
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
2019, VOL. 96, NO. 1, 33–50
https://doi.org/10.1080/00207160.2017.1413552

ARTICLE

A non-monotone pattern search approach for systems of
nonlinear equations

Keyvan Aminia, Morteza Kimiaeib and Hassan Khotanlouc

aDepartment of Mathematics, Faculty of Science, Razi University, Kermanshah, Iran; bFaculty of Mathematics,
University of Vienna, Vienna, Austria; cDepartment of Computer Engineering, Bu-Ali Sina University, Hamedan, Iran

ABSTRACT
In this paper, a new pattern search is proposed to solve the systems of
nonlinear equations. We introduce a new non-monotone strategy which
includes a convex combination of the maximum function of some pre-
ceding successful iterates and the current function. First, we produce a
stronger non-monotone strategy in relation to the generated strategy by
Gasparo et al. [Nonmonotone algorithms for pattern searchmethods, Numer.
Algorithms 28 (2001), pp. 171–186] whenever iterates are far away from
the optimizer. Second, when iterates are near the optimizer, we produce
a weaker non-monotone strategy with respect to the generated strategy
by Ahookhosh and Amini [An efficient nonmonotone trust-region method
for unconstrained optimization, Numer. Algorithms 59 (2012), pp. 523–540].
Third, whenever iterates are neither near the optimizer nor far away from it,
we produce a medium non-monotone strategy which will be laid between
the generated strategy by Gasparo et al. [Nonmonotone algorithms for
pattern search methods, Numer. Algorithms 28 (2001), pp. 171–186] and
Ahookhosh and Amini [An efficient nonmonotone trust-region method for
unconstrained optimization, Numer. Algorithms 59 (2012), pp. 523–540].
Reported are numerical results of the proposed algorithm for which the
global convergence is established.

ARTICLE HISTORY
Received 11 June 2016
Revised 9 August 2017
Accepted 19 October 2017

KEYWORDS
Nonlinear equation; pattern
search; coordinate search;
non-monotone technique;
theoretical convergence

2010 AMS SUBJECT
CLASSIFICATIONS
90C30; 93E24; 34A34

1. Introduction

Consider the following nonlinear system of equations

F(x) = 0, x ∈ R
n, (1)

for which F : R
n→ R

n is a continuously differentiable mapping. Suppose that F(x) has a zero. Then
every solution x∗ of the nonlinear equation problem (1) is a solution of the following nonlinear
unconstrained least-squares problem

min f (x) := 1
2
‖F(x)‖2

s.t. x ∈ R
n, (2)

where ‖ · ‖denotes the Euclidean norm.Conversely, if x∗ solves Equation (2) and f (x∗) = 0, then x∗ is
a solution of (1). There are variantmethods to solve nonlinear system (1), as conjugate gradientmeth-
ods [33,35], line-search methods [5,12,14–16,32] and trust-region methods [2,3,7–11,34,36,37,39],

CONTACT Morteza Kimiaei kimiaeim83@univie.ac.at Faculty of Mathematics, University of Vienna,
Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

© 2017 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2017.1413552&domain=pdf
mailto:kimiaeim83@univie.ac.at

34 K. AMINI ET AL.

which are quite fast and robust; but they may have some shortcomings. First, by a ratio, trust-region
algorithm tries to control the agreement between the actual and predicted reduction essentially only
along with a direction, for more details on the trust-region algorithm, cf. [26] If this ratio is near
one and the Jacobin matrix ∇F(x) is ill-conditioned or f is a highly nonlinear function for which
approximated quadratic is not good, then the trust-region radius may increase before reaching a
narrow curved valley. Afterwards, we need to reduce several times the radius to get around this
narrow curved valley that leads to increase computational cost and also produce unsuitable solu-
tion for the cases in which highly accurate solutions are necessary. Second, solving the trust-region
subproblems leads to increase CPU times. Third, these methods need to compute both ∇F(x) and
∇F(x)T∇F(x) to determine the approximated quadratic in each iteration. Pattern search methods
represent a derivative free subclass of direct search algorithms to minimize a continuous function
(see, e.g. [4,17,21,22]). Box [4] and Hooke and Jeeves [17] were the first researchers to introduce
the original pattern search methods. Some researchers have shown that pattern search algorithms
converge globally, see [13,19,20,30,31]. Lewis and Torczon successfully extended these algorithms to
obtain bound and linearly constrainedminimization [19,20]. Torczon [29,30] presented amultidirec-
tional search algorithm for parallel machines. In ill-conditioned problems, using monotone pattern
search auxiliary algorithm may have unsuitable influence on the performance of the whole proce-
dure, cf. [13]. Hence, we are going to introduce a new non-monotone pattern search framework that
decreases the total number of function evaluations and CPU times. This development enables us to
produce a suitable non-monotone strategy at each iteration and maintains the global convergence.
Numerical results show that the new modification of pattern search is efficient to solve systems of
nonlinear equations.

Notation: The Euclidean vector norm or the associatedmatrix norm is denoted by the symbol ‖ · ‖.
A set of directions {d1k , . . . , d

p
k} is called positively span R

n if for each y ∈ R
n there exist λi ≥ 0, for

i = 1, . . . , p, such that

y =
p∑

j=1
λidik.

Moreover, ei, for i = 1, . . . , p, is considered as the orthonormal set of the coordinate directions. To
simplify our notation, we set N0 := N ∪ {0}.

Organization. The rest of this paper is organized as follows. In Section 2, we first describe the
exploratory moves and then the generalized pattern search is presented. A new non-monotone pat-
tern search algorithm is presented in Section 3. In Section 4, the global convergence of the new
algorithm is investigated. Numerical results are provided in Section 5 to show that the proposed
algorithm is efficient and promising for systems of nonlinear equations. Finally, some concluding
remarks are given in Section 6.

2. The generalized pattern searchmethod

First of all, we define two components, namely a basis matrix and a generating matrix, cf. [31].

Definition 2.1: Any arbitrary non-singular matrix B ∈ R
n×n is called a basis matrix.

Definition 2.2: The generating matrix Ck ∈ Z
n×p with p> 2n, divided into two parts, is consid-

ered as

Ck := [�k Lk],

in which �k := [Mk −Mk], Mk ∈ M ⊂ Z
n×n, M is a finite set of non-singular matrices and Lk ∈

Z
n×(p−2n) is a matrix that contains at least a column zeros.

