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Abstract

Retinal ganglion cells (RGCs) were one of the first classes of sensory neurons to be described in 

terms of a receptive field (RF). Over the last six decades, our understanding of the diversity of 

RGC types and the nuances of their response properties has grown exponentially. We will review 

the current understanding of RGC receptive fields (RFs) mostly from studies in mammals, but 

including work from other vertebrates as well. We will argue for a new paradigm that embraces the 

fluidity of RGC RFs with an eye toward the neuroethology of vision. Specifically, we will focus 

on (1) different methods for measuring RGC RFs, (2) RF models, (3) feature selectivity and the 

distinction between fluid and stable RF properties, and (4) ideas about the future of understanding 

RGC RFs.

1. Introduction

The most outstanding feature in the present analysis is the flexibility and fluidity of 

the discharge patterns arising in each receptive field.… Stability […] disappears 

when one or more of several parameters, such as the adaptation level, stimulus 

intensity, and area of illumination, are changed singly or in combination. In the 

absence of a fixed pattern from the whole receptive field, it does not appear 

accurate enough to speak of “on, ” “on-off” or “off” fibers in the cat’s retina.

-Steven Kuffler (1953)

Remarkably, Steven Kuffler in the first description of receptive fields in a mammalian retina, 

already realized the fluidity of the concept of a receptive field (Kuffler, 1953). Sixty-five 

years later, we are still grappling with the difficulty of capturing concisely and completely 

how the visual world is encoded in the firing patterns of retinal ganglion cells (RGCs).

Another insight in Kuffler’s 1953 paper that was decades ahead of its time was that a 

complete understanding of the visual code of the retina must capture how populations of 

RGCs signal together. The retina has emerged as one of the premier systems for the study of 

population codes (Meister, 1996; Shlens et al., 2008), but we will restrict our discussion here 

to the RF properties of individual RGCs, an enormous field on its own. The early history of 

RFs as a tool to characterize visual neurons has been reviewed elsewhere (Spillmann, 2014), 

and recent reviews have focused on RGC typology (Sanes and Masland, 2015) and 
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principles of retinal computation (Gollisch and Meister, 2010). As our understanding of 

RGCs has improved, a set of studies over the last several years has brought new emphasis to 

the concept of RF fluidity. Fluidity of RGC computations with light adaptation was the focus 

of another recent review (Rivlin-Etzion et al., 2018). We will discuss RGC RFs from this 

new perspective.

Conservation of RGC structure and function across species

While understanding the function of human RGCs is an important long-term goal of retinal 

research, we rely on animal models, so it is important to take stock of our current 

understanding of cross-species homology. Conscious visual perception in humans and non-

human primates is dominated by the fovea, where the midget system with single cone 

resolution was a relatively recent evolutionary adaptation. In the peripheral retina, there are a 

wide variety of RGC types across many vertebrate species. Morphological similarity has 

been a key criterion for determining possible homologies between RGC types in different 

species, and compelling correspondence has been established from humans to non-human 

primates, to cats, and to rabbits (Goodchild et al., 1996; Rodieck, 1998; Sivyer et al., 2011). 

Studies have estimated similar RGC morphological diversity in primate (Dacey et al., 2003), 

cat (Boycott and Wassle, 1974; Isayama et al., 2000), rabbit (Rockhill et al., 2002), rat 

(Huxlin and Goodchild, 1997), and mouse (Kong et al., 2005; Sun et al., 2002; Völgyi et al., 

2009). In several cases, functional parallels between species have also been established. 

Melanopsin expressing RGCs serve non-image forming visual functions in a set of pathways 

conserved across human (Provencio et al., 2000), non-human primate (Dacey et al., 2005), 

rat (Hannibal et al., 2014), mouse (Hattar et al., 2002), and chick (Bailey and Cassone, 

2005). A functionally similar RGC type in rabbit, mouse, and non-human primates has been 

hypothesized to play a role in smooth pursuit eye movements (Puller et al., 2015). 

Orientation selectivity (OS) is conserved in rabbit, mouse, and even teleost fish (Antinucci et 

al., 2016), and the OS computation in these different species may even involve 

morphologically homologous amacrine cells (Bloomfield, 1994; Hoshi and Mills, 2009; 

Nath and Schwartz, 2017; Wagner and Wagner, 1988).

This review will include results from many of these species, with an emphasis on mouse, 

where genetic tools have led to a recent explosion in new information about RGC types, 

circuits, and computations. Much of the data in this field comes from ex vivo preparations in 

which the retina is preserved in a light-responsive state outside of the animal. In rodents, the 

firing properties of RGCS measured in vivo in the optic nerve (Nobles et al., 2012) and ex 
vivo (Pang et al., 2003) are quite comparable. Several recent studies have also made direct 

links between RGC firing patterns measured ex vivo and responses in retino-recipient brain 

areas, like dorsal lateral geniculate nucleus, measured in vivo (Piscopo et al., 2013; Román 

Rosón et al., 2018; Tikidji-Hamburyan et al., 2015).

