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Multi-omic insights into microbiome function and composition typically advance one study at a 

time. However, to understand relationships across studies, they must be aggregated into meta-

analyses. This makes it possible to generate new hypotheses by finding features that are 

reproducible across biospecimens and data layers. Qiita dramatically accelerates such integration 

tasks in a web-based microbiome comparison platform, which we demonstrate with Human 

Microbiome Project and iHMP data.

Recent years have seen exponential growth in studies that generate large quantities of 

microbiome and metabolome data, enabled by advances in high-throughput techniques1. 

New bioinformatics tools allow us to put these samples in the context of other studies, 

revolutionizing our picture of microbial diversity2, and generating insights into dysbiotic 

states relevant to human health3. In principle, the vast increase in available data should 

enable broader and more accurate insights into the diversity and functional impacts of the 

microbial world. However, these tools require increasing investments of time and effort by 

highly trained individuals, and more facile meta-analysis of summary statistics is infeasible 

due to the inconsistency of methods applied by different analysts. Despite these challenges, 

meta-analyses of microbiomes have a rich history of success, identifying the major global 

drivers of diversity in microbial communities4, characterizing the evolution of the vertebrate 

gut microbiome5, and surveying specialized fields such as the built environment6. Meta-

analyses also enable scientists to identify important biases such as DNA extraction, primers, 

or analytical pipelines7,8, which need to be controlled to generate biological discoveries.

To address these challenges, we developed Qiita (https://github.com/biocore/qiita and 

Supplementary Software), an open-source web-based platform that enables non-

bioinformaticians to perform their own analyses and meta-analyses easily using standardized 

pipelines such as QIIME29 and GNPS10. Analyses are carried out within a simple graphical 

user interface, starting with primary data and ending with statistical analyses and 

publication-quality figures.

Meta-analyses typically involve tremendous effort, primarily due to three common issues. 

First, raw data (e.g., sequence data, spectra, study covariates) are frequently not open or 

completely accessible11. Second, common standards for sample metadata (i.e., study 

covariates), such as Minimum Information about any (x) Sequence (MIxS) standards12, are 

not enforced by the major sequence repositories, leading to varying degrees of use. Third, 

even when provided, processed data files rarely contain details about the processing itself. 

Differences in sample or data processing can lead to technical differences that obscure 

biological differences in the data7,13.

Qiita alleviates these issues using a number of strategies. First, it requires that new studies 

include a description of the work; relevant publications; collection and processing 

parameters for each sample; and relevant covariates, based on the MIxS standards12. Only 

administrator-reviewed standards-compliant metadata are made public (for an example, see 

Supplementary Table 1). Second, users must upload the rawest form of the data possible, 

typically multiplexed or demultiplexed FASTQ files. Qiita can thus re-access the raw data as 

new pipelines and databases are adopted. Third, users select from a constrained set of 

processing parameters, which are subsequently retained with the data. This tracking and 
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standardization ensures that newly processed data can be immediately compared to hundreds 

of thousands of samples in the database, and enables automated data deposition into ENA-

EBI (as has been performed now for 102,292 samples; Supplementary Fig. 1A). Finally, 

relevant samples can be discovered via search of study title, metadata values, or even 

sequence data through the redbiom plugin (https://github.com/biocore/redbiom), and quickly 

combined for analysis using a QIIME2-based analysis plugin. When more specialized 

analyses are required, combined feature tables, metadata, and analytical artifacts (e.g. 

distance matrices, filtered subsets of samples) can be downloaded for use in other pipelines.

By establishing an accessible path from annotated data to interoperable results, Qiita applies 

the “living data” concept10 of adding value to data by ongoing reprocessing and annotation. 

To date, this resource hosts over 50TB of omics data from over 460,000 samples originating 

from studies that span the world (Supplementary Fig. 1B). More than 168,000 of these 

samples, including the entire recently released Earth Microbiome Project (EMP)2 are public 

and immediately available for meta-analyses. As this collection grows, it will become 

increasingly important to improve the quality of associated metadata. “Gold” studies with 

exceptional metadata are highlighted to promote better practices in the community.

