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Abstract

Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. 

Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation 

of phototransduction that drives the termination of the flash response as well as light adaptation in 

rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the 

health and survival of photoreceptors. Decades of work have established that the level of calcium 

in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via 

the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ 

exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of 

calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer 

segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice 

lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex 

picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent 

mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of 

extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional 

and structural changes in photoreceptors when normal extrusion is disrupted.
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1. Introduction

The description and discussion of the mechanisms that regulate the extrusion of calcium in 

the outer segments of rods and cones, and how they affect the function and survival of 

photoreceptor cells requires a brief introduction of the structure of photoreceptors and of 

their functional properties. The differences in the functional properties of rods and cones 
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originate in differences in their respective transduction cascades, which in turn are affected 

by the dynamics of the calcium homeostasis in each photoreceptor type.

1.1. Rod and cone photoreceptors in the retina

The perception of vision in vertebrate animals is initiated in rod and cone photoreceptors. 

These photoreceptors reside at the distal layer of the retina and the signals that they generate 

upon photoactivation are processed and then relayed to other parts of the brain via the optic 

nerve. Vertebrate rods and cones have similar overall structures, with outer segments (OS), 

inner segments (IS), nuclear regions, and synaptic terminals (Carter-Dawson and LaVail, 

1979). The detection of light and its conversion into an electric signal, a process known as 

phototransduction, takes place in the outer segments of rods and cones. The outer segments 

in both rods and cones consist of stacks of several hundreds to thousands of membrane discs, 

depending on species. In rods, these discs are separated from the plasma membrane which 

envelops them. In contrast, in cones, discs are formed from stacked invaginations of the 

plasma membrane (Mustafi et al., 2009). However, this rule is not absolute and vertebrate 

cones with closed discs have been observed (Crescitelli, 1959; Morshedian and Fain, 2015). 

It is believed that the greatly increased ratio of membrane surface area to cytosolic outer 

segment volume of cones, produced by the invaginations of their plasma membrane and/or 

small outer segment, facilitate the flow of metabolites in and out of the cells, potentially 

contributing to the fast reactions of phototransduction and metabolism in cones (Yau, 1994).

1.2. Phototransduction

The detection of light in both rods and cones is initiated when light triggers the 

isomerization of their visual chromophore from 11-cis to all-trans retinal (Figure 1). This 

results in conformational rearrangement of the helices of opsin, a G protein-coupled receptor 

protein, which is covalently attached to the chromophore to form the visual pigment 

(reviewed in (Ebrey and Koutalos, 2001)). Once activated, the visual pigment (R*) binds to 

and activates multiple copies of the heteromeric G protein transducing (T), causing exchange 

of GTP for GDP on its alpha subunit, followed by the dissociation of the transducin trimer 

into Tα-GTP and Tβγ. In turn, Tα-GTP binds to the γ-subunit of the effector enzyme 

phosphodiesterase (PDE), relieving its inhibition and causing upregulation in the hydrolysis 

of cGMP (reviewed in (Arshavsky et al., 2002; Lamb and Pugh, 1992; Pugh and Lamb, 

1993)). The resulting decrease in the level of free cGMP in the outer segments of 

photoreceptors leads to the closure of some or all of the cGMP-gated channels (CNG 

channels, reviewed in (Yau, 1994)), and reduction or full suppression of the current normally 

flowing into photoreceptor outer segments (Lamb and Pugh, 2006; Yau and Hardie, 2009). 

The reduction in the current depends on the number of PDE molecules activated, which in 

turn is determined by the intensity of the stimulating light. Ultimately, this leads to 

hyperpolarization of the photoreceptors and reduction of the rate of release of 

neurotransmitter from their synapse. This change in signal is detected by the second order 

bipolar cells in the retina, and eventually relayed to ganglion cells and then further into the 

brain to drive visual perception (Martemyanov and Sampath, 2017). Maintenance of vision 

under continuous illumination and re-opening of the CNG channels after transient light 

stimuli require efficient inactivation of R* (Chen et al., 1995b) and the Tα-GTP-PDE 

complex (Chen et al., 2000), as well as restoration of cGMP levels. The activity of pigments 
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is quenched by phosphorylations by rhodopsin kinase (GRK) (Chen et al., 1999a; Kennedy 

et al., 2004; Mendez et al., 2000; Mendez et al., 2001; Sakurai et al., 2015) and arrestin 

binding (Gurevich et al., 2011; Nikonov et al., 2008; Xu et al., 1997) whereas Tα-GTP-

PDEs are deactivated by GTPase activating GAP proteins that accelerate the hydrolysis of 

GTP (Krispel et al., 2006). The synthesis of cGMP is achieved by retinal membrane 

guanylyl cyclases (RetGCs), which together with phosphodiesterase, maintain a proper 

cGMP homeostasis in the photoreceptor outer segments (Dizhoor et al., 1994; Koch, 1991). 

Many of the steps in the phototransduction, including inactivation of the visual pigment and 

the rate of cGMP synthesis, are modulated by calcium (see below).

1.3. Functional properties of rods and cones

Rod and cone photoreceptors have distinct functional properties that make them perfectly 

suited for their function in dim-light and bright light conditions, respectively. Rods are 

exquisitely sensitive and able to detect single photons of light (Hecht et al., 1942; Tinsley et 

al., 2016). This makes rods excellent at detecting photostimuli in dim nighttime light 

conditions (Figure 2A, C). In contrast, cones are 30-1000 fold less sensitive (reviewed in 

(Ingram et al., 2016)) and require simultaneous activation by about ~10-100 photons for the 

generation of a detectable signal (Figure 2B, C) (Koenig and Hofer, 2011; Korenbrot, 2012; 

Naarendorp et al., 2010; Nikonov et al., 2006). This makes cones unable to signal in very 

dim light but perfectly suitable for their function as daytime photoreceptors. The difference 

in sensitivity between rods and cones (Figure 2C) originates from different levels of 

amplification of the signal at multiple steps of their respective transduction cascades (Ingram 

et al., 2016; Mao et al., 2013; Shi et al., 2007). The amplification of the signal, in turn, is 

affected by different kinetics of the phototransduction activation and inactivation reactions 

as well as the outer segment volume of rods and cones. Activation of a single pigment 

causes closure of more CNG channels in rods as compared to cones due to the higher gain of 

the rod transduction activation reactions (Chen et al., 2010a; Majumder et al., 2015; 

Tachibanaki et al., 2012). On the other hand, faster phototransduction inactivation reactions 

and higher baseline rate of cGMP synthesis/hydrolysis in cones contribute to their faster 

photoresponse shut-off as compared to rods (Figure 2A, B) (Cowan et al., 1998; Majumder 

et al., 2015; Tachibanaki et al., 2005; Tachibanaki et al., 2012; Takemoto et al., 2009; 

Tomizuka et al., 2015). Further, a typically smaller outer segment volume of the cones 

accelerates their cGMP turnover and, consequently, change of the CNG channel current 

when compared to rods. As a result, the temporal resolution of cone-mediated daytime 

vision is substantially higher than that of rod-mediated dim light vision (Hess and Nordby, 

1986; Umino et al., 2008). As discussed in detail below, the kinetics of the photoresponse, in 

particular the speed of its inactivation, is greatly affected by the dynamics of calcium and its 

modulation of the phototransduction cascade.