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 35

Defined by the columns of the matrix Pk = BCk, in which B is a basis matrix, is a pattern Pk. By
the definition Ck and this fact thatMk has rank n, it is clear that Ck also has rank n. This fact implies
that the columns of Pk span R

n. To act better, the partition of the generating matrix Ck to partition
Pk is used, as follows:

Pk := BCk = [B�k BLk]. (3)

Given xk, a step-size �k > 0, we define a trial step dik to be any vector of the form

dik := �kBcik, ∀ i = 1, . . . , p,

in which cik indicates the ith column of Ck, the vectors Bcik, named exploratory moves as proposed
in [31], determine the step directions and �k is considered as a step-size parameter. Furthermore,
a trial point as any point of the form xik := xk + dik will be defined, where xk is the current iterate.
Before declaring a new iterate and updating the associated information, pattern search methods use
the series of exploratorymoves in order to produce the new iterate. To prove the convergence property
of pattern search methods, we require that the exploratory moves are obtained by the following two
procedures:

Procedure 1(Weak monotone hypotheses on exploratory moves)
(S.1) Compute Pk by Equation (3) and then choose dk ∈ �kPk.
(S.2) If min{f (xk + y), y ∈ �kB�k} < f (xk), then f (xk + dk) < f (xk); stop. Otherwise, go to (S.1).

In Procedure 1, note that y ∈ A means that the vector y is contained in the set of columns of
the matrix A. (S.2) is more interesting; hence, let us describe how it works. As long as there exists
a decrease on the function value at each iterate among any of the 2n steps presented by �kB�k, the
exploratorymovesmust return a decrease step on the function value at each iterate, without satisfying
f (xk + dk) ≤ min{f (xk + y), y ∈ �kB�k}.

Procedure 2(Strong monotone hypotheses on exploratory moves)
(S.1) Compute Pk by Equation (3) and then choose dk ∈ �kPk.
(S.2) If min{f (xk + y), y ∈ �kB�k} < f (xk), then f (xk + dk) ≤ min{f (xk + y), y ∈ �kB�k}; stop.

Otherwise, go to (S.1).

In Procedure 2, (S.2) is replaced by a strong version, as presented above.
Algorithm 1 situates the generalized pattern search method for systems of nonlinear equations, cf.

[31].
In Algorithm 1, if ρk > 0 (Line 8), then it is called a successful iteration. Otherwise, it is called

a unsuccessful iteration. The parameter θ is considered the shrinkage parameter with the role θ :=
τw0 , in which τ > 1 and w0 is a negative integer, and λk is called the expanding factor such that

λk ∈ {τw1 , τw2 , . . . , τwl},

in which w1,w2, . . . ,wl are positive integers, with l <∞. In Line 4 of this algorithm, the step dk can
be obtained either by Procedure 1 or Procedure 2. This algorithm is called generalized weak pattern
search (GWPS) if dk is obtained by Procedure 1; otherwise, if dk is obtained by Procedure 2, it is called
generalized strong pattern search (GSPS).

36 K. AMINI ET AL.

Algorithm 1: GPS (Generalized Pattern Search)
Input: An initial point x0 ∈ R

n, an initial integer matrix C0 ∈ Z
n×p, ε > 0, θ ∈ (0, 1), λk ≥ 1

and �0 > 0;
Output: xb, fb;

1 begin
2 k := 0; Fk := F(xk); fk := 1

2‖Fk‖2;
3 while �k ≥ ε do
4 choose dk by either Procedure 1 or Procedure 2; compute F(xk + dk);
5 f (xk + dk) := 1

2‖F(xk + dk)‖2;
6 compute ρk := fk − f (xk + dk);
7 if ρk > 0 then
8 xk+1 := xk + dk; �k+1 := λk�k;
9 else
10 xk+1 := xk; �k+1 := θ�k;
11 end
12 Fk+1 := F(xk+1); fk+1 := 1

2‖Fk+1‖2;
13 update Ck+1;
14 k← k+ 1;
15 end
16 xb := xk; fb := fk;
17 end

Both GWPS and GSPS contain a drawback. This fact that the quantity ρk can not truly prevent the
production of unsuccessful iterations in the presence of narrow curved valley leads to the increase of
CPU time and the total number of function evaluations. In order to overcome this drawback, Gasparo
et al. [13] modified the quantity ρk.

Torczon [31] showed in Theorem 3.2 that each iterate xn generated by GWPS can be considered as

xn := x0 + (βrLBα−rUB)�0B
n−1∑
k=0

zk, (4)

in which α and β are relatively prime positive integers while satisfying β/α := τ , rLB :=
min{r0, . . . , rn−1}, rUB := max{r0, . . . , rn−1} and zk ∈ Z

n. Moreover, Torczon showed that �k can
be written as follows:

�k := τ rk�0, (5)

in which rk ∈ Z. Both Equations (4) and (5) help us to prove Lemma 4.6 in Section 4.

3. The new non-monotone strategy

It is believed that some globalization techniques such as pattern search can generally guarantee the
global convergence of the traditional direct search approaches. A monotonicity of the sequence of
objective function values is generated by this globalization technique, which usually leads to produce
short steps. Due to this fact, a slow numerical convergence is created for highly nonlinear prob-
lems, see [1,5,13,14,27,28,38]. As an example, the generalized pattern search framework exploits the

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 37

quantity ρk which guarantees

fk − fk+1 > 0,

this means that the sequence {fk}k≥0 is monotone. In order to avoid this drawback of globalization
techniques, Gasparo et al. [13] based on the definition introduced by Grippo et al. [14], proposed a
non-monotone strategy in pattern search algorithms with the quantity ρ̂k satisfying

ρ̂k := fl(k) − fk+1,

for which

fl(k) := max
0≤j≤m(k)

{fk−j}, k ∈ N0 (6)

in which m(0) := 0 and 0 ≤ m(k) ≤ min{m(k− 1)+ 1,N} with N ≥ 0. This strategy has excel-
lent results having caused many researchers to investigate the effects of these strategies in a wide
variety of optimization procedures and to propose some other non-monotone techniques, see
[1,13,14,27,28,38]. Although the non-monotone technique (6) has many advantages, this rule con-
tributes to some drawbacks as well, see [1,38]. Recently, Ahookhosh and Amini [1] have presented a
weaker non-monotone strategy of Grippo et al. [14] which overcomes some of its disadvantages [14]
with the quantity ρ̄k satisfying