To demonstrate Qiita’s utility, we tested the reproducibility of a study that investigated how 

microbiomes of Inflammatory Bowel Disease (IBD) subtypes relate to those of healthy 

individuals3. We combined the 16S data from three studies of IBD-affected cohorts 3,14 and 

iHMP, with the HMP1 study of healthy individuals15 and a study of Clostridium difficile-

affected patients that underwent Fecal Microbiota Transplants (FMT)16. Using the web 

interface, Principal Coordinates Analysis (PCoA) on Unweighted UniFrac17 computations 

shows the expected clustering by body site (Fig. 1A). However, examining only fecal 

samples (‘UBERON:feces’ category) reveals a pattern explained by sequencing platform as 

previously observed8 (Fig. 1B). Restricting analysis to samples processed using the same 

sequencing platform (all but the HMP1 study), produces spatial enrichment of the different 

IBD subtypes as previously reported3,14 (Fig. 1C). Employing the feces-only distance matrix 

generated via the Qiita interface, we used QIIME2 to calculate the distance from each 

sample to a “healthy plane”3, replicating the PCoA result across these independent studies. 

The C. difficile samples are also further from the healthy plane than the IBD subtype 

samples, yet are much closer to the healthy plane after restoration of the microbiome via 

FMT (Fig. 1D). This analysis took under 5 minutes of hands-on time, and did not require 

manual intervention between pipeline initiation and use of the files in a Jupyter Notebook 

(https://github.com/knightlab-analyses/qiita-paper).

Qiita provides a unique resource allowing researchers to contextualize their data, perform 

meta-analyses across hundreds of studies and thousands of samples, and seamlessly deposit 

data into standards-compliant databases. Custom instances of Qiita can also be easily set up 

on virtual or physical machines to host specific datasets (e.g. the iHMP IBDMDB, http://

ihmp.ucsd.edu/). We expect that Qiita will assist researchers considerably in conducting 

microbiome analyses and meta-analyses.
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Online Methods

Code design

Qiita is designed using a three layer pattern: storage, logic, and interface. We describe each 

layer individually.

The storage layer design is a combination of a PostgreSQL 9.3.17 database and a structured 

filesystem. This approach allows Qiita to maintain referential integrity within and between 

studies, sample metadata, the analysis pipeline(s), and the commands executed over the 

different data types. However, the data volume is such that it can encumber a relational 

database, so the data (e.g., sequence files, contingency tables etc.) are stored in standard 

formats (e.g FASTA, FASTQ, BIOM). The database maintains file path locations using 

indirection to allow files to reside on any number of filesystems. Additionally, this layer also 

stores the covariates (metadata) of each sample split in two main tables: a sample and a 

preparation information. The sample information are the covariates pertinent to the sample, 

while the preparation is how the sample was processed in the wet-lab and data generation 

(target gene sequencing, shotgun, metabolomic, etc).

The Qiita logic layer is written in Python using Object Oriented Programming, defining an 

object for each important element of the system. All data in Qiita are represented by an 

“artifact” object. An artifact represents a collection of files which reside on the filesystem, 

the logical types associated with each file, and a logical type of the artifact itself. Commands 

can specify which type of artifacts they accept as input and which type of artifacts they 

generate as output. The type of artifacts and the commands used to analyze artifacts are 

defined by Qiita plugins, which encapsulate the compute logic. Qiita defines two types of 

plugins: Qiita Type Plugins and Qiita Plugins. The Qiita Type Plugins define new artifact 

types, and is how data are imported into Qiita. A Qiita Type Plugin must define only two 

operations: “Validate” and “Generate HTML summary”. The “Validate” operation receives 

as input the set of files, and user associated types, for a new artifact and the preparation 

information and determines if the set of files defines a valid “artifact” for the given 

preparation. For example, in the case of a set of per-sample FASTQ files, the validator 

checks that each of the samples has a unique file, and that the names of these files match 

those in the run_prefix column in the preparation information. The “Generate HTML 

summary” obtains the contents of an artifact and generates an HTML file summarizing the 

contents of such artifact. This summary provides a user-interpretable overview of the 

artifact, usually helpful enough to determine if something went wrong with the processing of 

the artifact. In contrast, the Qiita Plugin represents a collection of logically related 

commands (e.g., methods for constructing distance matrices). Each command within a Qiita 

Plugin accepts one or more artifacts as input, runtime parameters, and produces one or more 

artifacts as output. Each command execution is logged in the Qiita relational database, 

specifically, Qiita stores the plugin used, the command executed within the plugin, the 

artifacts provided as inputs, the parameters specified, and the artifacts generated.

