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Renal micropuncture and renal 2-photon imaging are seminal techniques in renal physiology. However, micropuncture is limited by dependence
on conventional microscopy to surface nephron features, and 2-photon studies are limited in that interventions can only be assessed at the
organ, rather than the nephron level. In particular, micropuncture studies of the glomeruli of mice have been challenged by the paucity of surface
glomeruli in mice. To address this limitation in order to pursue studies of aspirate from Bowman's space in mouse physiologic models, we
developed 2-photon glomerular micropuncture. We present a novel surgical preparation that allows lateral access to the kidney while preserving
the required vertical imaging column for 2-photon microscopy. Administration of high molecular weight fluorescein isothiocyanate (FITC)-
dextran is used to render the renal vasculature and therefore glomeruli visible for 2-photon imaging. A quantum dot-coated pipette is then
introduced under stereotactic guidance to a glomerulus selected from the several to many which may be visualized within the imaging window.
In this protocol, we provide details of the preparation, materials, and methods necessary to carry out the procedure. This technique facilitates
previously-impossible physiologic study of the kidney, including recovery of filtrate from Bowman's space and all segments of the nephron within
the imaging depth limit, about 100 pm below the renal capsule. Pressure, charge and flow may all be measured using the introduced pipette.
Here, we provide representative data from liquid chromatography/mass spectrometry performed on aspirate from Bowman's space. We expect
this technique to have wide applicability in renal physiologic investigation.

Video Link

The video component of this article can be found at https://www.jove.com/video/58206/

Introduction

The purpose of this procedure is to provide routine micropuncture access to Bowman's space and other glomerular structures in mice.
Micropuncture studies for renal physiology have been limited to 1-photon microscopy, which can only image within a few microns of the kidney
surface, and which offers limited precision in the z-dimension. Because mice have few surface glomeruli, it is not always possible to find a
surface glomerulus by 1-photon microscopy, therefore most micropuncture studies have been carried out in Munich-Wistar rats, which have
more numerous surface glomeruli. Therefore, the benefits of working in mouse models have been limited in micrc;puncture studies"?*. Recent
advances in imaging technologies, including micro-CT4’5, nanoparticle imaginge, and imaging mass spectrometry’ have greatly enhanced the
range of modalities applicable to glomerular physiology, but there remains no substitute for the unique ability to intervene and sample that
micropuncture provides. Therefore extending the use of micropuncture using the techniques presented here is expected to facilitate novel renal
physiology studies, in particular, evaluation of the content of renal filtrate (i.e., metabolomics) and basic physiology of transgenic mice, such as
measurements of filtrate pressure and charge, previously performed only in rats.

In this technique, use of 2-photon microscopy allows visualization and micropipette access to renal structures up to about 100 um below

the renal capsule. Multiple (5-10) glomeruli are therefore accessible to micropuncture in every mouse kidney thus far imaged. Although this
technique shares some features with conventional renal micropuncture, it was designed de novo and extensive modifications from conventional
technique are required. In this protocol we demonstrate aspiration of fluid from Bowman's space and show example results of subsequent
analysis with mass spectrometry (nanoproteomics)8'9‘10’11. Downstream use of mass spectrometry requires a specialized sample preparation
workflow, which is also demonstrated here.

Protocol

All procedures described herein were approved by the Institutional Animal Care and Use Committee of Oregon Health & Science University.
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1. Setup Used for Demonstration

1. Use an upright 2-photon microscope, a 3-axis stage controller, a headstage/pipette holder, and a 3-axis controller for the headstage/pipette
holder; all four of these items are required.
NOTE: Many similar setups are available and will suffice as long as independent quantitative 3-axis control of the pipette and microscope
stage are available, and the microscope is set up for in vivo upright imaging.

2. Materials Necessary Prior to Starting Experimental Protocols

1. Use FITC-dextran, 2,000,000 Da, 5% solution in normal saline or phosphate-buffered saline for retroorbital injection to mark the renal
vasculature. This molecular weight (MW) is selected because it remains in the vasculature and does not filter.

2. Machine-pulled borosilicate glass micropipettes: Pull micropipettes to 6—10 um tip using long-taper, closed tip settings (e.g., heat = 610,
velocity = 150, time = 250 ms, looped) on a micropipette puller. Bevel to 45° and flame-polish lightly.