ρ̄k := Rk − fk+1,

where

Rk := ηkfl(k) + (1− ηk)fk, (7)

in which ηk ∈ [ηmin, ηmax], ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1]. Although, this proposal generates the
more efficient algorithm, it depends on choosing ηk. An unsuitable choice of ηk can cause some short-
comings. According to the characteristics and expectations of our algorithm, we further propose an
appropriate ηk. In this regard, let us first define the following ratio

�k :=
fl(k)
fk

,

which can help us to compare the distance between the members of {fk}k≥0 and {fl(k)}k≥0. It is clear
that �k ≥ 1 because fl(k) ≥ fk > 0 and Lemma 4.5 show that limk→∞�k = 1. Also, it can be seen
that if �k ≥ β (β > 1), then {fk}k≥0 and {fl(k)}k≥0 are far away from each other and otherwise they
are close. Now, after representing of

η̂k :=
⎧⎨⎩

ηk

�k
if �k ≥ β ,

ηk�k else,
(8)

a new non-monotone pattern search formula is defined by

k := η̂kfl(k) + (1− η̂k)fk, (9)

for which the new quantity is considered as

ρ̃k :=
k − fk+1. (10)

38 K. AMINI ET AL.

The theoretical and numerical results show that the new choice of ρ̃k has remarkable positive effects
on pattern search to get faster convergence, especially for highly nonlinear problems. Let us now use
the following procedure to compute the non-monotone strategy (9)

Procedure NM(Non-monotone)
Input: ρ̃k, fk+1, fl(k), ηmin, ηmax,
k,m(k), N

1 begin
2 if ρ̃k > 0 then
3 choosem(k+ 1) ∈ [0,min{m(k)+ 1,N}];
4 calculate fl(k+1) by Equation (3) and choose ηk+1 ∈ [ηmin, ηmax];
5 compute η̂k+1 by Equation (5) and
k+1 by Equation (6);
6 else
7 m(k+ 1) := m(k); ηk+1 := ηk; fl(k+1) := fl(k);
k+1 :=
k;
8 end
9 end
Output: fl(k+1), ηk+1,m(k+ 1), ηk+1 and
k+1

Remark 3.1: The sequence {
k}k≥0 generates the convergence results obtained by stronger
non-monotone strategywhenever iterates are far away from the optimizer and themembers of {fk}k≥0
and {fl(k)}k≥0 are close to each other while this sequence generates the convergence results obtained
by weaker non-monotone strategy whenever iterates are close to the optimizer and the members of
{fk}k≥0 and {fl(k)}k≥0 are far away from each other.

Before presenting our algorithm, we describe how to determine the step dk by the following two
procedures:

Procedure 3(Weak non-monotone hypotheses on exploratory moves)
(S.1) Compute Pk by Equation (3) and then choose dk ∈ �kPk.
(S.2) If min{f (xk + y), y ∈ �kB�k} <
k, then f (xk + dk) <
k; stop. Otherwise, go to (S.1).

Procedure 3 tries to reach the condition
k ≥ fk at each iterate among any of the 2n steps presented
by �kB�k without satisfying f (xk + dk) ≤ min{f (xk + y), y ∈ �kB�k}.
Procedure 4(Strong non-monotone hypotheses on exploratory moves)

(S.1) Compute Pk by Equation (3) and then choose dk ∈ �kPk.
(S.2) If min{f (xk + y), y ∈ �kB�k} <
k, then f (xk + dk) ≤ min{f (xk + y), y ∈ �kB�k}; stop.

Otherwise, go to (S.1).

Now, to investigate the effectiveness of the new pattern search, we add the new non-monotone
strategy to the framework of pattern search method.

Note that in Algorithm 2, if dk is obtained by Procedure 3, then it is called non-monotone weak
pattern search (NMWPS-N) while if dk is obtained by Procedure 4, then it is considered as non-
monotone strong pattern search (NMSPS-N). To guarantee the global convergence of NMWPS-N
using Procedure 3 to determine dk, we need to update �k by

�k+1 :=
{

λk�k if ρ̃k > 0,
θ�k else,

(11)

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 39

Algorithm 2: NMPS-N (Non-monotone Pattern Search)
Input: An initial point x0 ∈ R

n, an initial integer matrix C0 ∈ Z
n×p, ε > 0, θ ∈ (0, 1),

η0 ∈ [ηmin, ηmax], λk ≥ 1 and N > 0;
Output: xb, fb;

1 begin
2 k := 0; Fk := F(xk); fk := 1

2‖Fk‖2;
k := fk;
3 while �k ≥ ε do
4 determine dk by either Procedure 3 or Procedure 4; compute F(xk + dk);

f (xk + dk) := 1
2‖F(xk + dk)‖2;

5 compute ρ̃k by (7);
6 if ρ̃k > 0 then
7 xk+1 := xk + dk;
8 else
9 xk+1 := xk;
10 end
11 set Fk+1 := F(xk+1); fk+1 := 1

2‖Fk+1‖2;
12 update ηk+1,m(k+ 1), fl(k+1) and
k+1 by NM procedure;
13 update Ck+1 and �k+1;
14 k← k+ 1;
15 end
16 xb := xk; fb := fk;
17 end

and NMSPS-N, dk obtained by Procedure 4, updates �k by

�k+1 :=
{

�k if ρ̃k > 0,
θ�k else,

(12)

where both θ and λk are updated similar to Algorithm 1.We determine how to updateCk in Section 5.
The global convergence results of both NMWPS-N and NMSPS-N require the following assump-

tions necessary:

(H1) The level set L(x0) := {x ∈ R
n | f (x) ≤ f (x0)} is bounded.

(H2) F(x) is continuously differentiable on a compact convex set � containing L(x0).

It can be easily seen that in Algorithm 2 for any index k, one of the following cases can occur

I1 := {k | �k ≥ β}, I2 := {k | �k < β , η̂k ∈ (0, 1]} and I3 := {k | �k < β , η̂k > 1}.

Lemma3.1: Suppose that the sequence {xk}k≥0 is generated byAlgorithm 2. Then, we have the following
properties:

(P1) If k ∈ I1, then fk ≤
k ≤ Rk.
(P2) If k ∈ I2, then Rk <
k ≤ fl(k).
(P3) If k ∈ I3, then
k > fl(k).

40 K. AMINI ET AL.

Proof: (1) This fact that �k ≥ β > 1 implies η̂k ≤ ηk and consequently

k = η̂kfl(k) + (1− η̂k)fk = η̂k(fl(k) − fk)+ fk ≤ ηk(fl(k) − fk)+ fk = Rk.

