapsids as a mechanism underlying the transition

from ankylosis in early synapsids to the mammalian tooth

attachment system.
2. Material and methods
(a) Thin sections
Thirty-six specimens of fossil stem and crown mammals were

sectioned at the ROM (Royal Ontario Museum, Toronto,

Canada) Palaeohistology Laboratory or at UW (University of

Washington, Seattle, WA, USA), including representatives

of most of the major lineages of ‘pelycosaur’-grade synapids

(Caseidae, Varanopidae, Edaphosauridae, Sphenacodontidae)

and therapsids (Dinocephalia, Anomodontia, Gorgonopsia,

Therocephalia, Cynodontia) (electronic supplementary material,

table S1). Material from the Evolutionary Studies Institute

(South Africa) was loaned to A. LeBlanc and R. R. Reisz under

SAHRA permit ID 1945 for thin sectioning. Moulds

and casts were made of several specimens prior to sectioning.

Moulds were made using Blustar Silicones V-SIL 1062

silicone and Hi Pro Green catalyst. Casts were made by
pouring Smooth-on-Smooth-Cast 321 or 322 liquid plastic

into the silicon moulds and placed under pressure until they

had set.

Thin sections were made following standard procedures for

sectioning fossil material. Each specimen was embedded in Cas-

tolite AC polyester resin and placed under vacuum. The

hardened resin blocks were cut using a Buehler Isomet low-

speed wafer blade saw (between 225 and 300 rpm) and the cut

surfaces were polished using 600-grit silicon carbide powder.

The polished surfaces were mounted on frosted plexiglass

slides using cyanoacrylate glue and cut again using the Buehler

Isomet. The mounted wafer was then ground to approximately

100 mm using a Hillquist grinding machine with a 240-grit

grinding cup. Each specimen was then hand ground to the

preferred thickness using progressively finer grits (600 and

1000 grit) of silicon carbide powder and polished using 1 mm

grit aluminium oxide powder. Thin section images were taken

using a Nikon DS-fi2 camera mounted to a Nikon AZ-100 micro-

scope using Nikon NIS-ELEMENTS imaging software (Basic

Research package).

(b) mCT scans
mCT scans of four skulls of the early cynodonts Galesaurus and

Thrinaxodon were also examined, including a juvenile (BP/1/

5372) and subadult (BP/1/7199) Thrinaxodon specimen. As per

Abdala et al. [6], scans of BP/1/5372 were made at the European

Synchrotron Radiation Facility (Grenoble, France) on beamline

ID19 in propagation phase-contrast mode (isotropic voxel size

of 20.24 mm). BP/1/7199 was scanned on beamline ID19 using

the filtered white beam in a half-acquisition mode with a voxel

size of 30 mm (see [6] for detailed scanning methodology). The

intermediate-sized (BP/1/4602) and large (BP/1/5064) skulls

of Galesaurus were mCT scanned at the Evolutionary Studies

Institute (University of the Witwatersrand, South Africa) using

a Nikon Metrology XTH225/320 LC dual-source CT system

[26]. BP/1/4602 was scanned at 130 kV and 185 mA and BP/1/

5064 at 170 kV and 95 mA. All scans were segmented in AVISO

6.3 (Visualization Sciences Groups, Merignac, France) and

VGSTUDIO MAX 2.2 (Volume Graphics, Heidelberg, Germany).

All mCT scan files used for these specimens in this study are

available in the Dryad Digital Repository [27].
3. Results
(a) Tooth attachment histology in synapsids
The resulting histological dataset consisted of nearly 120 thin

sections and 4 mCT scans spanning at least 20 distinct synap-

sid taxa. Despite being fossilized specimens, all of the thin

sections revealed the presence of the mineralized attachment

tissues, cementum and alveolar bone (figure 1b–l) and in

comparable arrangements to those in extant mammals

(figure 1m). Cementum occurs in two forms: a thin acellular

band adjacent to the dentine of the tooth root and a thicker

outer layer with abundant cell lacunae (cellular cementum).