A third important functional difference between rods and cones is their ability to adapt to 

background light (reviewed in (Perlman and Normann, 1998)). Rods saturate under 

moderately bright light and are mostly unable to mediate vision in bright daytime conditions 

(Figure 3) (Baylor et al., 1984; Thomas and Lamb, 1999) but see (Tikidji-Hamburyan et al., 

2017)). In contrast, cones are able to respond to light of practically any natural illumination 

level that exists on Earth or under experimental conditions (Burkhardt, 1994; Jones et al., 
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1993; Schnapf et al., 1990). Strikingly, cones, exposed to continuous illumination expected 

to bleach >90% of their pigment content, can retain more than 50% of their maximal dark-

adapted response amplitude (Jones et al., 1993; Kenkre et al., 2005; Schnapf et al., 1990). 

The mechanisms that produce the difference in adaptation capacity between rods and cones 

are still poorly understood and are an area of active research (Sakurai et al., 2011; Sakurai et 

al., 2015). Adaptation in the short time scale of seconds is driven primarily by calcium-

mediated feedback on their phototransduction cascades in both rods and cones (Matthews et 

al., 1988; Nakatani and Yau, 1988a). Thus, it can be expected that differences in the calcium 

modulation of their respective transduction cascades, as well as differences in the calcium 

homeostasis in their outer segments, contribute to the different light adaptation kinetics and 

capacity of rods and cones.

1.4. Light adaptation in rods and cones

As stated above, the sensitivity of rod and cone photoreceptors changes as they are exposed 

to background light. In electrophysiological recordings, this adaptation to a step of 

background light can be observed in three distinct ways. Initially, after the onset of the 

background light, the photoreceptors produce a rapid response with amplitude dependent on 

the intensity of the background light (Figure 3A and 3B). The first manifestation of 

adaptation of the photoreceptors is the subsequent partial relaxation in the response after it 

reaches its initial peak. As the intensity of the background light is steady, this partial 

reduction in the response reflects the reduction in the photoreceptors sensitivity as well as 

acceleration of the cGMP synthesis rate by RetGCs as the transduction cascade is adapting 

to the background light (Chen et al., 2010b; Sakurai et al., 2011). This partial relaxation can 

be blocked completely in both rods and cones by preventing changes in calcium in the outer 

segments (Matthews et al., 1988; Nakatani and Yau, 1988a). Notably, the relaxation of the 

response in steady background light occurs several times faster in cones compared to rods 

(Figure 3), indicative of the underlying faster cone light adaptation compared to that in rods.

A second manifestation of light adaptation can be observed in the responses to a test flash 

after the photoreceptors reach the steady state. Experiments with both rods and cones have 

shown that the amplitude of the response to a flash of the same intensity gradually declines 

with increasing background light intensity. This result also demonstrates the gradual 

adaptation and desensitization of the rod and cone phototransduction cascade. The 

decreasing sensitivity of photoreceptors in gradually increasing background light over a 

wide range of background light intensities can be described well by the Weber-Fechner 

function (Figure 3C), i.e. test flashes of identical contrast between the flash and background 

produce identical flash response amplitudes (Baylor and Hodgkin, 1974; Baylor et al., 1980; 

Fain, 1976; Fain et al., 2001; Kraft et al., 1993; Nakatani et al., 1991; Schneeweis and 

Schnapf, 1999; Tamura et al., 1989, 1991).

A third manifestation of the adaptation of photoreceptors is the gradual acceleration of their 

response kinetics with increasing background light intensity (Baylor et al., 1979; Matthews 

et al., 1990; Nikonov et al., 2000; Nymark et al., 2012; Woodruff et al., 2008). The faster 

decay of the flash response in background light reflects the accelerated turnover of cGMP 

driven by the upregulation of both its hydrolysis by phosphodiesterase, and its upregulated 
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synthesis by guanylyl cyclase as well as accelerated inactivation of visual pigment and/or 

phosphodiesterase (Chen et al., 2015; Koutalos et al., 1995a; Koutalos et al., 1995b; Makino 

et al., 2004; Mendez et al., 2001; Nikonov et al., 2000). The net result of this acceleration is 

a reduction in the amplitude of the response, effectively desensitizing the photoreceptors.

2. Calcium in rods and cones

As in other neurons, calcium in photoreceptors is important for sustaining their function. 

Abnormal calcium homeostasis resulting from mutations in phototransduction genes has 

been suggested to be one of the dominant mechanisms causing photoreceptor degeneration 

and blinding disorders (see below). In addition, calcium is intricately involved in controlling 

the functional properties of photoreceptors (Matthews et al., 1988; Nakatani and Yau, 

1988a). Our understanding of the functional significance of light adaptation and the 

mechanisms driving this process in photoreceptors has been driven by combination of 

electrophysiological/behavioral experiments and genetic manipulations of the 

photoreceptors transduction cascades as discussed in details below.

2.1. Modulation of calcium in rods and cones

The rapid light adaptation in rods and cones is mediated primarily by the light-driven change 

in the level of calcium in their outer segments (Matthews et al., 1988; Nakatani and Yau, 

1988a). Calcium enters the outer segments of photoreceptors via their cGMP-gated (CNG) 

transduction channels (Figure 1). These channels are nonselective cation channels and the 

bulk of their inward current (also called dark current) is carried by Na+. However, calcium 

also represents a substantial fraction of their current. In rods, 15% of the dark current is 

carried by calcium whereas in cones this fraction can be as high as 30% (Ohyama et al., 

2000). In darkness, when bound to cGMP, a fraction of the CNG channels are open, 

allowing the steady influx of Na+ and Ca2+ driven by the electrochemical gradient across the 

plasma membrane of the outer segment (Fesenko et al., 1985; Yau and Baylor, 1989). This 

inward current keeps the photoreceptors depolarized at rest, contrary to most other neurons, 

and drives the release of glutamate neurotransmitter from their synaptic terminals onto rod 

and cone bipolar cells (Heidelberger et al., 2005). At rest, in darkness or in a constant 

background light, the influx of Ca2+ through the CNG channels must be matched with efflux 

in the outer segments of rods and cones in order to maintain a steady state Ca2+ 

concentration. When the cells are exposed to light, the transduction cascade is activated and 

the level of cGMP declines, leading to reduction in the dark current and hyperpolarization, 

as well as in reduction in the influx of Ca2+ in the outer segment (Hodgkin et al., 1985; Yau 

and Nakatani, 1984a). As the extrusion of Ca2+ from the outer segments lags behind and 

remains active at least for some time after the closure of the CNG channels, the level of Ca2+ 

in the outer segments declines rapidly (Cervetto et al., 1989; Hodgkin et al., 1987; Yau and 

Nakatani, 1984b). In amphibian photoreceptors, this light-driven decline in outer segment 

Ca2+ occurs substantially faster in cones compared to rods. In addition, the dynamic range of 

Ca2+ in cones is several times wider than that in rods (Sampath et al., 1999; Sampath et al., 

1998). Although measurements of outer segment Ca2+ in mammalian species have been 

done only in rods (Woodruff et al., 2002), it is likely that the differences in kinetics of Ca2+ 

are preserved there as well. The faster decline of Ca2+ in cones is likely driven in part by the 
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smaller volume of cone outer segments compared to these of rods. Another possible 

contributing factor is the larger fraction of Ca2+-driven current in cones compared to rods 

(Ohyama et al., 2000), which implies also more efficient extrusion of Ca2+ in cones. This 

conclusion is supported by Ca2+ measurements in zebrafish UV cones where the kinetics of 

the light-induced change in Ca2+ convolved with a single exponential with the time constant 

representing Ca2+ extrusion by Na+/Ca2+, K+ exchanger was similar to that of CNG channel 

current (Leung et al., 2007). The differences in the mechanisms of extrusion of Ca2+ are 

discussed below.