On the other hand, because fl(k) ≥ fk, it is easily seen that

k = η̂kfl(k) + (1− η̂k)fk ≥ η̂kfk + (1− η̂k)fk = fk.

So, (P1) is correct.
(2) Using the definition fl(k) along with this fact that 1 ≤ �k < β implies that η̂k ≥ ηk and so

Rk = ηk(fl(k) − fk)+ fk ≤ η̂k(fl(k) − fk)+ fk =
k = (1− η̂k)(fk − fl(k))+ fl(k) ≤ fl(k),

which gives (P2).
(3) The definition of fl(k) and η̂k > 1 results in

k = η̂kfl(k) + (1− η̂k)fk = (η̂k − 1)(fl(k) − fk)+ fl(k) > fl(k),

so, (P3) is correct. �

Based on Lemma 3.1, using the new sequence {η̂k}k≥0 causes some appropriate properties. If k ∈
I1, (P1) concludes
k ≤ Rk, so in this case where iterates are close to the optimizer, the definition (9)
proposes a weaker non-monotone strategy in relation to the non-monotone strategy (7). Otherwise,
if k ∈ I2, then (P2) concludes that Rk <
k ≤ fl(k) and so it leads us to produce a medium non-
monotone strategy whenever iterates are not far away from the optimizer. Finally, if k ∈ I3, far away
from the optimizer, (P3) results in
k > fl(k) and so algorithm uses a strong non-monotone strategy
with respect to the non-monotone strategy (6).

4. Convergence analysis

In this section, we investigate the global convergence results of the new proposed algorithm.

Lemma4.1: Suppose thatAssumption (H1) holds and the sequence {xk}k≥0 is generated byAlgorithm 2.
Then, for all k ∈ N0, we have xk ∈ L(x0) and the sequence {fl(k)} for all k ∈ I1 ∪ I2 is a convergent
decreasing sequences and also for all k ∈ I3 provided that fk+1 ≤ fl(k).

Proof: If xk+1 is not accepted by Algorithm 2, then fk+1 = fk and fl(k+1) = fl(k). Otherwise, we have

fk+1 = f (xk + dk) ≤
k ∀ k ∈ N0. (13)

In the sequel, we divide the proof into two parts.
(a) k ∈ I1 ∪ I2. (P1), (P2) of Lemma 3.1 along with (13) imply that fk+1 ≤ fl(k). In order to prove

that the sequence {fl(k)}k∈I1∪I2 is decreasing, we consider the following two cases:
(i) k<N. In this casem(k+ 1) = k+ 1. It is easily seen that

fl(k+1) = max
0≤j≤k+1

{fk+1−j} = max{fl(k), fk+1} = fl(k).

(ii) k ≥ N. In this case, we havem(k+ 1) = N, for all k. Therefore, inequality fk+1 ≤ fl(k) results in

fl(k+1) = max
0≤j≤N

{fk+1−j} ≤ max
{
max
0≤j≤N

{fk−j}, fk+1
}
= max{fl(k), fk+1} = fl(k),

while the last inequality along with k ∈ I1 ∪ I2 is conclusion of (13).

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 41

(b) k ∈ I3 and fk+1 ≤ fl(k). The proof is similar to the cases (i) and (ii) of the part (a).
Now, by a strong induction, assuming xi ∈ L(x0), for all i = 1, . . . , k, it is sufficient to show xk+1 ∈

L(x0). Now, we can obtain

fk+1 ≤ fl(k) ≤ f0.

Thus, the sequence {xk}k≥0 is contained in L(x0). Finally, Assumption (H1) along with xk ∈ L(x0) for
all k ∈ N0 implies that the sequence {fl(k)}k≥0 is bounded. Thus, the sequence {fl(k)}k≥0 is convergent.

�

Lemma4.2: Suppose thatAssumption (H1) holds and the sequence {xk}k≥0 is generated byAlgorithm 2.
Then, for all k ∈ N0,we have xk ∈ L(x0) and whenever fk+1 > fl(k), the sequence {
k}k≥0 for all k ∈ I3
is a convergent decreasing sequences.

Proof: If xk+1 is not accepted by Algorithm 2, then fk+1 = fk and fl(k+1) = fl(k). Otherwise, we have

fk+1 = f (xk + dk) ≤
k ∀ k ∈ N0.

This fact along with fk+1 > fl(k) and the definition fl(k+1) results in fl(k+1) = fk+1 and also

k+1 = η̂k+1fl(k+1) + (1− η̂k+1)fk+1 = η̂k+1fk+1 + (1− η̂k+1)fk+1 = fk+1 ≤
k.

Now, by a strong induction, assuming xi ∈ L(x0), for all i = 1, . . . , k, it is sufficient to show xk+1 ∈
L(x0). Now, we can obtain

fk+1 =
k+1 ≤
k ≤ f0.

Thus, the sequence {xk}k≥0 is contained in L(x0). Finally, Assumption (H1) along with xk ∈ L(x0)
for all k ∈ N0 implies that the sequence {
k}k≥0 is bounded. Thus, the sequence {
k}k≥0 is
convergent. �

Lemma 4.3: Let {xk}k≥0 be a bounded sequence of vectors inR
n by the NMSPS-N algorithm and η ∈ R

such that ‖∇fk‖ ≥ η > 0. Then, under Assumptions (H1) and (H2), there exist δ > 0, such that for all
�k > 0, if �k ≤ δ, then the kth iteration of NMSPS-N will be successful (ρ̃k > 0) and �k+1 ≥ �k.

Proof: Similar to Proposition 6.4 in [31], for i = 1, . . . , p, If �k < δ, then we can get

f (xk + dik)− f (xk) ≤ − 1
2ξ‖∇fk‖‖dik‖ < 0,

in which ξ > 0 is a constant. Hence, there exists at least one i ∈ {1, . . . , p} such that dik ∈ �kBCk.
Whenever �k < δ, f (xk + dik) < f (xk) ≤
k. If min{f (xk + y), y ∈ �kB�k} <
k, then Proce-
dures 3 guarantees f (xk + dk) <
k and consequently ρ̃k > 0. According NMWSP-N, we have
�k+1 ≥ �k. �

Lemma 4.3 gives the following corollary, see Corollary 6.5 in [31].