3. Quantum-dot coating of micropipettes: Coat micropipette tips with quantum dots according to the referenced protocol.12

4. Polysiloxane kidney support/spacer. Use polysiloxane putty to craft a kidney support/spacer. Fashion a 1 x 1 cm? by 5 mm thick right-angle
rhomboid (i.e., a truncated cube) from polysiloxane putty. Remove the middle 70% of the polysiloxane from one edge and a circle comprising
about 70% of the center of the rhomboid. Allow the polysiloxane to dry for 24 h. See Figure 1.

5. Microinjector preparation: Prefill a length of polyethylene (PE)-50 tubing and the micropipette-loaded micropipette holder with oil. If mass
spectrometry is planned, perfluorodecalin is required, otherwise mineral oil may be used. Set up the microinjector with a gas-tight Hamilton-
type syringe and fill with perfluorodecalin. This will be connected to the PE-50 tubing and pipette holder.

6. Place the pipette in the pipette holder and forward fill the PE-50 tubing and pipette, then attach the proximal end of the PE-50 tubing to the
oil-filled Hamilton syringe, creating a hydraulic system from pipette to syringe.

3. Lateral Pipette Access to The Kidney Below a Fluid Imaging Column via a Novel Surgical
Procedure

NOTE: The assembly of the imaging support system and surgical prep is shown in Figure 1. The procedure described is performed on C57BL/6
mice weighing 20-25 g.

1. Weigh the mouse.

Induce anesthesia using 4% isoflurane and maintain with 1.5-2.5% isoflurane in air/oxygen mixture. Confirm that the mouse is anesthetized

by absence of response to painful stimulus and reduced respiratory rate.

Lubricate the eyes and position the animal lateral on a baseplate. Immobilize 4 extremities using tape.

Inject normal saline, 200 yL, subcutaneously and place a rectal temperature probe. Control temperature using a heating lamp during surgery

and a heating pad during imaging.

Remove all hair on the left side of the mouse using a depilatory cream.

Locate the spleen, which is visible under the skin, and locate the left kidney on the dorsal and caudal side of spleen.

Make a 0.5 cm incision on the skin and smaller incision on the peritoneum, just enough for the kidney to push through easily.

Extrude the kidney with gentle pressure. Place kidney stabilizer form made with polysiloxane around the kidney and fix with cyanoacrylate

adhesive. Line the kidney up with the spacer such that the lateral-most surface of the kidney extends beyond the stabilizer by about 1 mm.

Fix a head plate to the stabilizer form with glue and mount the head plate to mounting bars on the base plate.

10. Fill the well in the polysiloxane support surrounding the kidney with 1% agarose solution and place the 10 mm coverslip on top and hold until
agarose is firm. Seal coverslip to the head plate with glue and create a ring around the coverslip with dental cement.

11. Inject FITC-dextran (2,000,000 Da, 5% solution, 100—150 pL) retro-orbitally and move the mouse and fixation plate to the 2-photon
microscope stage quickly, maintaining anesthesia and ensuring adequate waste gas scavenging on the microscope stage.
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4. Selection of a Suitable Glomerulus and Pipette Access to Bowman's Space

1. Definitions:

Define X as left-right on the screen and left-right facing the microscope

Read SX (stage X) from the stage controller

Define PX as pipette X, on the pipette dial controller

Define Y as up-down on the screen and forward toward the microscope and back toward the 2-photon setup
Define Z as up toward the ceiling, down toward the floor, and measured on the stage with the objective Z position.
Define S(O)Z as the stage (really the objective) height.

ook wn -~

2. Find the surface of the kidney, identifiable using green fluorescent protein (GFP) filter settings in the ocular. Due to the injection of
FITC-Dextran, the vasculature will be bright green.

1. Identify a suitable glomerulus. After identifying the surface of the kidney using the ocular, switch to 2-photon (non-scanning mode) and
explore the imaging window. Favorable characteristics for micropuncture are the following: vertical distance below the coverslip >30
um (to prevent collision between the pipette and coverslip during access) and lateral distance from the lateral kidney capsule to the
glomerulus <400 um (beyond this distance the deviation of the pipette may increase likelihood of a miss).