2.2. Role of calcium in photoreceptor function

For both rods and cones, the dynamic range from threshold to saturation under dark-adapted 

conditions is only about 100-fold (Figure 2C). Yet, rods are able to detect single photons in 

darkness and function up to ambient light levels producing ~105 R* rod−1 s−1 corresponding 

to natural scenes from cloudy moonless night to about sunrise (Aguilar and Stiles, 1954; 

Hess et al., 1989; Naarendorp et al., 2010; Sharpe et al., 1992; Sharpe and Nordby, 1990) 

(but see also (Tikidji-Hamburyan et al., 2017)). The functional range of cones is even wider 

and they are able to detect light from starry night to bright sunny day (Boynton and Whitten, 

1970; Naarendorp et al., 2010; Stiles, 1939; Valeton and van Norren, 1983).

It is now widely accepted that calcium modulates the phototransduction cascades of rods and 

cones to shape their photoresponses and also to mediate their adaptation to background light. 

The timely feedback on the transduction cascade drives the prompt termination of the flash 

responses of rods and cones. In addition, this feedback is largely responsible for the shift in 

sensitivity of photoreceptors which allows rods and cones to function over a wide dynamic 

range. The molecular mechanisms by which calcium modulates phototransduction are well 

understood in rods and significant progress has been made in elucidating these mechanisms 

in cones (Figure 1). In both photoreceptor types, the dominant mechanism by which calcium 

affects signaling is via a pair of calcium-binding proteins, called guanylyl cyclase activating 

protein 1 and 2 (GCAP1/2), that modulate the synthesis of cGMP by retinal membrane 

guanylyl cyclases (RetGC1 and RetGC2). Another calcium-binding protein, recoverin, also 

modulates phototransduction in rods and cones, by accelerating the inactivation of their 

visual pigments by rhodopsin kinase. Finally, the CNG channels can also be modulated 

directly by calcium, a mechanism that seems to be insignificant in rods, but more prominent 

in cones.

2.2.1. Modulation of GCAPs by calcium—The most powerful mechanism by which 

Ca2+ modulates phototransduction in rods and cones involves the synthesis of cGMP by 

RetGCs, a reaction regulated by the Ca2+-binding proteins GCAP1 and GCAP2 (Burns et 

al., 2002; Dizhoor et al., 1994; Dizhoor et al., 1995; Gorczyca et al., 1994; Gorczyca et al., 

1995; Koch and Stryer, 1988; Palczewski et al., 1994). In darkness, when the level of 

calcium in the outer segments of photoreceptors is high, these calcium sensors are bound to 

calcium and unable to activate RetGC. When the photoreceptors are exposed to light and the 

level of calcium in their outer segments declines, calcium is released from GCAPs and 

replaced by Mg2+ (Dizhoor et al., 2010). Magnesium-bound GCAPs activate RetGC to 

accelerate the synthesis of cGMP. This, in turn, promotes the rapid reopening of CNG 

Vinberg et al. Page 6

Prog Retin Eye Res. Author manuscript; available in PMC 2018 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



channels that terminates the photoresponse and drives the recovery of the dark current after a 

transient light stimulation (Burns et al., 2002; Mendez et al., 2001). During prolonged 

exposure to background light, that same mechanism helps to prevent the closure of all CNG 

channels, extending in that way the functional range of photoreceptors. GCAPs modulate 

RetGC up to 20-fold, inhibiting it at high Ca2+ and activating it at low Ca2+ levels 

(Palczewski et al., 2000).

The deletion of GCAPs in mouse rods abolishes the Ca2+ feedback on RetGC and results in 

slowed photoresponse shutoff and impaired light adaptation (Burns et al., 2002; Mendez et 

al., 2001). The functional significance of GCAPs has been demonstrated most clearly in 

studies with mice lacking both genes (GCAPs−/−). The simultaneous deletion of GCAP1 and 

GCAP2 in mouse rods results in a dramatic delay in the recovery phase of photoresponses. 

As a result, the single-photon responses of GCAPs−/− rods become 5-fold larger than these 

in wild type controls. Adaptation is also severely compromised in rods lacking GCAPs 

(Mendez et al., 2001). This phenotype is largely repeated in GCAPs-deficient cones (Sakurai 

et al., 2011). Finally, in humans, mutations in GCAPs, particularly in GCAP1, have also 

been linked to severe hereditary blinding diseases, including Leber Congenital Amaurosis 

(LCA), Macular Dystrophy (MD) and cone-rod dystrophies (CRDs) (Dizhoor et al., 1998; 

Downes et al., 2001; Jiang et al., 2005; Nishiguchi et al., 2004; Payne et al., 1998; Sokal et 

al., 2005; Sokal et al., 1998; Wilkie et al., 2001).

Both GCAP1 and GCAP2 are expressed in rod photoreceptors where they exert distinct 

modulation of cGMP synthesis. As the light-induced decline in calcium develops, GCAP1, 

which has a lower affinity to Ca2+, is activated first, making it more important in 

determining the peak amplitude of the flash response. GCAP2, which has higher affinity to 

Ca2+, activates RetGCs at lower calcium, and shapes the response recovery kinetics after the 

peak amplitude and/or in brighter light (Makino et al., 2012). The functional contribution of 

GCAP1 and GCAP2 has not been previously tested in cones. However, previous studies in 

normal or cone-dominant Nrl−/− mice have suggested that GCAP2 may not be substantially 

present in cone outer segments (Boye et al., 2015; Howes et al., 1998; Xu et al., 2013). Thus, 

the general dogma has been that only GCAP1 and not GCAP2 mediates the Ca2+ dependent 

modulation of RetGC activity in the mouse cones. However, we recently found that GCAP2 

is expressed in mouse cones and is able to modulate cGMP synthesis in cones lacking 

GCAP1 (Vinberg et al., 2018). Thus, GCAP2 can contribute significantly to the activation of 

RetGC1 in low Ca2+ when GCAP1 is not present. However, in wild-type mouse cones the 

regulation of cGMP synthesis seems to be dominated by GCAP1. Comparison of the effects 

of GCAPs deletion in mammalian rods and cones reveals that, surprisingly, considering the 

larger adaptation capacity of cones compared to rods, the Ca2+ modulation on guanylyl 

cyclase contributes less to the sensitivity modulation of cones as compared to rods both in 

darkness and during light adaptation (Sakurai et al., 2011). Thus, differences in GCAPs-

mediated modulation of cGMP synthesis are unlikely to contribute to the functional 

differences between rods and cones.

2.2.2. Modulation of recoverin by calcium—Another mechanism by which calcium 

regulates phototransduction in rods and cones involves modulation of the lifetime of the 

photoactivated visual pigment. Fish and amphibian photoreceptors use two separate calcium 
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modulators of rhodopsin kinase: recoverin (or S-modulin) in rods (Dizhoor et al., 1991; 

Kawamura, 1993) and visinin in cones (Kawamura et al., 1996). In the case of mammals, 

both rods and cones use recoverin to modulate the activity of rhodopsin kinase (Chen et al., 

1995a; Dizhoor et al., 1993; Kawamura, 1993; Klenchin et al., 1995; Milam et al., 1993). In 

darkness, when the calcium level in the outer segments is high, recoverin inhibits rhodopsin 

kinase which results in delayed visual pigment phosphorylation (Palczewski et al., 2000). 