Corollary 4.4: Let {xk}k≥0 be a bounded sequence of vectors inR
n by NMWPS-N and η ∈ R such that

‖∇fk‖ ≥ η > 0. Then, under Assumptions (H1) and (H2), there exist ζ , δ > 0, such that for all�k > 0,
if �k ≤ δ, then

fk+1 ≤ fk − ζ‖∇fk‖‖dk‖.
The above corollary helps us to establish the following lemma.

Lemma 4.5: Suppose that Assumptions (H1) and (H2) hold and the sequence {xk}k≥0 is generated by
the NMWPS-N algorithm. Then, we have

lim
k→∞

fl(k) = lim
k→∞

fk.

42 K. AMINI ET AL.

Proof: Using the fact that xk is not the optimum of (2), we can conclude that there exists a constant
ε > 0 such that ‖∇fk‖ ≥ ε. This fact along with Lemma 4.4 and fk ≤ fl(k), for some ζ > 0, implies
that

fk+1 = f (xk + dk)

≤ fk − ζ‖∇fk‖‖dk‖
≤ fk − ζε‖dk‖
≤ fl(k) − ω‖dk‖, (14)

where ω = ζε. By replacing k with l(k)− 1 in Equation (14), we have

fl(l(k)−1) − fl(k) ≥ ω‖dl(k)−1‖. (15)

This fact along with Lemma 4.2 results in

lim
k→∞
‖dl(k)−1‖ = 0. (16)

Assumption (H2) and (16) give

lim
k→∞

f (xl(k)) = lim
k→∞

f (xl(k)−1). (17)

By letting l̂(k) = l(k+ N + 2) and using the induction, for all j ≥ 1, we can prove

lim
k→∞
‖dl̂(k)−j−1‖ = 0. (18)

This fact that {l̂(k)} ⊂ {l(k)} and according to Equation (16), for j= 1, Equation (18) is satisfied.
Assume that Equation (18) holds for a given j and take k large enough so that l̂(k)− (j+ 1) > 0.
Using Equation (14) and substituting k with l̂(k)− j− 1, we have

f (xl̂(k)−j−1)− f (xl̂(k)−j) ≤ ω‖dl̂(k)−j−1‖.
Following the same argument to derive (17), we deduce that

lim
k→∞
‖dl̂(k)−j−1‖ = 0.

and also

lim
k→∞

f (xl̂(k)−j−1) = lim
k→∞

f (xl(k)).

Similar with Equation (17), for any given j ≥ 1, we have

lim
k→∞

f (xl̂(k)−j) = lim
k→∞

f (xl(k)).

On the other hand, we can generate

xk+1 = xl̂(k) −
l̂(k)−k−1∑

j=1
dl̂(k)−j, ∀k.

This fact along with Equation (18) and l̂(k)− j− 1 ≤ N + 1 implies that

lim
k→∞
‖xk+1 − xl̂(k)‖ = 0.

Hence, Assumption (H2) leads to

lim
k→∞

f (xl(k)) = lim
k→∞

f (xl̂(k)) = lim
k→∞

f (xk). �

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 43

Using Lemma 4.5, we can obtain the following corollary.

Corollary 4.6: Suppose that Assumptions (H1) and (H2) hold and the sequence {xk}k≥0 is generated
by the NMWPS-N algorithm. Then, we have

lim
k→∞

k = lim
k→∞

fk.

Proof: (1) If k ∈ I1 ∪ I2, then the inequality fk ≤
k ≤ fl(k) along with Lemma 4.5 implies that

lim
k→∞

k∈I1∪I2

k = lim

k→∞
k∈I1∪I2

fk.

(2) For k ∈ I3, recalling Lemma 4.5 along with the definition of η̂k results in

lim
k→∞
k∈I3

k = lim
k→∞
k∈I3

fk. �

The following lemmas show that NMWPS-N and NMSPS-N algorithms are well-defined.

Lemma 4.7: Suppose that Assumption (H1) holds and the NMWPS-N algorithm has constructed an
infinite sequence {xk}k≥0, then limk→∞ inf �k = 0.

Proof: By contradiction, suppose that limk→∞ inf �k = 0 is not satisfied; hence, we can assume that
there exists a constant �LB > 0 and a set index K ⊂ N0 such that

�k ≥ �LB, ∀k ∈ K.

This fact along with Equation (5) results in

τ rk ≥ �LB

�0
> 0, ∀k ∈ K,

whichmeans that the sequence {τ rk}k∈K is bounded away from zero. Since {xk}k≥0 ∈ L(x0) and L(x0)
is compact, Lemma 3.1 in [31] implies that the sequence {�k}k≥0 has an upper bounded denoted by
�UB and hence the sequence {τ rk}k∈K is bounded above. In other words, the sequence {τ rk}k∈K is
finite and consequently {rk}k≥0 has, respectively, a lower and upper bounded, defined by

rLB := min{rk | 0 ≤ k < +∞} and rUB := max{rk | 0 ≤ k < +∞},
hence, for any k ∈ K, it can be concluded

xk := x0 + (βrLBα−rUB)�0B
k−1∑
k=0

zk,

i.e. it lies on a translated integer lattice generated by x0 and the columns of (βrLBα−rUB)�0B, denoted
by K1. Therefore xk ∈ L(x0) ∩ K1 for which L(x0) ∩ K1 is finite and it must has at least a point x∗
in L(x0) ∩ K1 such that xk := x∗ for infinitely many k. By steps of NMWPS-N, a lattice point can
be revisited finitely many times; hence, the new step dk is accepted if only if
k > f (xk + dk). This
fact implies that there exists an positive index m such that xk := x∗, for k ≥ m. This fact together
with Corollary 4.6 yields to ρ̃k→ 0 and consequently �k→ 0, which is a contradiction since
0 < �LB ≤ 0. �

Since NMSPS-N uses the relationship (12) to update �k, it ensures that limk→∞�k = 0.

44 K. AMINI ET AL.

Corollary 4.8: Suppose that Assumption (H1) holds and the NMSPS-N algorithm has constructed an
infinite sequence {xk}k≥0. Then, limk→∞�k = 0.