3. Record lateral and vertical distance to the puncture point, a point on the renal capsule directly to the pipette-side of the glomerulus.
4. Raise the objective focal point into the water column, keeping the x and y stage coordinates unchanged, a distance of just about a centimeter.
5. Drive the pipette tip into the water column and turn on 4',6-diamidino-2-phenylindol (DAPI) excitation. Move the pipette in the x and y
dimensions to the point of maximal fluorescence of the tip, this will be the center of the objective. Finding the pipette in the ocular is difficult
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10.
. Move the pipette Z to the target glomerulus Z (i.e., move the pipette down in the Z direction below the coverslip)
12.
13.
. Calculate the kidney edge PX using the offset from the registration SX.
15.
16.
17.

18.

19.

20.

without this precise prepositioning. Because quantum dots fluoresce at the same (in this case, red) wavelength regardless of excitation
wavelength, the DAPI excitation produces red fluorescence which is tightly focused on the tip, illustrated in Figure 2.

Change the excitation setting to red fluorescent protein (RFP) and visualize the pipette in the ocular, then precisely center it in the ocular
view.

Switch to 2-photon and find the pipette under 2-photon, placing it precisely in the center of the image. This is the registration position.
Save an image of the pipette.

Register the stage and the micropipette controller coordinates.

NOTE: Use the supplemental .html file, which will execute calculations using JavaScript code, (advantageous on systems which do not have
installed spreadsheet software) or a spreadsheet to calculate the offset between stage and pipette coordinates and to calculate the target
coordinates for the pipette controller.

Remove the pipette from the water column in the x axis, keeping z and y the same.

Move the pipette Y to the target glomerulus Y coordinate.
Move the 2-photon live view to the target glomerulus Z and then to the edge of the kidney and note the SX.

Move the stage toward the pipette (increase the SX) such that the edge of the kidney is far to the left of the screen, but still visible.

Advance the pipette quickly to about 100 pm less than the kidney edge PX calculated above.

Locate the pipette tip, advancing the pipette slowly. Increase the red gain and watch the red pixel histogram (the pixel distribution shifts
before the pipette is imaged in the window, due to the extreme brightness of quantum dots and off-target fluorescence).

Advance to the kidney edge under live 2-photon imaging.

NOTE: Prior to entering the renal capsule, it is possible to redirect the pipette in the Y and Z dimensions. However, this may break the pipette
tip. A more conservative measure, if the pipette is off target, is to withdraw in the X dimension up to 2 cm, redirect, and then return in the X
dimension to the kidney edge. Once the pipette is within the tissue, movement in any axis other than X leads to pipette flexion which requires
great experience to make use of, and frequently leads to breakage.

Drive the pipette in the X axis slowly to the glom target PX, keeping an eye on the SX. (It is helpful to occasionally go back to the glomerulus
to see if it has shifted at all upon insertion of the micropipette).

When you are in the correct location, document position with a z-stack.

NOTE: With the micropipette in place, drugs, proteins, or fluorescent tracers may be injected, fluid may be aspirated for later analysis, or
pressure or charge relative to another electrode may be measured.

5. Aspiration of Fluid from Bowman's Space

ook~

Set the micropump to inject 100 nL of perfluorodecalin over 2 min to ensure patency of the pipette and reduce confounding from pipette
plugging during entry. Reimage to ensure pipette position.

Wait 4-6 min for additional filtration.

Set the micropump to aspirate up to 300 nL at a rate of up to 50 nL/min.

NOTE: Changes in glomerular morphology are not observed with this rate, suggesting it does not alter the rate of delivery of fluid to the
space during aspiration. As there is no oil block as in conventional micropuncture, recovery of this volume, necessary for mass spectrometry,
could include some of the injected perflourodecalin and possibly tubular fluid. For assays such as ion-sensitive electrode measurements
fluorescence spectroscopy, polymerase chain reaction, and other sensitive endpoints, lower volumes may be used. If mass spectrometry is
not the endpoint, mineral oil and standard micropuncture techniques can be used to measure the aspirated volume prior to storage.

Image once more.

Withdraw the pipette and preserve the sample, adding TRIS buffer and storing at -80° prior to analysis.

Euthanize the mouse using an overdose of isoflurane or other approved method.