Despite these encouraging signs suggesting that ex vivo preparations from a variety of 

animals share structural and functional motifs with the human retina, we should keep in 

mind the limitations that come from this set of model systems. RGC measurements from 

non-primates are likely to be poor comparisons for perceptual tasks involving the fovea that 

make up the majority of human psychophysics. The human peripheral retina – which 

Wienbar and Schwartz Page 2

Prog Retin Eye Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contains the overwhelming majority of retinal area, diversity of RGC types, brain targets, 

and evolutionary history – is largely homologous to the retina of other species. Since reading 

has become a central part of our sensory experience and we are most aware of our conscious 

visual perception, much work in visual neuroscience has focused on the fovea. It is 

important to remember, when thinking about the diversity of RGC types and functions, that 

most of the circuitry linking photoreception to behavior lies outside the perceptual pipeline 

from retina to thalamus to cortex.

Defining a receptive field

The visual world is multi-dimensional and contains a wide variety of features. As the sole 

visual input to the brain, RGCs represent the behaviorally relevant complexity of the visual 

world in their spike trains. Unlike the pixel representation of a visual scene captured by the 

photoreceptors, RGCs transmit highly processed visual information about motion, shape, 

color, size, contrast, etc. The mammalian retina contains ~100 different types of interneurons 

that process visual signals into ~40 parallel channels defined by each RGC type (Baden et 

al., 2016; Bae et al., 2018; Masland, 2012; Sanes and Masland, 2015). The most general 

definition of a RGC RF would be a complete understanding of the stimulus to response 

relationship – the map between spatiotemporal patterns of light and RGC spikes.

Given the complexity of retinal circuits, a concise definition of the receptive field of a RGC 

includes simplifying assumptions and is necessarily incomplete. The central simplifying 

assumption in defining a receptive field is that it represents a static entity. We know that 

there are numerous sites of adaptation throughout the retina (Baccus and Meister, 2002; 

Rieke and Rudd, 2009), so any static RF represents, at best, a snapshot of the system in a 

particular steady state. Section 4 will probe this assumption in detail, exploring which 

aspects of RFs change with stimulus conditions and which are invariant.

Even for a static RF representation, there are tradeoffs associated with additional simplifying 

assumptions. In Section 3, we will examine a range of RF models from the simplest center-

surround difference-of-Gaussians to substantially more detailed models. Models of RFs, of 

course are based on data, so before examining the models, we will discuss the various 

methods that have been employed to measure RGC RFs (Fig. 1) and the different kinds of 

data they provide.

2. Methods for measuring RGC receptive fields

The first-order classification of a RGC RF is generally made on the basis of the polarity of 

its light response. RGCs are classified as ON, OFF, or ON-OFF based on whether their 

firing rate increases at the onset of a light stimulus, the offset of the stimulus, or both (Sanes 

and Masland, 2015). A lesser-known fourth class of RGCs is the suppressed-by-contrast 

(SbC) RGCs, which decrease their steady firing at both light onset and offset (Jacoby et al., 

2015; Levick, 1967; Mastronarde, 1983; Sivyer et al., 2011, 2010; Tien et al., 2015; Troy et 

al., 1989). After polarity, receptive field size is emphasized in RGC classification because 

the size of the receptive field has been associated with perceptual acuity (Dowling, 1967; 

Peichl and Wassle, 1979). The kinetics of RGC light responses (i.e. transient verses 

sustained) is another aspect of their RFs that has helped researchers distinguish between 
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RGC types and describe their different functions (Baden et al., 2016; Caldwell and Daw, 

1978; Lee, 1996; Levick, 1967; Silveira et al., 2004). We will see that other aspects of RGC 

responses (e.g. contrast sensitivity, spatial frequency sensitivity) and selectivity for specific 

features (e.g. direction of motion or orientation) are less commonly included in typical RFs, 

but they are vital in appreciating and predicting the full range of RGC light responses.

Methods for measuring RGC RFs have typically focused on the three aspects of light 

responses mentioned above: polarity, size, and kinetics. Not all methods are appropriate for 

all three properties, and we will emphasize how the RF one measures depends on 

methodology (Peichl and Wassle, 1979). There are also tradeoffs in experimental speed, 

parallelization, and precision (see Table 1).