Remark 4.1: Grippo and Sciandrone, in Proposition 2 in [23], showed that if there exist the sequences
{cik}k≥0, i = 1, . . . , p, which are bounded and each limit point of the sequence {c1k, . . . , c

p
k}k≥0 is

denoted by (c1∗, . . . , c
p
∗) for which ci∗, i = 1, . . . , p, is positively span R

n, then

lim
k→∞
‖∇fk‖ = 0 ⇐⇒ lim

k→∞

p∑
i=1

min

{
0,
∇f (xk)Tcik
‖cik‖

}
= 0. (19)

Theorem 4.9: Suppose that Assumptions (H1) and (H2) hold. Let {xk}k≥0 be the infinite sequence
generated by the NMWPS-N. Then,

lim inf
k→∞

‖∇fk‖ = 0. (20)

Proof: By contradiction, we assume that Equation (20) does not hold. Then, there exists a constant
δ > 0 such that ‖∇fk‖ ≥ δ for all k ∈ N0. From Lemma 4.7, there exists an infinite sequence K such
that

lim inf
k→∞, k∈K

�k = 0. (21)

By recalling the continuous differentiability of f, it can find, for each k ∈ N0 and for i = 1, . . . , p,
ξ ik := xk + ωkdik = xk + ωk�kcik, in which ωk ∈ (0, 1), such that

f (xk + dik) = f (xk)+∇f (ξ ik)Tdik ≤
k + ∇f (ξ ik)Tdik. (22)

We can get {ξk}k∈K → x∗ because Equation (21) gives {dk}k∈K → 0 (limk→∞, k∈K(cik/‖cik‖) = ci∗)
and {xk}k∈K → x∗. Now, these facts along with taking a limit from both sides (22), for i = 1, . . . , p,
gives

∇f (x∗)Tci∗ = lim
k→∞

∇f (xk)Tcik
‖cik‖

= lim
k→∞

∇f (ξk)Tcik
‖cik‖

≥ 0,

yielding to

lim
k→∞, k∈K

p∑
i=1

min

{
0,
∇f (xk)Tcik
‖cik‖

}
= 0.

Then, by Equation (19), we get

lim
k→∞, k∈K

‖∇fk‖ = 0,

leading

lim inf
k→∞

‖∇fk‖ = 0. �

The following lemma helps us to establish the main global theorem.

Lemma 4.10: Suppose that Assumptions (H1) and (H2) hold and the columns of the Ck are bounded
in norm, i.e. there exist two positive constant γ1 and γ2 such that γ1 ≤ ‖cik‖ ≤ γ2 for i = 1, . . . , p. Let

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 45

{xk}k≥0 be the sequence generated by NMSPS-N. If there exists a positive constant δ and a subsequence
K ⊆ N0 such that ‖∇fk‖ ≥ δ for k ∈ K, then∑

k∈K
�k <∞.

Proof: First, we show that

fk+1 ≤ f0 − ζ δγ1

k∑
j=0,j∈K

�j.

By Lemma 4.4, we get

fk+1 ≤ fk − ζ‖∇fk‖‖dk‖
≤ fk − ζ δγ1�k

≤ (fk−1 − ζ δγ1�k−1)− ζ δγ1�k

≤ f0 − ζ δγ1

k∑
j=0,j∈K

�k.

Suppose that there exists a subset index K ′ ⊂ K such that
∑

k∈K′ �k = ∞. Then, we get

f0 ≥ f0 − fk ≥ ζ δγ1

k−1∑
j=0, j∈K′

�j→∞, as k→∞,

yielding to f0→∞, which is a contradiction. Hence, we conclude that

k−1∑
j=0, j∈K

�j <∞. �

At this point, the global convergence of Algorithm 2 based on the mentioned assumptions of this
section can be investigated.

Theorem 4.11: Suppose that Assumptions (H1) and (H2) hold and the columns of the Ck are bounded
in norm, i.e. there exist two positive constant γ1 and γ2 such that γ1 ≤ ‖cik‖ ≤ γ2 for i = 1, . . . , p. Then,
for any {xk}k≥0 generated by the non-monotone pattern search method (NMSPS-N),

lim
k→∞
‖∇fk‖ = 0. (23)

Proof: By contradiction, let us assume that the conclusion does not hold. Then, there is a subsequence
of successful iterations such that

‖∇fk‖ ≥ δ > 0, for some δ > 0.

Theorem 4.9 guarantees that, for each i = 1, . . . , p, there exists a first successful iteration l(ti) > ti
such that ‖∇fti‖ < δ. Denote li := l(ti) and define the index set �i := {k | ti ≤ k < li}, hence there

46 K. AMINI ET AL.

exists another subsequence li such that

‖∇fk‖ ≥ δ, ∀k ∈ �i and ‖∇fli‖ < δ. (24)

This fact along with taking � := ∪∞i=0�i leads to

lim inf
k→∞,k∈�

‖∇fk‖ ≥ δ.

Then, Lemma 4.10 gives ∑
j∈�

�j <∞,

leading to

lim
i→∞

∑
j∈�i

�j = 0.

Hence

‖xti − xli‖ ≤
∑
j∈�i

‖xj − xj+1‖ ≤
∑
j∈�i

�j→ 0, as i→∞,

which deduces from continuity of ∇f (x) on L(x0)

lim
i→∞‖∇fti −∇fli‖ = 0.

This is a contradiction since Equation (24) implies ‖∇fti − ∇fli‖ ≥ δ. �

5. Numerical experiments

One of the well known pattern search methods is the generalized coordinate search method with
fixed step lengths [31]. This section reports some numerical experiments. Our algorithm, NMCS-N,
is compared with the following considered algorithms

• GSCS: The generalized strong coordinate search [31]
• NMSCS-G: Algorithm 2 with the non-monotone term of Grippo et al. [14]
• NMSCS-A: Algorithm 2 with the non-monotone term of Ahookhosh and Amini [1]
• NMSCS-Z: Algorithm 2 with the non-monotone term of Zhang and Hager [38]

Test problems were selected from a wide range of papers: Problems 1–23 from [25], problems
24–31 from [24] and the problems 32–52 from [18].

All codes are written in MATLAB 9 programming environment on a 2.7GHz Pentium(R) Dual-
core CPUWindows 7 PC with 2G RAMwith double precision format in the same subroutine. In our
numerical experiments, the algorithms are stopped

�k ≤ 10−6,

or whenever the total number of function evaluations exceeds 100,000. For all algorithms, we take
advantages of the parameters λ := 1.5, θ := 0.5, �0 := 1 and B:= I. To calculate the non-monotone
term fl(k), NMSCS-G, NMSCS-A andNMSCS-N have selectedN:= 5. ForNMSCS-A, NMSCS-Z and
NMSCS-N, we use η0 := 0.001 and for NMSCS-A and NMSCS-N, the parameter ηk is updated by

ηk :=
{

η0/2, if k = 1,
(ηk−1 + ηk−2)/2, if k ≥ 2.