Alveolar bone is a highly vascularized bone layer forming

the tooth socket. Identifying the PDL in fossils is inherently

difficult, because the majority of this tissue is uncalcifed

and therefore decays shortly after death. The collagen fibre

bundles of the PDL span the gap between the cementum

and the alveolar bone to suspend the tooth in place

(figure 2a,b). Fortunately, these collagen fibre bundles are

partially mineralized where they anchor into the alveolar

bone and cementum, forming Sharpey’s fibres that are visible

in extant and fossil material (figure 2). The presence of
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Figure 1. Tooth attachment in stem and crown mammals (Synapsida). (a) Cladogram of the evolutionary relationships of the major taxa within Synapsida (modified
from [5,20,25]). (b – l) thin sections showing tooth attachment tissues in major synapsid groups. (b) The sphenacodontid Dimetrodon (ROM 6039). (c) An inde-
terminate dinocephalian (BP/1/4851). (d ) The anomodont Diictodon (ROM 52624). (e) A second individual of Diictodon (ROM 52624). ( f ) An indeterminate
gorgonopsian (NMT RB404). (g) An indeterminate therocephalian (BP/1/7257). (h) The same therocephalian, but an adjacent tooth position. (i) The derived ther-
ocephalian Bauria (BP/1/2523). ( j ) The cynodont Cynognathus (BP/1/6097). (k) The cynodont Diademodon (BP/1/4652). (l ) The extinct ungulate mammal
Hyopsodus (USNM 595273). (m) A stained section of the periodontium in an extant badger (Taxidea). (n) Illustrated the arrangement of the attachment tissues
of the gomphosis in Synapsida. ab, alveolar bone (grey); ac, acellular cementum (blue); cc, cellular cementum (blue); de, dentine; jb, jawbone; pdl, periodontal
ligament (red). Asterisks indicate spaces formerly occupied by periodontal ligament in life.
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Sharpey’s fibres and a sediment- or mineral-filled gap

between the tooth root and the socket bone are therefore

strong indicators of the presence of a PDL in a fossil

vertebrate [20,23,28].

All of the ‘pelycosaur’-grade synapsids, exemplified by

the sail-backed carnivore Dimetrodon, exhibited dental anky-

losis (figure 1b), where the soft tissue comprising the PDL
has completely calcified [19,20]. Partially mineralized Shar-

pey’s fibre bundles radiate around the tooth roots within

the alveolar bone in these ankylosed teeth and extend

to the cellular cementum coating the tooth roots, indicating

the presence of a soft tissue attachment prior to complete

mineralization [20]. Nearly all of the sectioned teeth were

either erupting into the oral cavity (usually preserved only
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Figure 2. ‘Mammal’-like tooth attachment in non-mammalian therapsids. (a) Illustration of the tooth attachment tissues in a gomphosis. (b) Close-up of the tooth
attachment tissues in an extant badger under cross-polarized light, showing the Sharpey’s fibres of the PDL in the cementum and alveolar bone. (c) Transverse
section of a tooth of a gorgonopsian (BP/1/784). (d ) Close-up of the periodontal tissues in (c). (e) Coronal section of a tooth of an indeterminate therocephalian (BP/
1/172). ( f ) Close-up of periodontal tissues in (e). (g) Coronal section of a tooth in the therocephalian Bauria (BP/1/2523). (h) Close-up of periodontal tissues in (g)
under cross-polarized light. (i) Transverse section of a tooth in the cynodont Cynognathus (BP/1/6097). ( j ) Close-up of the periodontal tissues in (i) under cross-
polarized light. (k) Coronal section of a tooth in the cynodont Diademodon (BP/1/4652). (l ) Close-up of the periodontal tissues in (k) under cross-polarized light.
pdl, periodontal ligament; sf, Sharpey’s fibres.
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as replacement pits in the jaws), or completely ankylosed to

the jaws, with only four teeth in the entire ‘pelycosaur’

sample being incompletely ankylosed to the jaws (figure 1b;

electronic supplementary material, information S1).

Unlike the condition in ‘pelycosaurs’, numerous

non-mammalian therapsids, including some dinocephalians,

therocephalians and the early cynodont Thrinaxodon show

evidence of ankylosis and gomphosis-type tooth attachment

in the same taxon or even the same individual, indicating

prolonged ligamentous tooth attachment prior to complete

ankylosis (figure 1c,d,e,g,h; electronic supplementary

material, information S1). Some of the teeth in these therap-

sids show evidence of the centripetal growth of the

surrounding alveolar bone, indicating that it is the alveolar

bone that extends towards the tooth root through dental

ontogeny, eventually encasing the PDL in bone

(figure 1d,e,g,h).
(b) ‘Mammal’-like tooth attachment in several non-
mammalian synapsids