Sparse noise

The measurement of RGC RFs in mammals began with Kuffler’s (1953) characterization of 

cat RGCs. He employed a method now known as “sparse-noise” (Brown et al., 2000; Jones 

et al., 1987; Reid et al., 1997). A small exploratory spot of light is randomly placed over the 

visual world and the response of the neuron is recorded (Daw, 1968; Kuffler, 1953; Rodieck 

and Stone, 1965). The spatial extent of the receptive field is defined as the region in which 

the spot elicits a response. A key advantage of the sparse-noise method is that the 

distribution of responses is easily interpreted into the receptive field. The method also 

enables the experimenter to probe the polarity of the RGC, even allowing for the 

simultaneous measurement of separate ON and OFF RFs for ON-OFF cells. Sparse noise 

offers information about response kinetics only if each presentation of the exploratory spot 

is sufficiently long in duration, increasing the time of the experiment. Disadvantages of the 

sparse noise method include that it takes many repetitions and spatial locations to generate a 

robust receptive field, that it is not easily parallelizable (i.e. only one or possibly several 

cells can be measured at a time), and that the estimate of receptive field size is dependent on 

the size and intensity of the exploratory spot (Field and Chichilnisky, 2007).

Spots of various sizes

One method that naturally follows from sparse noise is using spots of various sizes (Enroth-

Cugell and Lennie, 1975; Partridge and Brown, 1970; Peichl and Wassle, 1979; Sakmann 

and Creutzfeldt, 1969; Wiesel, 1960). Spots of different diameters are presented at a fixed 

location, and the smallest spot size that generates the maximal response is designated as 

having measured the size of the center of the receptive field. This method is highly 

interpretable and can rapidly offer information about polarity, size, and kinetics. The major 

disadvantage of this method is that it assumes circular symmetry, estimating the size but not 

the shape of the RF. Fine spatial structure and orientation selectivity cannot be measured by 

the spots-of-various-size method. Since the spots must be aligned to the RF center for the 

measurement to be valid, it is not robust to alignment errors, and it is not parallelizable at 

all; only one RGC can be measured at a time. Additionally, this method conflates the 

strength of suppression in the RF surround with the size of the center (Fig 2).
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Drifting gratings

Enroth-Cugel and Robson developed an alternative method for measuring receptive fields 

involving drifting gratings (Enroth-Cugell and Robson, 1966). A sinusoidal drifting grating 

represents a single spatial frequency. The authors measured contrast sensitivity at different 

spatial frequencies of the grating. They then used the inverse Fourier transform to convert 

their measurements from the frequency domain to the spatial domain, thus estimating a 

spatial receptive field. This method was revolutionary at the time, and it allowed for rapid 

measurement of the spatial RF with a stimulus to which most RGCs respond robustly. The 

drifting gratings method is also suitable for measuring many RFs simultaneously, making it 

useful for large-scale multi-electrode array recordings or calcium imaging studies (Borghuis 

et al., 2011; DeVries, 1999). Another advantage of this method that has led to its adoption in 

cortex is that, when gratings are presented at different orientations, it provides measurements 

of orientation and direction selectivity (De Valois et al., 1982). Despite these advantages, 

measuring a RGC RF using drifting gratings also has several disadvantages. Like the spots-

of-various-size method, it does not resolve fine substructure within the RF center, and it 

conflates suppressive surround strength with center size. It also offers little information 

about response kinetics, since firing is controlled by the modulation frequency of the 

stimulus. Finally, while presenting a moving stimulus is useful to activate RGCs robustly, 

measuring a static spatial RF from a moving stimulus relies on the assumption that flashed 

images and moving objects are represented similarly in the retina. While this has been 

shown to be a reasonable assumption for certain RGCs in the regime of low contrast and low 

spatial frequency (Cooper et al., 2016), static and moving stimuli have also been shown to be 

represented differently in many retinal circuits (Berry et al., 1999; Chen et al., 2013; Kim 

and Kerschensteiner, 2017; Kuo et al., 2016; Manookin et al., 2018; Schwartz et al., 2007; 

Vaney et al., 2012; Zhang et al., 2012)

Spatiotemporal white noise

Building on the linear systems approach of Enroth-Cugel and Robson, spatiotemporal white 

noise has become the most common stimulus employed to investigate RGC RFs (Brown et 

al., 2000; Chichilnisky, 2001; DeAngelis et al., 1995; Devries and Baylor, 1997; Field et al., 

2010; Field and Chichilnisky, 2007; Gauthier et al., 2009; Reid et al., 1997; Yu and De Sa, 

2003). In this method, a “checkerboard” with randomly flickering squares is presented to the 

retina and spike responses are recorded from RGCs. The straightforward method of spike-

triggered-averaging (STA) – computing the mean stimulus sequence preceding a spike for 

each RGC – allows researchers to measure RFs from many cells in parallel. Using small 

checkers can reveal fine structure in spatial RFs, and response kinetics can be inferred from 

the mean temporal filter of the center pixels for each cell. These advantages have made 

spatiotemporal white noise the method of choice for most RGC RF mapping studies, and 

variations have been developed, including circular annuli (Fransen and Borghuis, 2017; 

Sakai and Naka, 1987), full field contrast flicker to investigate temporal responses in 

isolation (Fukada, 1971; Manookin et al., 2015), and random color checkboards to measure 

the contributions of individual cones (Field et al., 2010).