Upon exposure to light, the calcium level in photoreceptors declines and that relieves the 

inhibition of rhodopsin kinase by recoverin, effectively accelerating the phosphorylation and 

inactivation of visual pigment. In rods, the recoverin-mediated suppression of pigment 

inactivation delays the flash response recovery under dim light when [Ca2+]i is high, but has 

little effect on sensitivity during light adaptation when [Ca2+]i declines (Makino et al., 

2004). Notably, the expression of the corresponding calcium modulator of rhodopsin kinase 

is estimated to be 20 times higher in cones compared to rods (Arinobu et al., 2010). In 

addition, calcium had been shown to modulate the sites and extent of pigment 

phosphorylation in zebrafish cones but not in rods (Kennedy et al., 2004). Finally, unlike in 

rods where the photoresponse recovery is rate-limited by inactivation of PDE (Krispel et al., 

2006), in cones the inactivation of visual pigment appears to be the rate-limiting step of the 

photoransduction shut-off (Matthews and Sampath, 2010). As a result, it had been suggested 

that the inhibition of rhodopsin kinase by recoverin might produce a more substantial 

modulation of the transduction cascade in cones compared to rods. This issue was examined 

directly by testing the function of cones in recoverin-deficient mice. As in rods, deletion of 

recoverin in cones was found to accelerate the response recovery in darkness and in dim 

background light. However, unlike the case in rods, the deletion of recoverin also caused 

reduction of the estimated single-photon response amplitude and decrease in cone sensitivity 

(Sakurai et al., 2015). Thus, by slowing pigment inactivation, recoverin in cones boosts their 

sensitivity in dim background light, possibly enhancing the ability of cones to detect light 

near threshold. Consistent with that notion, the deletion of recoverin affected largely the 

sensitivity in darkness and in dim background light but this effect gradually disappeared 

with increasing background light so that the functional range of cones in bright background 

light was unchanged. Thus, despite its more potent modulation of the transduction cascade 

of cones compared to rods, recoverin does not seem to contribute to the great adaptation 

capacity of cones in bright light. Another interesting conclusion from these studies is that for 

cones in bright light, phototransduction inactivation is likely to be dominated not by 

phosphorylation of their visual pigment but rather by its spontaneous decay to apo-opsin and 

all-trans retinal. However, it is worth noting that, although inactivation of visual pigment 

was shown to be the rate-limiting step of the photoresponse recovery in amphibian cones, 

this has not been yet demonstrated in mouse or other mammalian cones. Finally, in rods, 

recoverin has been also recently suggested to modulate PDE directly (Chen et al., 2015; 

Morshedian et al., 2018).

2.2.3. Modulation of CNG channels by calcium—A third known mechanism by 

which calcium modulates the function of rods and cones involves the conductance of the 

CNG channels. In rods, the CNG channels form a tetramer composed of three CNGA1 and 

one CNGB1 subunits (Weitz et al., 2002; Zheng et al., 2002; Zhong et al., 2002). Notably, 

the CNGB1 subunit contains a binding site for Ca2+-calmodulin (Grunwald et al., 1998; 
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Weitz et al., 1998) that is occupied in the dark, when outer segment calcium is high (Gordon 

and Zagotta, 1995; Hsu and Molday, 1993; Koutalos et al., 1995b; Nakatani et al., 1995). 

When calmodulin is released from the channel in low Ca2+, the affinity of the channel for 

cGMP increases, creating the potential for increasing the dark current. Although this 

mechanism could modulate phototransduction and contribute to the adaptation of rod 

photoreceptors, functional studies with rods indicate that its controbution is minor. 

Electrophysiological recordings from amphibian rods indicate that light adaptation in dim 

backgrounds is mediated primarily by modulation of cGMP synthesis, with modulation of its 

hydrolysis by phosphodiesterase as the light intensity increases, and only a small 

contribution by direct modulation of the channels at relatively brigh light (Koutalos et al., 

1995a; Koutalos et al., 1995b). In addition, experiments with rods expressing mutant 

CNGB1 that lacks the calmodulin binding site also revealed no effect on response kinetics or 

on light adaptation (Chen et al., 2010b).

The modulation of the CNG channel by calcium appears to play a more prominent role in 

cones. The cone photoreceptor channel is also a tetramer, consistsing of two CNGA3 and 

two CNGB3 subunits (Peng et al., 2004). Recordings from fish cones have shown that their 

CNG channels are modulated effectively by calcium via a diffusible factor different from 

calmodulin (Rebrik and Korenbrot, 1998). Subsequent recordings from intact mammalian 

photoreceptors confirmed the robust calcium-dependent modulation of CNG channels in 

cones but not in rods (Rebrik and Korenbrot, 2004). Eventually, a novel calcium regulator, 

CNG-modulin, was identified in striped bass cones and shown to modulate the ligand 

sensitivity of the channels, as well as the kinetics of their light responses and light adaptation 

(Rebrik et al., 2012). Subsequently, the homolog of CNG-modulin was identified as EML1 

(E chinoderm microtubule-associated protein like-1) in zebrafish (Korenbrot et al., 2013), a 

microtubule-binding protein that is required for properly orienting the cleavage plane of 

neuronal progenitors in the developing brain, and which is present also in mammals (Kielar 

et al., 2014). However, the expression of EML1 in mammalian photoreceptors or its 

potential functional role in mammalian cone signaling have not been examined.

3. Extrusion of calcium from rod outer segments

Maintaining calcium homeostasis in rods requires that the continuing influx of calcium into 

their outer segments is matched with equal efflux. The extrusion of calcium is believed to be 

mediated by the Na+/Ca2+, K+ exchanger NCKX1 (for recent review, see (Schnetkamp et al., 

2014)). Using the electrochemical gradients for Na+ and K+, NCKX1 removes Ca2+ by 

exchanging four Na+ for one Ca2+ and one K+ ions. NCKX1 is the only known mechanism 

for extruding calcium from rod outer segments, suggesting that the function of NCKX1 

would be critical for the timely recovery of the rod photoresponse and for light adaptation. 

In addition, as disrupting Ca2+ homeostasis is implicated in photoreceptor cell death (Fain, 

2006; Paquet-Durand et al., 2011; Woodruff et al., 2007), NCKX1 also would be expected to 

play a role in supporting rod survival. Indeed, mutant human NCKX1 has been linked to 

autosomal-recessive night blindness (CSNB, (Riazuddin et al., 2010)). However, the human 

disease is stationary, indicating that, contrary to expectations, rods lacking functional 

NCKX1 do not degenerate rapidly.
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3.1. NCKX1-dependent calcium extrusion from rods

Extensive biochemical studies with bovine rod outer segments have suggested that NCKX1 

is the rod-specific Ca2+ extrusion mechanism (Cook and Kaupp, 1988; Reid et al., 1990; 

Reilander et al., 1992; Schnetkamp, 1986). However, these studies could not provide insights 

into the role of NCKX1 in regulating the physiology of intact mammalian rods. It was also 

not known whether NCKX1 is the only mechanism responsible for Ca2+ extrusion from rod 

outer segments. To investigate the role of NCKX1 in rod function and survival, we recently 

generated NCKX1-deficient (Nckx1−/−) mice (Vinberg et al., 2015). This allowed us to 

evaluate the role of NCKX1-dependent as well as NCKX1-independent calcium extrusion 

mechanisms for the survival and function of mammalian rods. Consistent with the 

hypothesized role of NCKX1 in the extrusion of calcium from rods, the exchanger was 

found to be expressed exclusively in their outer segments (Figure 4A) (Vinberg et al., 2015). 

Rods were viable and contributed to mouse dim light vision and rod-mediated synaptic 

transmission. However, the absolute rod response amplitudes as well as rod sensitivity were 

dramatically decreased by the deletion of NCKX1, most likely due to a combination of 

reduced CNG channel expression and reduced cGMP. Consistent with the expected 

suppression of the calcium feedback on the rod transduction cascade in the absence of 

NCKX1, the responses of Nckx1−/− rods had delayed recovery and increased fraction of 

channels closed by a single rhodopsin isomerization. These effects are reminiscent of those 

from GCAPs−/− mice that lack the dominant Ca2+-feedback mechanism (Mendez et al., 

2001). Thus, consistent with its hypothesized role in extruding calcium from rod outer 

segments, NCKX1 was found to play a key role in mediating the fast reduction of Ca2+ 

concentration upon light stimulation. In this way NCKX1 helps to set the sensitivity and 

temporal properties of rod signaling and drives the timely recovery of the rod response.