The motivation for a modular plugin system is separation of concerns and encapsulation as 

each plugin runs in its own discrete environment and communicates with Qiita through an 

internal communication layer. This approach allows the plugins to be written in any 
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programming language, with plugin specific dependencies, without introducing dependency 

conflicts with other plugins in the system. These environments are managed using plugin-

specific conda environments. To facilitate the development of new Qiita plugins by external 

developers, we have created a Qiita client library (https://github.com/qiita-spots/qiita_client) 

and two Cookiecutter (Qiita Type Plugin: https://github.com/qiita-spots/qtp-template-

cookiecutter & Qiita Plugin: https://github.com/qiita-spots/qp-template-cookiecutter) 

templates that set up the boilerplate code needed for an initial plugin repository and 

communication with Qiita.

The interface layer is a web-based interface accessible via Google Chrome, and that is 

powered from the server side via Tornado 3.1.1 (http://www.tornadoweb.org/). The interface 

design and implementation has gone through multiple rounds of review, utilizing feedback 

kindly provided by users attending Qiita workshops.

The source code, and comprehensive test suite, for the Qiita package can be found in https://

github.com/biocore/qiita. The source code for the officially supported Qiita plugins can be 

found under the qiita-spots GitHub organization at https://github.com/qiita-spots. All source 

code in the qiita repository and qiita-spots organization are BSD-licensed.

Data analysis

One of the most important items for a successful meta-analysis is consistency during the 

data processing. To achieve this consistency, Qiita processes all raw data with one of several 

standard parameter sets, based on the recommendations published in the literature. The 

parameters for demultiplexing and quality control the 16S rRNA gene sequences are based 

on the assessment performed Bokulich et al.18, while the parameters for OTU picking are 

based on the recommendations provided in Navas-Molina et al19. In addition to OTU 

picking, Qiita also permits sub-OTU sequence clustering with Deblur20. In the deblur 

manuscript, the authors used more stringent quality control parameters from those outlined 

by Bokulich et al.18.

Comparison to other resources—Qiita contains information from more samples than 

does MG-RAST (326,705 samples spanning 1.195 billion sequences) or the EBI 

Metagenomics Portal (113,805 samples, number of sequences not readily available), 

although the latter two resources likely contain more shotgun metagenomics datasets than 

does Qiita at present. Qiita uses a more up-to-date version of QIIME than does MG-RAST 

or the last QIIME-based version of the EBI metagenomics portal, and offers a choice of 

taxonomy databases (Greengenes, RDP and SILVA).

Statistics—Figures 2A, 2B, and 2C show the 3 first Principal Coordinates of a PCoA 

based on the unweighted UniFrac distances of the close reference picking independent 

samples rarefied at 1000 sequences per sample and visualized via Emperor21. The boxplots 

in Figure 2C follow the Seaborn22 defaults; in brief, each boxplot represent the quartiles of 

the data, the whiskers extend to show the rest of the distribution, except for outliers 

determined using a method that is a function of the inter-quartile range.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We are grateful to Justine Debelius, Janet Jansson, Dante Bazaldua, and Justin Kuczynski for their help improving 
Qiita via suggestion, code changes, contributed data sets, or during the preparation of this manuscript; and Jeff 
Gordon and his laboratory for helpful discussions. This work was supported in part by Alfred P. Sloan Foundation 
2017–9838 & 2015–13933, NIH/NIDDK P01DK078669, NSF DBI-1565057 & 1565100, Office of Naval Research 
(ONR) N00014–15-1–2809, and U.S. ARMY CDMRP W81XWH-15–1-0653.

References

1. Caporaso JG et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and 
MiSeq platforms. ISME J 6, 1621–1624, doi:10.1038/ismej.2012.8 (2012). [PubMed: 22402401] 

2. Thompson LR et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 
551, 457–463, doi:10.1038/nature24621 (2017). [PubMed: 29088705] 

3. Halfvarson J et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat 
Microbiol 2, 17004, doi:10.1038/nmicrobiol.2017.4 (2017). [PubMed: 28191884] 

4. Lozupone CA & Knight R Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104, 
11436–11440, doi:10.1073/pnas.0611525104 (2007). [PubMed: 17592124] 

5. Ley RE, Lozupone CA, Hamady M, Knight R & Gordon JI Worlds within worlds: evolution of the 
vertebrate gut microbiota. Nat Rev Microbiol 6, 776–788, doi:10.1038/nrmicro1978 (2008). 
[PubMed: 18794915] 

6. Adams RI, Bateman AC, Bik HM & Meadow JF Microbiota of the indoor environment: a meta-
analysis. Microbiome 3, 49, doi:10.1186/s40168-015-0108-3 (2015). [PubMed: 26459172] 