Despite the ubiquity of the spatiotemporal white noise STA approach, several important 

disadvantages limit interpretations of RFs measured by this method. One critical limitation 
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of the standard STA approach is that it does not reveal separate ON and OFF RF components 

for ON-OFF cells. ON-OFF cells are classified as either ON or OFF based on which polarity 

dominates, and a perfectly balanced ON-OFF RF would cancel completely. This problem 

can be mitigated to some extent by more sophisticated analyses of the spike-triggered 

stimulus ensemble (Cantrell et al., 2010; Fairhall et al., 2006) – an issue we will return to 

below in our discussion of RF models.

Kinetic information is also limited in the spatiotemporal white noise method. One can 

extract a temporal kernel from the RF center pixels, but the kernel predominantly represents 

information near the temporal frequency of the stimulus (i.e. the refresh rate of the 

checkerboard). The STA computation filters out both high and low temporal frequencies. 

This is a general problem in applying a linear analysis, like STA, to the nonlinear responses 

of RGCs, and we will explore the issue of nonlinearities in space and time in greater detail 

in the next section.

Finally, there is a tradeoff between the resolution of the stimulus (checker size) and the 

activation strength of different components of the RGC RF. Checkers that are very small 

compared to the RF center allow for fine resolution RF maps but create low total contrast 

across the RF center, so many cells respond weakly or not at all. The size vs. resolution 

tradeoff is even more problematic in the RF surround because its large integration area 

corresponds to extremely low contrast for small checkers. Thus, it is difficult to measure RF 

surrounds with spatiotemporal white noise, and estimates of center vs. surround strength are 

confounded by the choice of stimulus resolution (Fig. 3). The opposite problem occurs with 

excessive activation of a suppressive surround. Some RGC types are suppressed completely 

for wide-field stimuli and are, thus, silent for spatiotemporal white noise (Jacoby and 

Schwartz, 2017; Zhang et al., 2012).

Filter back-projection

A recently introduced method called filter back-projection (FBP) combines some of the 

advantages of sparse noise with the parallelizability of spatiotemporal white noise (Johnston 

et al., 2014). As opposed to randomly flashing spots, bars are flashed at different positions 

and at five or more orientations. The receptive field can then be computed using a method 

from X-ray scans called the inverse radon transform (Radon, 1986). Like the related sparse 

noise method, FBP allows for the separate measurement of ON and OFF components of the 

RF and the kinetics of RGC responses can be measured for sufficiently long stimulus 

durations. Unlike the classical sparse noise method, FBP is suitable for parallel 

measurements of RGC RFs on a multi-electrode array or by functional calcium imaging 

(although, unlike spatiotemporal white noise, experiment time scales with the total area 

being mapped). Because the stimuli are long bars, FBP is particularly useful for measuring 

orientation-selective RFs. While it is generally more efficient than spatiotemporal white 

noise at measuring the basic shapes of RGC RFs, FBP is limited in its ability to resolve fine 

structure within the RF. Another disadvantage is that it is prone to projection artifacts, which 

appear as streaks in the spatial RF map.
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Naturalistic stimuli

The natural visual world contains spatio-temporal correlations unlike pure Gaussian white 

noise (Eickenberg et al., 2012; Nirenberg et al., 2001; Pitkow and Meister, 2012). Therefore 

complex, naturalistic stimuli are used to investigate responses to more physiological stimuli 

that the visual sensory neurons might encounter in the wild (Kastner et al., 2015; Katz et al., 

2016). These naturalistic stimuli have included natural temporal-chromatic movies with 

space removed (van Hateren et al., 2002), generated white-noise with long range spatio-

temporal correlations (Pitkow and Meister, 2012), naturalistic motion stimuli (Leonardo and 

Meister, 2013), natural movie scenes (Haider et al., 2010; Nirenberg et al., 2001), even 

incorporating eye movements (Turner and Rieke, 2016). Using naturalistic stimuli 

invalidates the assumption of zero stimulus correlations that is required for linear STA-like 

analyses. Several analysis modifications have allowed researchers to adapt STA-like 

techniques to naturalistic stimuli. These include generalized linear models (Heitman et al., 

2016), and removal of stimulus autocorrelation (Lesica et al., 2008). Most of these methods 

have had limited success, so theorists have devised a new set of tools to search for feature 

selectivity with stimuli of arbitrary statistics.