3.2. NCKX1-independent calcium extrusion from rods

The studies of NCKX1-deficient rods confirmed the important role of this protein in 

extruding calcium and regulating the kinetics, gain, and adaptation of the transduction 

cascade in rods. However, they also revealed the existence of a previously unknown 

NCKX1-independent mechanism for removing calcium from rod outer segments. Thus, 

contrary to the expected rapid degeneration of rods without NCKX1, the retinas of Nckx1−/− 

mice appeared normal at early age and underwent only a slow progressive degeneration. 

This finding is consistent with the stationary nature of the human NCKX1-linked visual 

disorder and suggested that additional, NCKX1-independent, mechanisms could also be 

contributing to the extrusion of calcium from rod outer segments. Also consistent with this 

notion, the rods in Nckx1−/− mice exhibited normal steady state background light adaptation. 

These findings indicate that Ca2+ can somehow be extruded from the outer segments of rods 

by an unknown NCKX1-independent mechanism within several seconds after the onset of 

background light. This mechanism appears to be too slow to provide normal feedback to the 

phototransduction cascade in the time scale of dim flash responses but is sufficient to 

mediate steady state light adaptation and, in the long run, protect Nckx1−/− rods from 

degeneration by maintaining their calcium homeostasis. The nature of this NCKX1-

independent mechanism for Ca2+ extrusion from rod outer segments is currently unknown. 

However, recent work in zebrafish photoreceptors suggests that, contrary to current beliefs, 

calcium in the outer segment might not be independent of the rest of the cells, so that 

Vinberg et al. Page 10

Prog Retin Eye Res. Author manuscript; available in PMC 2018 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calcium uptake by mitochondria in the inner segments might affect calcium in the outer 

segments (Giarmarco et al., 2017). Thus, it is possible that calcium might be released from 

the outer segments of rods via their connecting cilium (Figure 8), providing a relatively slow 

“safety-valve” mechanism for sustaining normal outer segment calcium even in the absence 

of functional NCKX1. The interplay between inner and outer segment calcium mechanisms 

and their relative role in controlling the function and survival of mammalian rods are yet to 

be established.

4. Extrusion of calcium from cone outer segments

Until recently, the mechanisms of extrusion of Ca2+ from mammalian cones were less clear 

than these in rods. The dominant view had been that the cone-specific isoform of the Na+/

Ca2+, K+ exchanger, NCKX2 is responsible for the Ca2+ extrusion from cones (Lytton, 

2007). However, using photopic b-wave measurements from in vivo electroretinogram 

(ERG) recordings to indirectly evaluate the function of mouse cones, a previous study found 

no cone phenotype in NCKX2-deficient (Nckx2−/−) mice (Li et al., 2006). This result raised 

the possibility that NCKX2 may not be involved in the Ca2+ homeostasis of mammalian 

cones, and that an alternative mechanism is responsible for its extrusion. Recent studies have 

helped elucidate the role of NCKX2 in regulating cone phototransduction and have also 

revealed that the dominant mechanism for extruding calcium from cones involves another 

member of the NCKX family, namely NCKX4.

4.1. NCKX2-dependent calcium extrusion from cones

Past evidence from in vitro studies had suggested that the only mechanism of extrusion of 

Ca2+ out of the outer segments of vertebrate cone photoreceptors is by NCKX2 (Prinsen et 

al., 2002; Prinsen et al., 2000; Schnetkamp, 2013). However, NCKX2-deficient (Nckx2−/−) 

mice did not show retinal degeneration or changes in cone-driven bipolar cell responses 

assayed by photopic b-wave measurements from in vivo electroretinogram (ERG) recordings 

(Li et al., 2006). This unexpected result suggested that NCKX2 may not be involved in 

regulating the Ca2+ homeostasis of mammalian cones, leaving the mechanism of its 

extrusion from cone outer segments unknown. We addressed this question recently by 

directly analyzing the physiological properties of NCKX2-deficient mouse cones in dark- 

and light-adapted conditions. Our results demonstrated that NCKX2 is expressed selectively 

in the outer segments of mouse cone photoreceptors (Figure 4B) and that its deletion in 

Nckx2−/− mice does not cause detectable cone degeneration (Sakurai et al., 2016). The better 

resolution of ex vivo recordings used in our study, compared to the previously published in 
vivo ERG experiments (Li et al., 2006), allowed us to show clearly that the deletion of 

NCKX2 affects the flash responses of dark-adapted mouse cones as well as their light 

adaptation. The deletion of NCKX2 from mouse cones slowed down the recovery of both 

dim and saturating light responses (Figure 5A), demonstrating that NCKX2-mediated Ca2+ 

extrusion is an integral component of the rapid feedback to the cone phototransduction 

cascade and its timely inactivation. The onset of light adaptation in NCKX2-deficient cones 

was also delayed, indicative of their slower calcium extrusion and supporting a role for 

NCKX2 in the regulation of cone calcium homeostasis.
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As discussed above, blocking the major Ca2+-mediated negative feedback on cone 

phototransduction by deleting GCAPs results in several-fold larger cone single photon 

response and a dramatic delay in the recovery of cone responses (Sakurai et al., 2011). If 

NCKX2 was the dominant mechanism for extruding Ca2+ from cone outer segments, it 

would be expected that its deletion would largely delay the onset of the Ca2+-mediated 

feedback so that the physiological phenotype in Nckx2−/− cones would be comparable to 

that in GCAPs-deficient cones or NCKX1-deficient rods. However, the deletion of NCKX2 

in mouse cones produced only a slight delay in the response recovery without affecting 

substantially the amplitude of the single photon response. Similarly, given sufficient time 

(~2 s), the background light response amplitude of Nckx2−/− cones reached steady state 

comparable to that of control cones. These results indicate that the negative feedback on 

cone phototransduction is still largely functioning in NCKX2-deficient cones. The normal 

cone survival in Nckx2−/− retina is not consistent with their hypothesized high and toxic 

Ca2+ levels (Fain and Lisman, 1999; Lisman and Fain, 1995). Together, these findings 

demonstrated that the deletion of NCKX2 does not affect dramatically the extrusion of Ca2+ 

from cone outer segments, and pointed to the existence of additional, NCKX2-independent, 

Ca2+ extrusion pathway(s) for the maintenance of Ca2+ homeostasis in cones.