Several non-mammalian therapsids had teeth that were

exclusively attached to the socket by an uncalcified PDL,

including tapinocephalid dinocephalians, gorgonopsians,

bauriid therocephalians and numerous, but not all cynodont

genera (figures 1f,i,j,k; 2; electronic supplementary material,

information S1). Among non-mammalian cynodonts, only

the early cynodont Thrinaxodon and some tritheledontids

show evidence of dental ankylosis in older generations of

teeth [6,29,30]. All other cynodonts we and others [31] exam-

ined show evidence of well-developed cementum, PDL

(indicated by a mineral or sediment filled space between

the tooth root and the socket) and alveolar bone without

ankylosis. This gomphosis-type of tooth attachment in these

therapsid groups is characterized by smooth outer margins
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Figure 3. Tooth attachment and relative frequency of tooth attachment stages. (a) The frequency of teeth at the eruption, gomphosis, mineralization and ankylosis
stages in thin sections and CT scans of fossil synapsids, reflecting the proportion of time teeth spend in the respective stages (note: the mammal samples used here
all had erupted permanent dentitions). (b) Digital transverse section through four postcanines of Thrinaxodon (BP/1/5372) showing successive stages of eruption,
gomphosis, mineralization and ankylosis ( from left to right). (c) varanopid dentary transverse section showing teeth at either the eruption stage or completely
ankylosed (rapid ankylosis) (ROM 66866). (d ) CT image of the lower jaws of the cynodont Thrinaxodon (BP/1/7199) showing teeth at eruption, gomphosis
and ankylosis stages (delayed ankylosis). (e) gorgonopsian maxilla (BP/1/2395a) transverse section showing teeth either at the eruption or gomphosis stages ( per-
manent gomphosis). ak, ankylosis; go, gomphosis, rp, resorption pit/erupting tooth. (Online version in colour.)
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of the cementum layers with abundant Sharpey’s fibres that

radiate around the tooth root (figure 2). The surrounding

alveolar bone is also perforated by Sharpey’s fibres that

have complimentary orientations to those in the cementum.

This condition is identical to that in extant mammals

(figure 2).
(c) Ancestral character state reconstruction
These histological comparisons show that simply mapping

the presence of ‘ankylosis’ and ‘gomphosis’ as alternative

states across synapsid phylogeny fails the homology test of

conjunction [32,33], because some individuals exhibit both

states along the same jaw. We did, however, note changes

in the relative duration of a standardized sequence of four

phases of dental ontogeny (figure 3). Tooth staging schemes

are most frequently used to map tooth replacement patterns

in vertebrates [34–36]; however, we devised a novel staging

scheme to encompass the variation in tooth attachment
modes seen in synapsids. After a tooth is shed, all new

teeth pass through an eruption stage where the surrounding

hard tissues are resorbed and the developing tooth starts to

form enamel and dentine (figures 3 and 4a). Upon erupting

into the mouth, teeth were attached to alveolar bone by a

PDL forming a dental gomphosis (figures 3 and 4b). The

gomphosis phase is often followed by gradual inward

growth of alveolar bone, which entombed the PDL in bone

(figures 3 and 4c). This mineralization phase is characterized

by incomplete ankylosis of the tooth root to the socket, with

some areas around the tooth exhibiting contact between the

cementum and alveolar bone, whereas others are still separ-

ated by an unmineralized gap (figures 3 and 4d ). The final

phase is ankylosis, where the surrounding alveolar bone

has completely calcified the PDL and contacts the cementum

all around the tooth root.

We tabulated the number of teeth represented in each

phase along all of our thin sections and CT scans (electronic

supplementary material, table S2) and treated these as being
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proportional to the relative duration of each phase in dental

ontogeny in a given taxon (following the rationale of [37]).

This method revealed three distinct states of synapsid

dental ontogeny, based on the relative duration of the gom-

phosis and ankylosis phases: (0) teeth pass rapidly to

ankylosis after erupting (gomphosis not observed); (1)
teeth pass through a gomphosis stage more slowly, fol-

lowed by ankylosis (gomphosis and ankylosis observed);

and (2) teeth retain a permanent gomphosis (ankylosis

not observed) (figures 3c–e and 4e). These character

states were then mapped across the synapsid phylogeny

of Sidor & Hopson [5] using MESQUITE’s ‘trace character
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history’ function (electronic supplementary material,

Information S2).