One such tool, called maximally informative dimensions (MID) involves an iterative search 

through stimulus space to find the dimensions that maximize the mutual information 

between the stimulus and the spike train (Sharpee et al., 2002). In theory, MID can find 

multiple selective dimensions in stimulus space given arbitrary natural stimuli. The 

disadvantages are that it requires a lot of data (~105 spikes), and the parameter space is non-

convex, so there is no guarantee that a search algorithm will find the optimal solution. A 

variant of MID, called quadratic mutual information, has also been used to extract RGC 

filters from natural scenes (Katz et al., 2016). While the data requirements for this method 

are substantially less than for MID, it only revealed single spatiotemporal filters for each 

RGC that were not qualitatively different than the STA. Deep learning has also been 

employed in recent work to reveal aspects of retinal circuitry in the context of natural scenes 

(Maheswaranathan et al., 2018).

Closed loop experiments

All the RF measurement techniques we have discussed so far rely on recordings of spike 

responses from RGCs. Whole-cell recordings of synaptic currents in RGCs have also been 

measured and used to construct a class of RF models we will consider in the next section 

(Gregory W. Schwartz et al., 2012), but such recordings are much rarer and more labor 

intensive than spike recordings and do not scale to large numbers of simultaneously recorded 

cells. Additionally, the spiking output of RGCs is the signal ultimately sent to the brain, so a 

complete RF model should use spiking as the end point. One disadvantage of using spikes as 

the output measure is that nonlinearities associated with spike generation – including 

rectification at zero and saturation at high firing rates – can interfere with the experimenter’s 

ability to measure underlying nonlinearities in the spatiotemporal RF filter.

The closed-loop, iso-response, method allows an experimenter to separate the output 

(spiking) nonlinearity from upstream nonlinearities using a RGC spike recording. In this 

method, an online algorithm measures the spike response to each stimulus presentation, and 
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iteratively alters the stimulus to achieve a target response amplitude (Bölinger and Gollisch, 

2012). For example, consider a target response of 10 spikes. If a spot of a certain size and 

contrast elicited 6 spikes, the spot could be made larger or the contrast increased on the next 

trial. If making the spot larger reduced the response to 4 spikes, the algorithm would instead 

test a smaller spot. Thus, the algorithm can define the iso-response contour: the dimension in 

stimulus space that elicits the fixed response. In the early days, closed-loop experiments 

were often used to detect thresholds; for example Enroth-Cugel determined the minimum 

contrast necessary to elicit a detectable difference in firing (Enroth-Cugell and Robson, 

1966). Even Kuffler’s recordings of cat RGC RFs used a version of the closed loop 

technique (Kuffler, 1953). By maintaining a fixed response throughout the measurement, 

closed-loop experiments can thus reveal nonlinear RF mechanisms without interference 

from the output nonlinearity.

The usefulness of the closed-loop approach is related to the size of the stimulus space to be 

explored. Defining iso-response contours while varying one or two parameters of the 

stimulus is feasible, but measuring contours in three or higher dimensional stimulus space 

becomes experimentally unrealistic due to the exponential growth of the space. Thus, the 

closed-loop approach is a powerful tool to that can be applied as part of many of the 

different RF measurement methods described above. For example, an iso-response contour 

could map the spatial RF in a spots-of-variable-size type of experiment in which the 

experimenter also varied contrast. The resulting space would offer a measure of how much 

more contrast is required to make the cell fire for a non-optimal spot size.

3. Receptive field models

RGC RF models have progressed dramatically from the canonical concepts of center and 

surround to elaborate circuit models incorporating the many distinct cell types of the retina. 

The purposes for RF models have also progressed. What began as a fundamental and 

abstract field attempting links to human perception now lies at the frontier of translational 

systems neuroscience. Even with his uncanny insight, Kuffler could not have predicted that 

models of RGC RFs would one day be programmed into computers connected to electronic 

prosthetics to restore sight to the blind (Eiber et al., 2013; Ong and da Cruz, 2012; Weiland 

et al., 2005).

While the goals of RF modeling have changed, we will use three broad criteria as a common 

measuring stick: predictive power, biological realism, and generalizability. Not all RF 

models were designed with these goals in mind, and indeed no current model succeeds 

completely at all three, but they nonetheless provide useful comparisons.

Predictive power is the ability for a model to predict the response of a RGC to a 2particular 

set of visual stimuli.

Biological realism is the degree to which the components of the RF model correspond to 

known biological components of retinal circuits (i.e. cells, synapses, receptors, ion channels, 

signaling pathways). The models that are most successful in biological realism are not 

necessarily the most detailed. There is always a tradeoff between the simplifying 
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assumptions in higher-level models and the explosion of free parameters in lower-level 

models.