4.2. NCKX4-dependent calcium extrusion from cones

An initial clue about the nature of the additional Ca2+ extrusion mechanism in cones came 

from comparing microarray data from rod-dominant wild type (WT) and cone-dominant 

NRL-deficient (Nrl−/−) mouse retinas (Corbo et al., 2007). This analysis revealed that the Na
+/Ca2+, K+ exchanger Nckx4 (Slc24a4) is strongly upregulated in the retina of Nrl−/− mice, 

suggesting that NCKX4 could potentially be present in cone photoreceptors. Subsequent in 
situ hybridization and immunocytochemistry experiments demonstrated the expression of 

Nckx4 in mouse cones and the presence of NCKX4 protein in fish, mouse (Figure 4D), and 

primate (Figure 4C) cones (Vinberg et al., 2017). Functional analysis of NCKX4-deficient 

mouse cones revealed larger than normal single photon response and slower light response 

recovery (Figure 5B). The properties of dark-adapted cones lacking NCKX4 resembled 

those of GCAPs-deficient cones in which the Ca2+ feedback that accelerates cGMP 

synthesis is absent (Sakurai et al., 2011). Thus, NCKX4 is important for rapidly lowering 

[Ca2+] in cones following light-induced closure of CNG channels to mediate the Ca2+ 

feedbacks in the time scale of flash responses (~500 ms). As could be expected from the 

presence of NCKX2 in NCKX4-deficient cones, they had normal cone light response 

amplitudes, lacked detectable degeneration, and were able to adapt according to Weber-

Fechner law to steady background light (Figure 6). Comparison of the kinetics of responses 

from wild type, NCKX2-deficient, and NCKX4-deficient cones revealed that the two 

exchangers have distinct roles in tuning the cone transduction cascade: the extrusion of Ca2+ 

that modulates phototransduction after photoactivation is dominated initially by NCKX4, 

whereas NCKX2 contributes mostly during the late phase of the flash response. The 

molecular mechanism for such temporal separation is not clear as NCKX2 and NCKX4 

appear to have similar molecular properties (Jalloul et al., 2016). One possibility is that they 

have different kinetics or ionic equilibrium of inactivation enabling them to differentially 

modulate Ca2+ extrusion. Regardless of the exact mechanism, the emerging picture is that in 

cones, the combined activity of NCKX2 and NCKX4 is required for achieving the rapid and 
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efficient extrusion of Ca2+ that enables these cells to adapt rapidly and remain functional in 

a wide range of light backgrounds throughout the day (Figure 8). Consistent with that 

notion, the simultaneous deletion of NCKX2 and NCKX4 in cones resulted in largely 

suppressed cone sensitivity, further delay in response kinetics and a reduced maximal 

amplitude (Figure 7)(Vinberg et al., 2017). It is still unclear whether additional, NCKX-

independent mechanisms similar to that identified in rods, are also at play in cones.

5. Role of calcium in photoreceptor degeneration

Abnormal calcium homeostasis has adverse effects on cell function and survival. High 

intracellular calcium concentration activates calpains (Nakazawa, 2011), which are calcium-

dependent cysteine proteases. In addition, calcium influx can influence calcium dynamics 

from intracellular stores, both of which can lead to apoptosis. Photoreceptors are among the 

most vulnerable cells of the body and their function and survival can be severely affected by 

mutations or environmental factors (reviewed in (Stone et al., 1999)). Calcium enters the 

photoreceptor outer segment through the CNG channels, and the cell body/synaptic terminal 

through the L-type calcium channels. The role of calcium influx through the L-type channels 

in photoreceptor apoptosis is controversial, inasmuch as pharmacologic blockage of these 

channels or their genetic ablation have limited efficacy in delaying retinal degeneration 

caused by elevated calcium (Barabas et al., 2010). Here we focus on the role of calcium 

entry through the CNG channels.

5.1. Excessive calcium entry through the CNG channels as a mechanism of 
photoreceptor cell death

The CNG gated channel is the only route of calcium entry into the outer segment. The 

probability of the opening of the CNG channel, which in turn determines the size of the 

circulating current, depends on the amount of free [cGMP], which in the dark-adapted rod is 

estimated to be 3-4 μM (Pugh and Lamb, 1993). At this concentration, the probability of 

channel opening is estimated to be only 0.1-0.2 (Nakatani and Yau, 1988b). Due to the high 

cooperativity of cGMP binding (EC50 ≈ 30 μM, Hill coefficient = 3; (Eismann et al., 1994; 

Hsu and Molday, 1994; Ruiz et al., 1999)), even a slight increase in [cGMP] can have a 

profound effect on the number of open channels. In addition, mutations that increase the 

channel’s affinity for cGMP can affect the number of open channels which could also result 

in toxic calcium influx into the cell. Such mutations have been found in CNGA3 and 

CNGB3 genes that form the cone’s CNG channel (Liu and Varnum, 2005; Peng et al., 2003, 

2004).

The concentration of cGMP depends on its synthesis by retinal guanylyl cyclases (retGCs) 

and its degradation by phosphodiesterase, PDE6. In the dark-adapted state, the intracellular 

[cGMP] is determined by the basal activities of RetGCs and PDE6. GCAPs form a 

molecular complex with RetGCs in rods and cones which enables rapid modulation of 

RetGC activity in response to calcium fluctuations in rod and cone outer segments (Wen et 

al., 2014). Following light exposure, GCAPs sense the drop in [Ca2+] by replacing the bound 

calcium with magnesium to stimulate RetGCs (Fig. 1). Mutations in GCAP1 and RetGC1 

have been linked to inherited autosomal dominant cone and cone-rod retinopathies in 

Vinberg et al. Page 13

Prog Retin Eye Res. Author manuscript; available in PMC 2018 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



humans (Newbold et al., 2002; Olshevskaya et al., 2002), as have GCAP2 (Sato et al., 2005). 

Many of these mutations affect calcium binding domains in GCAPs or affect GCAP/retGC 

interaction so that GCAPs will stimulate RetGC even under higher calcium concentrations 

(Sato et al., 2018). This in turn leads to elevated [cGMP] synthesis and cell death.

Mutations in PDE6 also have a profound effect on intracellular [cGMP]: its concentration 

can increase dramatically as a consequence of defective cGMP hydrolysis (Iribarne and 

Masai, 2017). The rd1 mouse, an early mouse model of retinal degeneration, harbors a loss-

of-function mutation in the Pde6b gene (Bowes et al., 1990; McLaughlin et al., 1993; Pittler 

and Baehr, 1991). Since that discovery, numerous PDE6 mutations have been identified in 

human patients diagnosed with retinitis pigmentosa (McLaughlin et al., 1993). The severity 

of retinal degeneration correlates with the degree of impairment of PDE6 activity. In the case 

of complete loss-of-function in rd1, retinal degeneration is rapid and complete within days 

of eye-opening (Farber and Lolley, 1974). If an increase in intracellular [cGMP] causes toxic 

calcium influx through CNG channels, then retinal degeneration should be delayed by 

preventing CNG channel expression. Indeed, retinal degeneration in rd1 is slowed in the 

Cngb1 knockout background wherein expression of functional CNG channels is greatly 

reduced (Paquet-Durand et al., 2011; Tosi et al., 2011). Together, these findings support an 

important role of [cGMP] in photoreceptor function and survival and a mechanism of cell 

death caused by excess calcium entry through CNG channels gated open by elevated 

[cGMP].

5.2. Absence of CNG channel expression leads to increased intracellular cGMP 
concentration and photoreceptor cell death

Although preventing CNG channel expressing has a rescuing effect on the rd1 retina, rods 

lacking CNG channel expression gradually die, albeit at a much slower time course than that 

of rd1 (Huttl et al., 2005; Zhang et al., 2009). Importantly, mutations in rod and cone CNG 

channels have been found in human patients diagnosed with retinitis pigmentosa and 

achromatopsia (Schon et al., 2013). In both rods and cones, cGMP level is dramatically 

elevated in the absence of the CNG channels (Biel et al., 1999). What could be the cause of 

this cGMP buildup? Because of the lack of calcium entry through CNG channels and its 

continuous efflux through the NCKX exchangers, it can be expected that calcium levels in 

the CNG knockout photoreceptor would be abnormally low, and this would then lead to 

GCAPs-mediated stimulation of RetGCs. Prolonged elevation of cGMP, in turn, appears to 

activate protein kinase G (Ma et al., 2015; Paquet-Durand et al., 2009; Xu et al., 2013). In 

support of this mechanism, preventing protein kinase 1 expression had a rescuing effect on 

Cngb1 knockout rods (Wang et al., 2017). These results highlight the relationship between 

calcium concentration, cGMP accumulation, and identification of protein kinase G activity 

as a mechanism of cell death caused by elevated [cGMP].