7. Debelius J et al. Tiny microbes, enormous impacts: what matters in gut microbiome studies? 
Genome Biol 17, 217, doi:10.1186/s13059-016-1086-x (2016). [PubMed: 27760558] 

8. Lozupone CA et al. Meta-analyses of studies of the human microbiota. Genome Res 23, 1704–1714, 
doi:10.1101/gr.151803.112 (2013). [PubMed: 23861384] 

9. Caporaso JG et al. QIIME allows analysis of high-throughput community sequencing data. Nat 
Methods 7, 335–336, doi:10.1038/nmeth.f.303 (2010). [PubMed: 20383131] 

10. Wang M et al. Sharing and community curation of mass spectrometry data with Global Natural 
Products Social Molecular Networking. Nat Biotechnol 34, 828–837, doi:10.1038/nbt.3597 
(2016). [PubMed: 27504778] 

11. Langille MGI, Ravel J & Fricke WF “Available upon request”: not good enough for microbiome 
data! Microbiome 6, 8, doi:10.1186/s40168-017-0394-z (2018). [PubMed: 29321060] 

12. Yilmaz P et al. Minimum information about a marker gene sequence (MIMARKS) and minimum 
information about any (x) sequence (MIxS) specifications. Nat Biotechnol 29, 415–420, doi:
10.1038/nbt.1823 (2011). [PubMed: 21552244] 

13. Sinha R et al. Assessment of variation in microbial community amplicon sequencing by the 
Microbiome Quality Control (MBQC) project consortium. Nat Biotechnol 35, 1077–1086, doi:
10.1038/nbt.3981 (2017). [PubMed: 28967885] 

14. Gevers D et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 
15, 382–392, doi:10.1016/j.chom.2014.02.005 (2014). [PubMed: 24629344] 

15. Human Microbiome Project, C. Structure, function and diversity of the healthy human 
microbiome. Nature 486, 207–214, doi:10.1038/nature11234 (2012). [PubMed: 22699609] 

16. Weingarden A et al. Dynamic changes in short- and long-term bacterial composition following 
fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3, 10, 
doi:10.1186/s40168-015-0070-0 (2015). [PubMed: 25825673] 

17. Lozupone C & Knight R UniFrac: a new phylogenetic method for comparing microbial 
communities. Appl Environ Microbiol 71, 8228–8235, doi:10.1128/AEM.71.12.8228-8235.2005 
(2005). [PubMed: 16332807] 

Gonzalez et al. Page 6

Nat Methods. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Bokulich NA et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon 
sequencing. Nat Methods 10, 57–59, doi:10.1038/nmeth.2276 (2013). [PubMed: 23202435] 

19. Navas-Molina JA et al. Advancing our understanding of the human microbiome using QIIME. 
Methods Enzymol 531, 371–444, doi:10.1016/B978-0-12-407863-5.00019-8 (2013). [PubMed: 
24060131] 

20. Amir A et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. 
mSystems 2, doi:10.1128/mSystems.00191-16 (2017).

Methods Only References

21. Vazquez-Baeza Y, Pirrung M, Gonzalez A & Knight R EMPeror: a tool for visualizing high-
throughput microbial community data. Gigascience 2, 16, doi:10.1186/2047-217X-2-16 (2013). 
[PubMed: 24280061] 

22. Waskom, M. Seaborn: statistical data visualization. (2012).

Gonzalez et al. Page 7

Nat Methods. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Example meta-analysis in Qiita. A. Unweighted UniFrac PCoA meta-analysis of three 

studies examining different IBD subtypes, C. difficile patients who underwent FMT, and the 

HMP1 and iHMP data. B. Only fecal samples from the same studies as in A. C. Fecal 

samples only from studies that used the same data-generation methods. D. Calculated 

distances from a healthy plane as described in Ref. 3. Box plots show the median value 

(center line), the upper and lower quartiles of the data (box edges), maxima and minima 

(whiskers), and outliers (individual data points). CD, Crohn’s disease; IC, ileal Crohn’s 

disease; UC, ulcerative colitis; HC, healthy cohort; CCD, colonic Crohn’s disease; ICD_r, 

ileal Crohn’s disease patients with previous ileocecal resection; ICD_nr, ileal Crohn’s 

disease patients with no previous ileocaecal resection; post-FMT, patients with C. difficile 
infection pre-FMT; pre-FMT, patients with C. difficile infection post-FMT.
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