Generalizability is a measure of the transfer of predictive power across stimuli. RF models 

are generally built from RGC responses to a small set of stimuli, thus they often fail to 

predict responses to stimuli outside this set. The set of possible visual stimuli is infinite, so 

of particular importance in considering generalizability will be “naturalistic” stimuli that 

attempt to capture aspects of the visual world for which RGCs evolved.

Difference of Gaussians

One of the most influential concepts in sensory neuroscience is the idea that RFs can be 

modeled as a difference of Gaussians (DoG). In the retina, the first DoG model of RGC RFs 

is attributed to (Rodieck and Stone, 1965). For a single polarity (ON or OFF) RGC, the 

spatial extent of the RF center is modeled as a two-dimensional Gaussian, and the surround 

is modeled as another two-dimensional Gaussian with much larger extent and opposite 

(suppressive) polarity. The DoG model has remained extremely popular because it is concise 

– it only needs three parameters to define the size of each Gaussian and their relative 

strength – and it is easily fit from any of the RF measurements described above.

Along with the simplicity of the DoG model come several critical limitations. It is a model 

of space only without a temporal component, so on its own, it does not offer information 

about kinetics, e.g. to distinguish between transient and sustained RGC types, or to predict 

the response to a moving object. The DoG model also assumes a single polarity (ON or 

OFF) RF, so ON-OFF and SbC RGC cannot be described.

The predictive power of DoG models is limited by several of its core assumptions. First, it 

assumes circular symmetry in both the RF center and surround (though it can be extended to 

elliptical shapes for RF center and surround with four additional parameters). While most 

RGC RFs are reasonably circularly symmetric, some, like orientation-selective (OS) RGCs 

are highly asymmetric (Bloomfield, 1994; Hammond, 1974; Joesch and Meister, 2016; Kim 

et al., 2008; Nath and Schwartz, 2016; Venkataramani and Taylor, 2016, 2010). Even non-

OS RGCs deviate from elliptical shapes at high resolution (Gauthier et al., 2009). Second, 

the surround can only suppress the center response. While this is the most common first-

order understanding of the surround for most RGCs, numerous “non-classical” surround 

effects have been described, including the shift-effect (McIlwain, 1966), a polarity switch 

from surround stimulation (Geffen et al., 2007), a complete absence of surround (Zhao et al., 

2014), disinhibition past the classical RF (Chao-Yi et al., 1992), and size-dependent latency 

shifts beyond the RF center (Mani and Schwartz, 2017).

Finally, and perhaps most importantly, the DoG model is spatially linear. The responses of 

stimuli at different locations sum linearly, and positive and negative contrasts in the RF 

cancel. Spatial linearity is a key assumption in many RF models despite the fact that it was 

shown to be incorrect in most cases even in Kuffler’s early work (Kuffler, 1953) and again 

by Enroth-Cugell and Robson for “Y” cells, which were the majority of cells encountered 

(Enroth-Cugell and Robson, 1966). The degree of success of spatially linear models like the 

DoG model in predicting RGC responses depends somewhat on the response regime of the 
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RGC being modeled. Some studies have used low contrast and/or low spatial frequency 

stimuli, specifically to keep cells within their linear regime (Cooper et al., 2012; Enroth-

Cugell and Robson, 1966), but measurements of natural scenes show a very large dynamic 

range of contrast and spatial frequency (Frazor and Geisler, 2006; Mante et al., 2005). We 

will explore spatially nonlinear RF models at the end of this section.

While the DoG model makes no explicit connection to circuit mechanisms in the retina, it is 

sometimes (over) interpreted as a circuit model in which the RF center corresponds to 

excitation from bipolar cells and the RF surround corresponds to inhibition from amacrine 

cells. Generalizability in the DoG model is limited mostly by its assumption of spatial 

linearity. For the subset of RGCs that are spatially linear (or probed in the linear regime), it 

can provide a reasonable prediction of the spatial pattern of RGC activation, but it fails for 

RGCs with nonlinear RFs when probed with naturalistic patterns (Frazor and Geisler, 2006; 

Heitman et al., 2016).

Linear-nonlinear (LN) models

Linear spatial RF models, like the DoG, were soon extended into the time domain. As 

described above, many RF estimation methods include a kinetic component. To make a RF 

model in time and space, the kinetics of the response are used to construct a temporal filter. 

The details of temporal filter construction depend on the RF measurement. Once 

constructed, the temporal filter is used along with the spatial filter to model the firing rate of 

a RGC responding to any spatiotemporal pattern of light.

The first spatiotemporal models using a linear temporal filter revealed a fundamental flaw: 

the models predicted unrealistic firing rates. For example, if an ON-center DoG model is 

probed with a dark spot (negative contrast), it will produce a negative value, which, when 

passed through a linear temporal filter, predicts that the RGC fires at a rate less than zero. 