5.3. Low intracellular [Ca2+] and photoreceptor cell death

In addition to CNG channel loss-of-function mutations, other mutations affecting genes in 

the phototransduction cascade are also expected to lower intracellular [Ca2+]. For example, 

null-mutations in RetGC1 or RD3, a protein that inhibits basal GC activity and aids in its 

transport (Azadi et al., 2010), would be expected to reduce intracellular [cGMP], close CNG 
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channels and lower [Ca2+]. In addition, mutations of RPE65 that prevent formation of visual 

pigments are expected to lower [Ca2+] due to the constitutive activity of free opsin proteins 

which continuously stimulate the phototransduction cascade (Woodruff et al., 2003). Other 

examples of mutations leading to uncontrolled phototransduction and photoreceptor cell 

death include the rod arrestin knockout (Chen et al., 1999b; Wang and Chen, 2014) and 

rhodopsin kinase knockout (Chen et al., 1999a) mouse models. Indeed, an “equivalent light” 

hypothesis has been put forward to explain how the dominantly active mutations in the 

phototransduction cascade lead to cell death (Fain, 2006; Fain and Lisman, 1993). Despite 

these advances, the underlying mechanism by which low calcium leads to cell death remains 

unclear.

5.4. Intracellular [Ca2+] and photoreceptor cell death: future challenges

In most instances, how mutations in phototransduction genes may affect intracellular [Ca2+] 

is assumed based on our knowledge and understanding of the phototransduction cascade. 

Because phototransduction is confined to the outer segment compartment and the cell death 

machinery is located in the inner segment, it is not known how alteration in calcium levels in 

the outer segment is propagated to the inner segment. This is particularly baffling given that 

calcium might be regulated independently in different photoreceptor cell compartments 

(Krizaj and Copenhagen, 1998), and that the presence of the abundant mitochondria in the 

photoreceptor ellipsoid regions would act as a calcium “sink” between the two 

compartments. Additionally, how calcium entry to the outer segment affect internal calcium 

stores (such as mitochondria and endoplasmic reticulum) in the photoreceptors is also not 

known, but an important area of investigation because perturbation of calcium homeostasis 

within these organelles can lead to execution of cell death pathways (Barabas et al., 2010; 

Krizaj, 2012). Direct measurement of calcium concentration, and how it is affected by 

various mutations, would greatly increase our understanding of the relationship between 

calcium dynamics in the different photoreceptor cell compartments and cell death. While 

genetically encoded fluorescent calcium indicators have provided much insight into calcium 

dynamics in other tissues, their fluorescent signal requires light stimulation, which confound 

their usage in the light-sensitive retina. However, advances in multi-photon microscopy and 

sensitive detectors that requires little excitation may render calcium imaging in all 

compartments of the photoreceptors possible in the near future.

6. Conclusions

Decline of Ca2+ concentration in the rod and cone outer segments mediate important 

feedback mechanisms that allow both rods and cones to modulate their response kinetics and 

sensitivity when ambient light level increases. This widens the dynamic range of 

photoreceptors and contributes importantly to the “contrast constancy” of our vision. Ca2+ 

feedback mechanisms on the phototransduction components, including visual pigment 

phosphorylation and cGMP synthesis, have been studied in amphibian and mammalian rods 

and cones. These mechanisms appear not to explain the functional differences between rods 

and cones. Calcium-dependent modulation of the CNG channels, on the other hand, has 

been shown to be more prominent in cones as compared to rods. However, the mechanism of 

the channel modulation in mammalian photoreceptors is not known. In this review, we 
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focused on the role of Ca2+ extrusion mechanisms in regulating phototransduction and light 

adaptation in the rod and cone outer segments. It has been a dogma for decades that the 

extrusion of Ca2+ from the rod outer segments is exclusively mediated by NCKX1, and from 

cone outer segments by NCKX2. However, our recent work discovered a novel cone Ca2+ 

extrusion mechanism via NCKX4, expressed in the cone outer segment, and contributing 

importantly to the cone phototransduction shut-off and temporal resolution of cone vision. In 

addition, our work showed that even in the absence of NCKX1, mouse rods degenerate only 

very slowly and light adapt normally, indicating an NCKX-independent pathway of clearing 

Ca2+ from the rod outer segments. Unlike rods, cones express two NCKX isoforms, NCKX2 

and NCKX4, which both contribute to Ca2+ extrusion and modulation of the 

phototransduction of cones. Only after deleting both of these isoforms, a slowly progressing 

cone degeneration and severely compromised phototransduction is observed. It is unclear, 

though, why rods and cones express different NCKX isoforms that have very similar 

biophysical properties.

7. Future directions

Despite decades of research elucidating the phototransduction and light adaptation 

mechanisms in vertebrate rod and cone photoreceptors it is still not fully understood why 

rods are more sensitive than cones. Furthermore, it is not known why cones practically never 

saturate whereas rods saturate in ambient light producing ~105 R* rod−1 s−1. One plausible 

explanation is that Ca2+ feedbacks, e.g. via channel modulation, can modulate sensitivity of 

cones stronger and faster as compared to rods. These differences can be due to differences in 

the feedback proteins and/or their expression levels. The faster and larger light-induced 

change of Ca2+ in cones compared to rods is also likely to contribute. Although some of the 

differences in the rod vs. cone phototransduction proteins and their expression levels are 

known (reviewed in (Ingram et al., 2016)), it is still not well understood why mammalian 

cones can light adapt over wider range and faster as compared to rods. This difference 

becomes even more puzzling if one considers that the dominant mechanisms of calcium-

dependent modulation in rods and cones are mediated by the same set of proteins, GCAPs 

and recoverin. In the future, it will be important to determine the range and kinetics of light-

induced change of Ca2+ in the mammalian cone outer segments, and compare it to that of 

mammalian rods. Further, studying how different Ca2+ transport mechanisms contribute to 

the Ca2+ homeostasis by combining Ca2+ imaging and electrophysiology with e.g. 

Nckx1−/−, Nckx2−/− and Nckx4−/− mouse models will advance our mechanistic 

understanding of the functional differences between rods and cones. Another tempting 

approach would be to replace NCKX1 with either NCKX4 and/or NCKX2 in the rods, and 

study how this would affect phototransduction, light adaptation and Ca2+ homeostasis in 

rods.

Our studies using NCKX knockout models as well as recent studies demonstrating that 

mutations that initially compromise Ca2+ homeostasis in the outer segment of 

photoreceptors also lead to abnormal Ca2+ in endoplasmic reticulum (Butler et al., 2017) 

and potentially also in mitochondria (Giarmarco et al., 2017) indicate that transport of Ca2+ 

between photoreceptor outer and inner segments may also play a role in phototransduction, 

light adaptation, and photoreceptor death/survival. Future Ca2+ imaging and 
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electrophysiology studies in rods and cones lacking either the outer segment plasma 

membrane Ca2+ extrusion mechanisms and/or Ca2+ transport mechanisms in mitochondria 

and endoplasmic reticulum (ER) would shed light on how the complex interplay between 

various plasma membrane and intracellular Ca2+ transport mechanisms in the outer and 

inner segment contribute to the Ca2+ homeostasis and function of rod and cone 

photoreceptors.
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Figure 1. Mechanisms of modulation of the phototranstuction in rods and cones by calcium.
The activation of the light-sensitive G-protein coupled receptor (R*) results in the activation 

of the G protein transducin (T) that, in turn, activates the effector enzyme phosphodiesterase 