For NMSCS-N, we have taken β := 1+ εm, in which εm is machine ε. For all iterations of the coor-
dinate search method, the generating matrix is fixed, i.e. Ck := C. Hence, this matrix contains in its

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 47

columns all possible combinations of {−1, 0, 1} and consequently it has p = 3n columns. In particular,
the columns of C contain both I and−I, as well as a column of zeros.

The following algorithm briefly summarizes how the exploratory move directions for non-
monotone coordinate search are generated, see [31]:

Algorithm 3: NSEMN-N (Non-monotone Strong Exploratory Moves)
Input: An initial point xk, �k,
k, fmin := f (xk) and ei is the unit coordinate vector;
Output: db := dk;

1 begin
2 dk := 0; ρ̃k := 0;
3 for i = 1, 2, . . . , n do
4 dik := dk +�kei; xik := xk + dik;
5 compute f (xik);
6 if f (xik) < fmin then
7 ρ̃k :=
k − f (xik); fmin := f (xik); dk := dik;
8 else
9 dik := dk −�kei; xik := xk + dik;
10 compute f (xik);
11 if f (xik) < fmin then
12 ρ̃k :=
k − f (xik);
13 fmin := f (xik);
14 end
15 end
16 end
17 db := dk;
18 end

The exploratorymoves are executed sequentially in the sense that the selection of the next trial step
is based on the success or failure of the previous trial step. Thus, we may compute as few as n trial
steps while there are 3n possible trial steps, but we compute no more than 2n at any given iteration,
see Figure 1 in [31]. However, in the worst case, the algorithm for coordinate search ensures that all
2n steps, defined by �kB� = �kB[M −M] = �k[I − I], are tried before returning the step dk = 0.
In other words, the exploratory moves given in Algorithm 3 examine all 2n steps defined by �kB�

unless a step satisfying f (xk + dk) <
k is found.
At this point, to have a more reliable comparison and demonstrate the overall behaviour of the

present algorithms and getmore insight about the performance of considered codes, the performance
of all codes, based on both Ct and Nf which are shown in Table 1, have been, respectively, assessed
in Figure 1 by applying the performance profile proposed from Dolan and Moré in [6]. Subfigure (a)
and (b) of Figure 1 plot the function P(τ) : [0, rmax]→ R

+, considered as

P(τ) := card(p ∈ P | rp,s ≤ τ)

card(P)
, τ ≥ 1,

whereP denotes the set of test problems, rp,s denotes the ratio of number of function evaluations and
CPU-times needed to solve problem p with method s with the least number of function evaluations
andCPU-times needed to solve problem p, respectively, and rmax is themaximumvalue of rp,s. Finally,
the highest on the plot is describing the best solver.

On one hand, subfigure (a) of Figure 1 compares NMSCS-N in the sense of the total number of
function evaluations. It can be easily seen that NMSCS-N is the best algorithm in the sense of the

48 K. AMINI ET AL.

Figure 1. A comparison among proposed algorithms with the performance measures: (a) Number of function evaluations (top),
(b) CPU-times (bottom).

most wins on more than 50% of the test functions. On the other hand, to compare the CPU times,
because of variation of CPU time, each problem is solved five times and then the average of the CPU
times is taken into account. Subfigure (b) of Figure 1 represents a comparison among the consid-
ered algorithms regarding CPU times. The results of this subfigure indicate that the performance of
NMSCS-N is better than other present algorithms. In details, the new algorithm is the best algorithm
on more than 35% of all cases.

6. Concluding remarks

This paper proposes a new non-monotone coordinate search algorithm to solve systems of nonlinear
equations. Our method can overcome some disadvantages of the proposed method by Ahookhosh

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 49

Table 1. List of test functions.

Problem name Dim Problem name Dim

Extended Powell badly scaled 2 Powell singular 4
Brent 3 Broyden banded 5
Seven-Diagonal System 7 Chebyquad 10
Extended Powell Singular 8 Brown almost linear 10
Triadiagnal exponential 10 Discrete integral equation 20
Generalized Broyden banded 10 Diag. func. premul. by . . . matrix 3
Flow in a channel 10 Function 18 3
Swiriling flow 10 Strictly convex 2 5
Thorech 12 Strictly convex 1 5
Trig. exponential system 2 15 Zero Jacobian 5
Countercurrent reactors 1 16 Geometric 5
Countercurrent reactors 2 16 Extended Rosenbrock 6
Porous medium 16 Geometric programming 8
Trigonometric 20 Tridimensional valley 9
Singular Broyden 20 Chandrasekhar’s H-equation 10
Broyden tridiagonal 20 Singular 10
Extended Wood 20 Logarithmic 10
Extended Cragg and Levy 24 Variable band 2 10
Trig. exponential system 1 25 Function 15 10
Structured Jacobian 25 Linear function-full rank 1 10
Discrete boundary value 25 Hanbook 10
Possion 25 Variable band 1 15
Possion 2 25 Linear function-full rank 2 20
Rosenbrock 2 Function 27 20
Powell badley scaled 2 Complementary 20
Helical valley 3 Function 21 21

and Amini [1] by presenting a new parameter, defined by using combination of the maximum func-
tion value of some preceding successful iterates and the current function value. This parameter can
prevent the production of weaker non-monotone strategy whenever iterates are far away from the
optimizer and stronger nonmonotone strategywhenever iterates are close to the optimizer. The global
convergence properties of the proposed algorithms are established. Preliminary numerical results
show the significant efficiency of the new algorithm.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The second author acknowledges the financial support of the Doctoral Program ‘Vienna Graduate School on Compu-
tational Optimization’ funded by Austrian Science Foundation under Project No W1260-N35.

References
[1] M. Ahookhosh and K. Amini, An efficient nonmonotone trust-region method for unconstrained optimization,

Numer. Algorithms 59 (2012), pp. 523–540.
[2] M. Ahookhosh, K. Amini, and M. Kimiaei, A globally convergent trust-region method for large-scale symmetric

nonlinear systems, Numer. Funct. Anal. Optim. 36 (2015), pp. 830–855.
[3] M. Ahookhosh, H. Esmaeili, and M. Kimiaei, An effective trust-region-based approach for symmetric nonlinear

systems, Int. J. Comput. Math. 90(3) (2013), pp. 671–690.
[4] G.E.P. Box,Evolutionary operation: Amethod for increasing industrial productivity, Appl. Stat. 6 (1957), pp. 81–101.
[5] Y.H. Dai, On the nonmonotone line search, J. Optim. Theory Appl. 112(2) (2002), pp. 315–330.
[6] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91

(2002), pp. 201–213.
[7] H. Esmaeili and M. Kimiaei, An improved adaptive trust-region method for unconstrained optimization, Math.