The resulting comparisons of dental ontogeny and charac-

ter state distributions show that ‘pelycosaurs’ have a very

short-lived gomphosis phase, because teeth were either in

the process of erupting or were ankylosed to the jaws (state 0)

(figures 3a and 4e). Therapsids all display proportionally

longer-lasting ligamentous phases of tooth attachment rela-

tive to ‘pelycosaurs’ (states 1 or 2) (figures 3a and 4e). We

also identified several occurrences of a permanent gomphosis

(state 2) in tapinocephalids, gorgonopsians, therocephalians

and several non-mammalian cynodonts (figures 3a and 4e).

Given the relatively coarse resolution of this phylogeny, sev-

eral of the terminal taxa had to be coded as polymorphic for

this character, including anomodonts and therocephalians.

Ancestral character state reconstruction suggests that the

ancestral state for therocephalians was to have a permanent

gomphosis (state 2), with a reversal to delayed ankylosis

(state 1) in some therocephalian taxa. The resulting character

state distributions also indicate that a permanent gomphosis

(state 2) is a symplesiomorphy for mammals, with the tran-

sition to a permanent gomphosis characterizing the more

inclusive group, Theriodontia (Gorgonopsidae, Therocepha-

lia and Cynodontia). These results also highlight a reversal

to delayed ankylosis (state 1) in the early cynodont Thrinaxo-
don and potentially in tritheledontid cynodonts [29,30]

(figure 4e), and the convergent evolution of a permanent

gomphosis (state 2) in some herbivorous dinocephalians.
4. Discussion
(a) Heterochrony and the evolution of the mammalian

tooth attachment system
Our data do not support the classical hypotheses for the ori-

gins of the mammalian tooth attachment system, which

invoke evolutionary increases in dental tissue complexity

from an ancestral ‘bone of attachment’ to a three-tissue

tooth attachment system in crown mammals [9–11]. Whereas

finer within-clade comparisons are required to optimize this

ontogenetic character, the differences in tooth attachment

across Synapsida clearly do not relate to increases in tooth

tissue complexity, but to differences in the timing and

sequence of dental ontogeny. Teeth are unique organs in

that their ontogeny can be examined separately from the

ontogeny of the animal itself, because in most vertebrates,

the teeth are continually replaced. Sectioning the jaws of

non-mammalian synapsids therefore provides a window

into synapsid dental development and evolution: each sec-

tion reveals multiple generations of teeth progressing

through a repeating sequence of developmental stages from

initiation, tissue differentiation, calcification, to the shedding

of a functional tooth [20,38] (figure 3). Comparing dental

ontogeny across such a wide range of extinct synapsids

reveals that the ancestral condition for Synapsida is for

teeth to pass through a gomphosis phase early in dental onto-

geny and to rapidly form a stable ankylosis by the extensive

alveolar bone formation that fixes the tooth in place (figures 3

and 4) [20].

Using our method for characterizing dental ontogeny and

the ‘pelycosaur’ condition as the ancestral synapsid state, we

propose that the observed differences in tooth attachment
across Synaspida are due to a neotenic (sensu [39]) delay in

the onset of ankylosis (a transition from state 0 to 1 in our

new dental character) and to progenesis (sensu [39]), or trun-

cation of the mineralization and ankylosis stages in dental

ontogeny in the stereotypically mammalian condition of a

permanent dental gomphosis (a transition from state 1 to

2). Functional teeth that were attached by a ligament,

previously thought to characterize cynodont or strictly mam-

malian tooth attachment within Synapsida [5,10,22,40,41],

appear across all therapsid clades (figures 1c–l and 2). More-

over, the permanent gomphosis in tapinocephalids,

gorgonopsians, bauriids and the majority of cynodonts

(including mammals) is therefore not the result of repeated,

de novo evolution of a PDL from a primordial ‘bone of

attachment’, but to delayed or a lack of calcification of the

PDL, which is plesiomorphically present in all synapsids

[20]. This heterochronic shift in the timing of mineralization

and subsequent ankylosis phases results in a paedomorphic

(sensu [39]) form of tooth attachment in these taxa. Mammals

and several other therapsid groups simply possess functional

teeth that remain at an earlier ontogenetic stage compared to

‘pelycosaur’-grade synapsids (figures 3 and 4).