(PDE), leasing to increased hydrolysis of cGMP and the closure of CNG channels. This 

results in reduction in the influx of Ca2+ which combined with its continuous extrusion via 

cell-specific NCKX drives down the level Ca2+ in the outer segments of photoreceptors. The 

reduction in Ca2+ modulates several steps in the phototransduction cascade, including the 

synthesis of cGMP by guanylyl cycles (RetGC), regulated by guanylyl cyclase activating 

proteins 1/2 (GCAP1/2); the inactivation of the visual pigment by rhodopsin kinase (GRK1), 

regulated by recoverin (Rv); and the conductance of the CNG channel, regulated by 

calmodulin in rods and possibly CNG modulin in cones.
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Figure 2. Phototransduction and light adaptation in mouse rods and cones.
Photoreceptor responses to 1 ms flashes presented at time zero of mouserods (A) and cones 

(B) recorded using the ex vivo ERG technique. Rod responses were recorded from retinas of 

wild-type mice while cone responses were recorded from retinas of Gnat1−/− mice that lack 

expression of rod transducin (Lem et al., 1999). (C) Normalized response amplitudes plotted 

as a function of flash intensity in photons μm−2 for rods (squares) and cones (triangles). The 

smooth traces plot Qn/(Qn + Q1/2
n), where Q is flash intensity, Q1/2 half-saturating flash 

intensity, and n steepness constant, with Q1/2 = 25 photons μm−2, n = 1.1 and Q1/2 = 5,400 

photons μm−2, n = 1.0 for rods and cones, respectively. Data is from Vinberg et al., 2015 and 

Vinberg et al., 2017.
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Figure 3. Light adaptation in mouse rods and cones.
Responses to steps of light recorded from rods in wild-type (A) and cones in Gnat1−/− (B) 

mouse retinas using ex vivo ERG technique. Step intensities ranged from 9 to 5,100 photons 

μm−2 s−1 for rods and from 3,300 to 236,300 photons μm−2 s−1 for cones. Sensitivity of 

photoreceptors was probed by delivering 1 ms flashes of light during background light 

illumination. Starting from the dimmest background, the flash intensities were 2, 2, 2, 5.7, 

16, 16, 39, 124 and 370 photons μm−2 for rods, and 859, 859, 859, 859, 2,100 and 2,100 

photons μm−2 for cones. (C) Sensitivity (S) of rods (squares) and cones (triangles) 

normalized to their sensitivity in darkness (Sdark) plotted as a function of background light 

intensity. The smooth traces plot In/(In + I0
n), where I is background light intensity, I0 

background intensity at which S/Sdark = 0.5, and n is steepness factor, with I0 = 99 photons 

μm−2 s−1, n = 1.2 and I0 =39,600 photons μm−2 s−1, n = 1.0 for rods and cones, respectively. 

Data is from Vinberg et al., 2015 and Vinberg et al., 2017.
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Figure 4. Expression of NCKX1, NCKX2, and NCKX4 in the retina.
(A) Immunostaining of NCKX1 (green) in the retinal sections from WT and Nckx1−/− 

mouse retinas. DAPI (blue) and rhodopsin (red) show the location of nuclei and rod outer 

segments, respectively. Scale bar = 25 μm. (B) Whole mount staining of cones (PNA, red) 

and NCKX2 (green) showing cone-specific NCKX2 expression in the mouse retina. (C) Co-

staining of NCKX4 (green) and cones (PNA, red) in a macaque retinal section. (D) 

Immunostaining of NCKX4 (green) in a mouse retinal section. Cones are labeled using PNA 

(red) and nuclei (DNA) are labeled using methyl green (cyan). Data is from Vinberg et al., 

2015 and Vinberg et al., 2017.
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Figure 5. Role of NCKX2 and NCKX4 in the cone phototransduction.
(A) Cone responses normalized by the maximal saturated response amplitude to dim and 

bright light flashes recorded from WT (black) and Nckx2−/− (red) mouse retinas using ex 
vivo ERG. (B) Estimated fractional single photon responses (SPR) from control and 

NCKX4-deficienc cones. Cone responses were normalized by the maximal saturated 

response amplitude and flash intensity (in estimated cone pigment photoisomerizations 

calculated based on a cone collection area of 0.2 μm2 from (Nikonov et al., 2006)). 

Responses from WT (black) and NCKX4-deficient (red) mouse cones were recorded using 

the single-cell suction electrode method. Grey smooth traces plot single exponential function 

with time constants of 75 and 106 ms in WT and NCKX4-deficient cones, respectively. Data 

is from Sakurai et al., 2016 and Vinberg et al., 2017.
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Figure 6. Role of NCKX4 in the light adaptation of cones.
Sensitivity of control (A) and NCKX4-deficient (B) cones was probed by delivering a flash 

of light at 2.5 s after the light step onset. (C) Sensitivity of cones (SF = r(tp)/QF, where r(tp) 

is peak response to flashes in the linear range and QF is flash intensity in photons μm−2) 

normalized to the sensitivity in darkness is plotted as function of background light intensity 

for control (black) and NCKX4-deficient (red) mice. Smooth traces plot Weber-Fechner 

function with I0 = 43,000 and 11,300 photons μm−2 s−1 for control and NCKX4-deficient 

cones, respectively. Data is from Vinberg et al., 2017.
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Figure 7. Role of NCKX2 and NCKX4 in the cone phototransduction.
Light responses of control (A), NCKX4-deficient (B), and NCKX2/4 double knockout (C) 

cones recorded from isolated Gnat1−/− mouse retinas using ex vivo ERG technique. (D) 

Responses of control (black), NCKX4-deficient (red), and NCKX2/4 DKO (blue) cones to a 

dim flash normalized with the maximal response amplitude and flash intensity (in estimated 

cone pigment photoisomerizations based on collection area of 0.12 μm2 from (Sakurai et al., 

2011)). Note that the response from NCKX2/4 DKO cones has been multiplied by 25 to 

facilitate comparison of the response kinetics. Inset plots dim flash responses to identical 

stimulus normalized with the maximal response amplitudes from control (black) and 

Nckx2−/− (red) cones. (E) Amplitudes of flash responses (R) normalized with the maximal 

response amplitude (Rmax) are plotted as a function of flash intensity for control (black), 

NCKX4-deficient (red), and NCKX2/4 double knockout (blue) mice. Smooth traces plot 

Naka-Rushton function with half-saturating flash intensity of 5,200,3,900, and 146,900 

photons μm−2 for control (black),NCKX4-deficient (red), NCKX2/4 double knockout (blue, 

dimmest flash data point excluded from fitting) cones, respectively. Modified from Vinberg 

et al. 2017.
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Figure 8. Summary of the mechanisms regulating calcium in the outer segments of rods and 
cones.
(A) Calcium enters the outer segments of rods via the transduction CNGA1/CNGB1 

heteromeric channels and is rapidly extruded by NCKX1. A slower mechanism for extruding 

calcium from rod outer segments likely involves outflow through the connecting cilium, 

possibly combined with uptake by mitochondria via the mitochondrial calcium uniporter 

(MCU) and release via Na+/Ca2+ transporters (NCLX). (B) Calcium enters the outer 

segments of cones via the transduction CNGA3/CNGB3 heteromeric channels and is rapidly 

extruded by the combined action of NCKX2 and NCKX4. Outflow through the connecting 

cilium, possibly combined with uptake by mitochondria, could also play a role in regulating 

cone calcium. Biochemical studies have suggested direct interaction between NCKX1 and 
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the rod CNG channel (Bauer and Drechsler, 1992) but not between NCKX2 and the cone 

CNG channel (Matveev et al., 2008). The possible interaction of NCKX4 and the cone CNG 

channel has not been examined.
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