Model. Anal. 19 (2014), pp. 469–490.

50 K. AMINI ET AL.

[8] H. Esmaeili and M. Kimiaei, An efficient adaptive trust-region method for systems of nonlinear equations, Int. J.
Comput. Math. 92 (2015), pp. 151–166.

[9] H. Esmaeili and M. Kimiaei, A trust-region method with improved adaptive radius for systems of nonlinear
equations, Math. Methods Oper. Res. 83(1) (2016), pp. 109–125.

[10] J.Y. Fan, Convergence rate of the trust region method for nonlinear equations under local error bound condition,
Comput. Optim. Appl. 34 (2005), pp. 215–227.

[11] J. Fan and J. Pan, An improved trust region algorithm for nonlinear equations, Comput. Optim. Appl. 48(1) (2011),
pp. 59–70.

[12] M.G. Gasparo,A nonmonotone hybrid method for nonlinear systems, Optim.Methods Softw. 13 (2000), pp. 79–94.
[13] M.G.Gasparo,A. Papini, andA. Pasquali,Nonmonotone algorithms for pattern searchmethods, Numer.Algorithms

28 (2001), pp. 171–186.
[14] L. Grippo, F. Lampariello, and S. Lucidi,Anonmonotone line search technique for Newton’s method, SIAM J. Numer.

Anal. 23 (1986), pp. 707–716.
[15] L. Grippo, F. Lampariello, and S. Lucidi, A truncated Newton method with nonmonotone line search for uncon-

strained optimization, J. Optim. Theory Appl. 60(3) (1989), pp. 401–419.
[16] L. Grippo, F. Lampariello, and S. Lucidi, A class of nonmonotone stabilization methods in unconstrained optimiza-

tion, Numer. Math. 59 (1991), pp. 779–805.
[17] R.Hooke andT.A Jeeves,Direct search solution of numerical and statistical problems, J. ACM8 (1961), pp. 212–229.
[18] W. LaCruz, C. Venezuela, J.M. Martínez, and M. Raydan, Spectral residual method without gradient information

for solving large-scale nonlinear systems of equations: Theory and experiments, Technical Report RT–04–08, July
2004.

[19] R.M Lewis and V. Torczon, Pattern search algorithms for bound constrained minimization, SIAM. J. Optim. 9
(1999), pp. 1082–1099.

[20] R.M. Lewis and V. Torczon, Pattern search methods for linearly constrained minimization, SIAM. J. Optim. 10
(2000), pp. 917–941.

[21] R.M. Lewis, V. Torczon, and M.W. Trosset,Why pattern search works, Optima (1988), pp. 1–7.
[22] R.M. Lewis, V. Torczon, and M.W. Trosset, Direct search methods: Then and now, J. Comput. Appl. Math. 124

(2000), pp. 191–207.
[23] S. Lucidi and M. Sciandrone, On the global convergence of derivative free methods for unconstrained optimization,

Technical Report 32–96, DIS, Universita’ di Roma ‘La Sapienza’, 1996.
[24] L. Lukšan and J. Vlček, Sparse and partially separable test problems for unconstrained and equality constrained

optimization, Techical Report, No. 767, January 1999.
[25] J.J.Moré, B.S. Garbow, andK.E.Hillström,TestingUnconstrainedOptimization Software, ACMTrans.Math. Softw.

7 (1981), pp. 17–41.
[26] J. Nocedal and J.S. Wright, Numerical Optimization, Springer, NewYork, 2006.
[27] Z.J. Shi and S. Wang, Modified nonmonotone Armijo line search for descent method, Numer. Algorithms 57(1)

(2011), pp. 1–25.
[28] P.L. Toint, An assessment of nonmonotone linesearch techniques for unconstrained optimization, SIAM J. Sci.

Comput. 17 (1996), pp. 725–739.
[29] V. Torczon, Multidirectional search: A direct search algorithm for parallel machines, Ph.D. thesis, Rice University,

Houston, TX, 1989.
[30] V. Torczon, On the convergence of the multidirectional search algorithm, SIAM J. Optim. 1 (1991), pp. 123–145.
[31] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim. 7 (1997), pp. 1–25.
[32] G.L. Yuan and X.W. Lu, A new backtracking inexact BFGS method for symmetric nonlinear equations, Comput.

Math. Appl. 55 (2008), pp. 116–129.
[33] G.L. Yuan and M.J. Zhang, A three-terms Polak-R*ibière-Polyak conjugate gradient algorithm for large-scale

nonlinear equations, J. Comput. Appl. Math. 286 (2015), pp. 186–195.
[34] G.L. Yuan, S. Lu, and Z.Wei,A new trust-region method with line search for solving symmetric nonlinear equations,

Int. J. Comput. Math. 88(10) (2011), pp. 2109–2123.
[35] G.L. Yuan, Z.H. Meng, and Y. Li, A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale

nonsmooth minimizations and nonlinear equations, J. Optim. Theory Appl. 168 (2016), pp. 129–152.
[36] G.L. Yuan, X.W. Lu, and Z.X. Wei, BFGS trust-region method for symmetric nonlinear equations, J. Comput. Appl.

Math. 230 (2009), pp. 44–58.
[37] G.L. Yuan, Z.X. Wei, and X.W. Lu, A BFGS trust-region method for nonlinear equations, Computing 92(4) (2011),

pp. 317–333.
[38] H.C Zhang and W.W. Hager, A nonmonotone line search technique and its application to unconstrained optimiza-

tion, SIAM J. Optim. 14(4) (2004), pp. 1043–1056.
[39] J. Zhang and Y. Wang, A new trust region method for nonlinear equations, Math. Methods Oper. Res. 58 (2003),

pp. 283–298.

	1. Introduction
	2. The generalized pattern search method
	3. The new non-monotone strategy
	4. Convergence analysis
	5. Numerical experiments
	6. Concluding remarks
	Disclosure statement
	Funding
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