Whereas our understanding of the development and

maintenance of the mammalian PDL is steadily improving

[42–44], the role that phylogenetic history plays in this pro-

cess has only recently been explored [20]. Partial

mineralization of the PDL in modern caiman led McIntosh

et al. [17] to conclude that the crocodilian PDL was intermedi-

ate between the ankylosis type attachment in most other

reptiles and the gomphosis in mammals. Our results provide

a clearer depiction of a phylogenetically ‘intermediate’ con-

dition between the earliest synapsids and crown mammals:

the gomphosis in many non-mammalian therapsids is

replaced by complete ankylosis, with the PDL eventually

becoming entombed in the surrounding alveolar bone and

forming a stable ankylosis, a condition exemplified by

many non-mammalian therapsids [20] (figures 3 and 4).

Where mammals, tapinocephalids, gorgonopsians, many

therocephalians and cynodonts differ is in the decrease in

an alveolar bone deposition, decreased calcification of the

PDL and the maintenance of a non-mineralized region

between the tooth root and the alveolus.
(b) Functional implications
The evolution of the gomphosis has been historically linked

to complex dental occlusion in stem mammals [3,9], because

the widely accepted role of the PDL is to dissipate the forces

of occlusion [14,38,45]. However, for the stress-dissipating

hypothesis for the origin of the PDL to be supported, it

should have arisen in clades that exhibit extensive occlusion

or high bite forces and such fossil evidence has been lacking

up to this point [10]. Within Synapsida, some non-mamma-

lian clades may have independently evolved a gomphosis

in association with comparatively simple dental occlusion

(as in tapinocephalids and bauriids), but this could not poss-

ibly apply to all groups. For example, the blade-like teeth of

gorgonopsians and the shearing teeth of Galesaurus exhibit

permanent gomphosis, whereas some of the teeth of the

early cynodont Thrinaxodon show evidence of ankylosis [6]

(figure 3; electronic supplementary material, information

S1). Moreover, all ‘pelycosaurs’ show complete and rapid

ankylosis of teeth, irrespective of tooth function (figure 3;
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electronic supplementary material, information S1). Outside

of Synapsida, many archosaurs (including all dinosaurs and

extant crocodilians) exhibit a gomphosis, but many do not

exhibit dental occlusion [17,28,46], whereas other extinct rep-

tiles exhibit simple occlusion, but have ankylosed teeth

[47,48]. The evolution of a permanent ligamentous tooth

attachment in synapsids is therefore not uniquely associated

with occlusion and may have arisen in association with

another factor that many therapsid lineages share to the

exclusion of the earlier ‘pelycosaurs’.

We hypothesize that a reduction in the tooth replacement

rate across the transition from ‘pelycosaurs’ to therapsids

may at least explain why all therapsids show a prolonged

(but not always permanent) ligamentous tooth attachment

relative to ‘pelycosaurs’ (figures 3 and 4). We found evidence

for extensive tooth migration and size discrepancies between

functional and replacement teeth, indicating that a significant

amount of time had passed between replacement events in

several therapsid groups (electronic supplementary material,

information S3). A slower tooth replacement rate would

mean that teeth spent proportionally more time in the oral

cavity. A prolonged ligamentous phase of tooth attachment

would mediate the re-positioning of teeth within the jaws

through ontogeny, which is a key function of the mammalian

PDL [10,13]. This prolonged ligamentous phase may have

later been co-opted into its shock-absorbing function in the

occluding teeth of mammals and several other therapsid

lineages.
5. Conclusion
By comparing tooth tissue formation over a 300 Myr span of

synapsid evolution, we can conclude that the mammalian

periodontium is not the result of an evolutionary increase

in dental complexity, but an example of paedomorphosis:

namely a slower calcification of the PDL (neoteny) in some

therapsids, and to truncation of the mineralization and anky-

losis phases of dental ontogeny (progenesis) in others,

including mammals. Heterochrony has played a prominent

role in the diversification of mammalian teeth, including

evolutionary changes to eruption timing and the evolution

of high-crowned (hypsodont) teeth [49,50], but it has

played a further role in the evolution of the dental gomphosis

that characterizes all mammal teeth. Evolutionary changes to
the timing of calcification of the tooth attachment tissues

were not restricted to synapsids, however, as similar

phenomena have been proposed to explain the occurrences

of a ligamentous tooth attachment in some extant and extinct

squamates [23]. These similarities between synapsid and

squamate dental ontogeny and evolution suggest that hetero-

chrony may be an important driver of dental attachment

tissue evolution in amniotes. These findings show that the

classical divide between the mammalian gomphosis and rep-

tilian ankylosis is not a distinction between complex and

simple teeth, but two ends of a spectrum in the evolution

and development of amniote tooth attachment.
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