NOTE: Filtrate enters the space by filtration from the glomerular capillaries. The single-nephron glomerular filtration rate (SNGFR) in mice is
reported between 8-14 nL/min.2 Starling forces govern SNGFR, however, and negative hydrostatic pressure in Bowman's space therefore
may increase SNGFR. Standard micropuncture methods use tubular blockade with oil and neutral pressure for tubular fluid sampling,
however these compounds interfere with mass spectrometry (see below); therefore, in this technique the early proximal tubule remains
patent. Further, at the time of aspiration, Bowman's space contains an unknown, but positive volume of filtrate. Therefore, fluid aspiration rate
may exceed SNGFR.

NOTE: In the experiments described here, the goal was to obtain a larger than usual sample of glomerular filtrate for mass spectrometry
analysis by nanoproteomic techniques. Since use of mass spectrometry precludes use of oil blocks with mineral oil or wax (complex
mixtures of organic molecules which reduce signal:noise in mass spectrometry) perfluorodecalin is used to fill the micropipette and syringe.
Perflourodecalin is not known to block tubular flow, but is biologically inert and does not interfere with mass spectrometry.
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Representative Results

This procedure requires a unique surgical preparation of the kidney for 2-photon imaging and access, which is illustrated in Figure 1. This
preparation shown here allows a vertical imaging column with the objective above the kidney with few density changes for best-possible optics
for 2-photon microscopy simultaneously with lateral access for the pipette, driven exclusively in the horizontal (x) dimension. Partial extrusion
of the kidney prevents excess tension on the renal pedicle and preserves vascular flow, and construction of a custom kidney support enables
the two objectives of imaging and access. The second challenge in this procedure is precise positioning of the pipette within the kidney in 3
dimensions, which requires registration of the pipette and stage coordinate systems. The critical step for this process is illustrated in Figure 2,
which shows the pipette being spotted in the water column of the 2-photon microscope under DAPI-excitation. Entering the water column and
registering the coordinates of the pipette to those of the stage prior to entering the kidney is critical to enable precise stereotactic positioning of
the pipette within the target Bowman's space. The pipette enters the imaging water column from the right. With DAPI excitation turned on, the
red quantum dot-coated pipette fluoresces brightly in the red-orange, and it can be carefully positioned under the middle of the objective. As the
excitation beam passes through the center of the objective, the pipette may be freely moved to the point of maximum fluorescence, ensuring that
it will be visible in the eyepiece.

Proper pipette pulling and glomerulus selection are critical to the success of this protocol, as illustrated in Figure 3, Figure 4, Figure 5. In Figure
3A, a properly-pulled, red-fluorescent quantum dot-coated glass micropipette imaged in the fluid column during the pipette registration portion

of the procedure can be seen. The tip is 6 microns in width. In Figure 3B, a poorly-pulled pipette with 12 um tip is shown. This pipette cannot
penetrate the renal capsule without causing vascular trauma due to the 12 ym diameter and irregular tip surface (note the bur at the top of the
bevel). In Figure 3C and 3D, the importance of optimal positioning rather than imaging of the target glomerulus is shown. The beautiful, near-
surface glomerulus illustrated in Figure 3C demonstrates favorable imaging (due to its surface position at 20 um below the renal capsule) but
would not be suitable for access by this procedure because it is too close to the surface, and the pipette would hit the coverslip. In Figure 3D,
optimally-positioned glomeruli are shown. Note the different scale used to illustrate both glomeruli (scale bars are all 50 ym). These glomeruli
appear less sharp because of refraction caused by depth; this image was taken at 70 ym below the renal capsule. The lateral kidney edge is 250
um to the right, making both of these glomeruli accessible. During an access procedure, imaging is tightly focused on the target glomerulus as

in Figure 4, and every-second image acquisition is used, allowing the investigator to precisely observe positioning of the pipette in Bowman's
space.

Figure 4 illustrates a typical renal entry and the result, a pipette tip within Bowman's space. In Figure 4A, a mean intensity projection from a
z-stack with orthogonal views demonstrates the pipette tip in Bowman's space. Note that there is red pipette tip spectral artifact (round ball

of fluorescence) due to extremely bright fluorescence of the quantum dots arranged on the conical section of the tip. In Figure 4B, a volume
projection of z-stack data demonstrates another pipette in Bowman's space. Note that the pipette dragged Bowman's capsule in the direction of
travel on entry, creating apparent tenting behind the tip as described in the protocol.