On the opposite end of the contrast scale, purely linear models also predict increasing firing 

rates ad infinitim.

Both negative firing rates (a lack of rectification) and unrealistically high firing rates (a lack 

of saturation) can be fixed by introducing a static nonlinearity between the linear 

spatiotemporal RF model and the firing rate prediction (Chichilnisky, 2001; Victor and 

Shapley, 1979a). This solution gave rise to what is known as the linear-nonlinear (LN) class 

of RGC RF models (Fig. 4). Another important advantage of the static nonlinearity is that it 

allows predictions of both ON and OFF responses from a single spatiotemporal RF, because 

the nonlinearity can predict positive firing rates for both positive and negative filter 

activation values. While the ON and OFF RFs must share the same spatial structure and the 

same temporal filter in such a model, it at least allows ON-OFF RGCs to be included.

LN models of RGCs are very common because their parameters, including the static 

nonlinearity, are easily estimated from data (Chichilnisky, 2001), and they offer good 

predictive power for a restricted set of stimuli. Despite their strengths, LN models fail to 

generalize for many classes of stimuli, including naturalistic stimuli. Importantly, the static 

nonlinearity in LN models follows the spatiotemporal model, so LN models still assume 
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spatial linearity. The spatial linearity assumption is responsible for many of the 

generalization failures of LN models (Heitman et al., 2016).

Like the DoG model, the LN model makes no explicit connection to circuit mechanisms; 

and also like the DoG model, it has, nonetheless, been interpreted as a circuit model. The 

static nonlinearity is often associated with spike generation in the RGC, since spike 

generation rectifies the minimum firing rate at zero and limits the maximum firing rate by 

the refractory period. While spike generation certainly contributes to the static nonlinearity 

measured in the LN model, additional nonlinear circuit elements (notably the synapses from 

bipolar cells) also contribute (Demb et al., 2001; Schwartz and Rieke, 2011)

Incorporating gain control

Most RGC RF modeling efforts over the last two decades have started with the LN model 

and introduced additional elements to improve the model’s predictive power for particular 

stimuli. Some of the most successful additions have involved mechanisms for gain control 

(Fig. 4). In this context, gain control is any process that reduces the firing rate of a RGC 

temporarily following a period of high activity. The most typical stimulus parameters that 

cause changes in gain are intensity and contrast (reviewed by Rieke and Rudd, 2009). While 

neurons change state on a continuum of timescales, gain control is typically distinguished 

from adaptation on the basis of its fast timescale. For RGCs, gain control mechanisms act 

within the duration of the temporal filter – typically less than 250 ms – all the way down to 

the several millisecond timescale of spikes (Rieke and Rudd, 2009). Thus, modeling gain 

control is the first quantitative attempt to capture some of the dynamic nature of RGC RFs, 

but only in a limited context.

Early work recognized the importance of gain control in capturing the firing patterns of 

RGCs to spatial and temporal modulations of light (Shapley and Victor, 1981, 1978). More 

recently, gain control has been used in models of RGC responses to moving objects 

(Johnston and Lagnado, 2015). A LN model incorporating a gain control term was 

successful in capturing motion anticipation: the tendency of populations of RGCs to 

overcome upstream lag and fire with the leading edge of a moving object (Berry et al., 

1999). On the finer timescale of the refractory period following individual spikes, models 

have incorporated a spike feedback term following a Poisson spike generator (Pillow et al., 

2005) and have introduced post-spike “coupling terms” in a generalized linear model (GLM) 

framework to account for interactions among RGCs (Pillow et al., 2008). LN models with 

gain control have been quite successful at improving the predictive power in the temporal 

domain (van Hateren et al., 2002), but they remain largely unable to generalize to 

naturalistic scenes with large spatiotemporal correlations (Heitman et al., 2016; 

Maheswaranathan et al., 2018)

Gain control has several appealing correlate biological mechanisms in neurons. On the 

shortest timescale, well-known biophysical mechanisms, like Na+ channel inactivation and 

the opening of delayed rectifier K+ channels, contribute to the refractory period following 

each spike (Weick and Demb, 2011). Voltage-gated conductances in the RGC with slightly 

longer timescales, like Ca2+-activated K+ channels, can reduce gain on the timescale of tens 

of milliseconds (Hotson and Prince, 1980). Gain control mechanisms have been found at 
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many levels in retinal circuits (Baccus and Meister, 2002; Kim and Rieke, 2003), so it is 

certainly an oversimplification to assume that all of the effect captured in such a model is the 

result of mechanisms in the RGC itself. A kinetic (Markov state) model was added to the 

standard LN model to account for contrast adaptation with more explicit connections to 

biological mechanism than in previous models (Ozuysal and Baccus, 2012). A recent paper 

returned to the mechanistic basis for the gain control responsible for motion anticipation and 

found that it relies on postsynaptic inhibition to the dendrites of RGCs (Johnston and 

Lagnado, 2015).