In Figure 5, the results of a failed procedure are shown in which a pipette with a too-large opening broke at the renal capsule, causing bleeding.
The pipette was too blunt; on attempting to pass the renal capsule, the capsule was pushed ahead of the pipette tip until breakage occurred. In
this image, the renal capsule is visible, enhanced by subcaspular bleeding, in FITC-fluorescent green. FITC signal is visible within the pipette
itself, indicating that blood under pressure entered the pipette lumen. The arrow points to many red blood cells visible within the pipette lumen as
filling defects in the FITC-dextran.

Figure 6 depicts a representative mass spectrum obtained from Bowman's space aspirate, mouse urinary protein 17 (MUP17). Lastly, Table 1
demonstrates example results of successful aspiration procedures, listing proteins identified using nanoscale mass spectrometry on aspirate
collected over 6 minutes from each of 3 mice. In each case, the pipette was imaged as it was withdrawn from Bowman's space, and no FITC
fluorescence was observed within Bowman's space or the pipette lumen, indicating lack of aspirate contamination with plasma. 17 proteins,
primarily of low molecular weight, were identified from a minimum of 2 unique peptides per protein. Spectral counts are low, consistent with prior
estimates of protein in the glomerular filtrate, and known filtered proteins, such as vitamin D binding protein (VTDB), albumin (ALBU), and major
urinary protein 17 (MUP17) are present.
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Figure 1: Partial extrusion of the kidney with custom support and immobilization for lateral access. On the left, the parts of the imaging
column and kidney support are shown, with the complete assembly in center. On the right, the kidney preparation is shown before (above) and

after (below) application of the support. Please click here to view a larger version of this figure.
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Figure 2: Completed kidney prep at pipette registration step of protocol. Here, DAPI excitation is being used to position the micropipette
within the water column of the 2 photon microscope. Please click here to view a larger version of this figure.

October 2018 | 140 | €58206 | Page 5 of 9

Copyright © 2018 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported

License


https://www.jove.com
https://www.jove.com
https://www.jove.com
https://www.jove.com/files/ftp_upload/58206/58206fig1large.jpg
https://www.jove.com/files/ftp_upload/58206/58206fig2large.jpg

L]
lee Journal of Visualized Experiments www.jove.com

A

Figure 3: Imaging of pipettes and the kidney after injection of FITC-dextran, demonstrating suitable and unsuitable glomeruli for
micropuncture. A. A well-pulled pipette with 6 pm tip. B. A rough-edged, blunt tip. C. This glomerulus is well-defined, but too close to the
coverslip for micropuncture. D. Suitably positioned glomeruli. Scale bars are all 50 um. Please click here to view a larger version of this figure.

Figure 4: Successful pipette passage leads to placement in Bowman's space-views from 2 different procedures. A. Z-stack with
orthogonal projections demonstrates pipette tip in Bowman's space abutting the glomerular tuft. Scale bar is 50 um. B. Volume rendering from
z-stack similarly demonstrates a pipette in Bowman's space abutting the glomerular tuft. Scale bar is 100 um. Please click here to view a larger

version of this figure.
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Figure 5: An unsuccessful procedure due to a blunt pipette, tearing the renal capsule and leading to bleeding into the pipette lumen.
FITC fluorescence from extravasated plasma, and red blood cells (arrow) are visible within the pipette. Arrow points to red blood cells visible

within the pipette lumen. Scale bar is 50 ym. Please click here to view a larger version of this figure.
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Figure 6: The mass spectrum for major urina;'y protein 17 (MUP17), obtained from nanoscale liquid chromatography/mass
spectrometry analysis of Bowman's space aspirate. Please click here to view a larger version of this figure.

Protein MW (kD) Mean Spectral Count
ACTA_MOUSE 42 2
ACTB_MOUSE 42 1
CLPX_MOUSE 69 25
DHSA_MOUSE 73 1
FOLR2_MOUSE 29 1
GBLP_MOUSE 35 1
ALBU_MOUSE 66 6.7
HBA_MOUSE 15 2
HBB1_MOUSE 16 1
MIB1_MOUSE 110 1
MUP17_MOUSE 21 1
PERI_MOUSE 54 1
RNAS4_MOUSE 17 2
SPTB1_MOUSE 2 1
VIME_MOUSE 54 1
VTDB_MOUSE 53 1

Table 1: List of proteins identified in Bowman's space aspirate from 3 mice.

Supplemental Video 1: a volume rendering from a z-stack acquired after positioning a pipette in Bowman's space demonstrates the

pipette tip within the space, abutting the capillary tuft. Please click here to download this file.
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We present a method to access Bowman's space of non-surface glomeruli in mice, facilitated by 2-photon microscopy. We developed this
procedure to address a key limitation of glomerular micropuncture, the rarity of surface glomeruli addressable by 1-photon microscopy in mice,
in order to facilitate an experimental objective, aspiration of fluid from Bowman's space for subsequent analysis. Development and practice of
this technique rests on six critical steps. First, the novel surgical preparation must be carefully carried out so that the imaging water column does
not run off the coverslip and the coverslip extends over the area of kidney which is the target of the pipette. Second, the glass pipette used for
micropuncture must be rendered visible for 2-photon microscopy, which is accomplished using quantum dots. Third, stereotactic technique is
required to precisely position a pipette in Bowman's space in three dimensions, up to 100 um below the kidney surface. Therefore, registering the
coordinate systems of the pipette and the stage with precision are critical steps. Fourth, careful selection of the target glomerulus is necessary to
ensure it is accessible to the pipette without impingement by the kidney support structure and imaging column. Lastly, careful consideration must
be given to the analytic steps to follow the acquisition procedure, and volume and timing of acquisition of fluid samples must be matched to the
analysis and to glomerular physiology.

We designed an acquisition procedure that may be extended to many analyses, including traditional micropuncture endpoints, such as flame
photometry, ion-sensitive electrode measurements, or measurements of pressure, volume or charge. Additionally, we believe this technique

will be amenable to novel analytic endpoints including polymerase chain reaction (perhaps following reverse transcription for miRNA) and
metabolomics downstream of mass spectrometry. The special modifications employed to facilitate mass spectrometry deserve additional
discussion, and they impose some limitations. First, although mass spectrometry is highly sensitive, the low protein content and volume of
micropuncture samples renders analysis of protein below the dynamic range of conventional proteomic exploration, and therefore simplified
nanoproteomics were necessary.e’13 Second, to optimize protein yield for early assays, we determined that 200-300 nL of aspirate was
necessary, but de novo filtrate acquisition of this volume would require perhaps as long as 20 minutes of aspiration if the mouse GFR is only
8-14 nL/min®. As Tojo and Endou demonstrated that prolonged aspiration alters the albumin content of early proximal tubule fluid", we elected to
aspirate over 6 minutes; however this means that our aspiration rate exceeds the filtrate inflow rate. Users of this procedure are encouraged to
consider the physiology of glomerular filtration in their experimental system in designing their workflow. Mass spectrometry, a sensitive technique,
would be overwhelmed by the signal from an introduced petroleum distillate such as mineral oil, which is commonly used in micropuncture to
comprise the hydraulic system for aspiration and isolate segments of the nephron. Therefore, we could not use mineral oil for this purpose, or

its other common use, quantification of volume of nanoliter range samples. Instead we fill the system with perfluorodecalin which is biologically
inert, does not disturb mass spectrometry, and has favorable optical characteristics. We believe the limitations imposed by perfluorodecalin are
surmountable and are working on additional technical innovations which we expect will allow measurement of sample volume and blockade of
the tubular segment.

Most micropuncture studies have been performed in Munich-Wistar rats, which demonstrate increased numbers of surface glomeruli, but this
greatly limited phgsiologic study of tubular transport and other renal physiology because of the loss of the fundamental tool of molecular biology,
transgenic mice?”. Because it facilitates micropipette access to Bowman's space in mice, the novel technique therefore mitigates these critical
limitations. We adogted this technique in order to access renal filtrate for proteomic studies using high-sensitivity mass spectrometry, known

as nanoproteomics”. However, there are likely additional applications. For example, renal physiologic study of filtered protein has been greatly
aided by use of fluorescent tracers with 2-photon microscopy15’16’17. Addition of micropuncture to 2-photon microscopy offers the possibility of
performing single-nephron physiologic study with fluorescent molecules, allowing neighboring, non-injected nephrons to serve as controls. It

is hoped that this clear explanation of the necessary steps will allow wide adoption in labs already equipped for 2-photon microscopy and/or
micropuncture. Although it is complex, we have now performed this procedure many times and the refinements presented herein represent a
stable platform for physiologic discovery.
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