Multi-pathway LN models

As mentioned above, ON-OFF RGCs are modeled in only a rudimentary way in standard 

LN models by introducing a non-monotonic nonlinearity following a single temporal filter. 

More recent models of ON-OFF RGCs have used separate spatiotemporal filters and 

separate nonlinearities for the ON and OFF channels (T Gollisch and Meister, 2008; Tim 

Gollisch and Meister, 2008) Using the spatiotemporal white noise stimulus, one can use the 

spike-triggered covariance (STC) matrix rather than simply its mean (the STA) to extract 

separate ON and OFF filters (Cantrell et al., 2010; Fairhall et al., 2006). In addition to ON 

and OFF, the STC approach can reveal separate spatial filters, each with their own temporal 

components (Fairhall et al., 2006).

While it is very powerful in theory, STC requires much more data than STA, and in practice, 

it rarely produces more than two well-defined filters before reaching noise level (Fairhall et 

al., 2006; Liu and Gollisch, 2015). Nonetheless, multi-pathway LN models, whether fit from 

STC or constructed based on assumptions about the separate pathways and fit with another 

method, have been useful in capturing some of the properties of RGCs that are missed with 

standard LN models (Baccus et al., 2008; T Gollisch and Meister, 2008; McFarland et al., 

2013; Zhang et al., 2012).

In some cases, multi-pathway LN models are inspired by the structure of retinal circuits. 

ON-OFF RGCs receive ON and OFF input from different sets of bipolar cells, so a two-

pathway LN model has a clear rationale. Other examples of multi-pathway LN models have 

been built to match known circuit elements, like separate excitatory and inhibitory pathways 

(Baccus et al., 2008; Kastner and Baccus, 2013). The multiple filters that emerge from STC 

are generally less well connected to particular circuit elements.

Spatially nonlinear RF models

All the RF models we have considered thus far share the assumption of linear spatial 

integration, even though early work on RGC RFs revealed strong spatial nonlinearities 

(Enroth-Cugell and Robson, 1966; Hochstein and Shapley, 1976; Kuffler, 1953). The 

biological basis for nonlinear spatial integration involves rectified synapses from bipolar 

cells (Demb et al., 2001, 1999; Schwartz and Rieke, 2011). Victor and Shapley led the way 

measuring and modeling nonlinear spatial integration in RGCs (Shapley and Victor, 1979; 

Victor and Shapley, 1979b, 1979a). Their work was later extended by Enroth-Cugell and 

Freeman to form the pooled subunits model (Enroth-Cugell and Freeman, 1987).
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Variations on this influential model have evolved into the LNLN cascade models that 

consistently outperform spatially linear RGC models for a variety of stimuli from white 

noise (Real et al., 2017) to object motion (Baccus et al., 2008; Ölveczky et al., 2003), to 

natural scenes (Gollisch, 2013; Heitman et al., 2016). Additional gain control elements at the 

level of individual subunits have been added in recent versions of these models to help 

predict responses to moving objects (Chen et al., 2014) and white noise (Real et al., 2017). 

The need for gain control at the level of the subunits matches experimental data showing that 

contrast gain control is sometimes localized on the scale of bipolar cells (Brown and 

Masland, 2001; Garvert and Gollisch, 2013), though it can also have components on the 

scale of the RGC RF (Garvert and Gollisch, 2013; Khani and Gollisch, 2017). Gap-

junctional coupling between bipolar cells (via AII amacrine cells) is another addition to 

these models inspired by experimental data, and it has been important in capturing motion 

sensitivity in mouse and primate RGCs (Kuo et al., 2016; Manookin et al., 2018). Another 

recent model added a delay in the spatial pooling of subunits in the RF surround to account 

for the extra synapse between amacrine cells and RGCs (Real et al., 2017). Figure 4 

summarizes the structure of some of the variants of LN models that have been used to model 

RGC RFs.

While the sizes, temporal filters, and nonlinearities of the subunits in LNLN cascade models 

are estimated with reasonable reliability by fitting the models to RGC spike data, 

determining the spatial location of each subunit in two-dimensions has proved to be much 

more difficult (Fig. 5). Because the subunit weights to the RGC do not conform to the 

Gaussian ideal, determining their locations at high resolution is critical to achieve predictive 

power for complex spatiotemporal stimuli (Gregory W Schwartz et al., 2012). An 

anatomical strategy was used in one study to predict the number of synapses received from 

each bipolar cell based on a traced image of the RGC dendrites. While this model predicted 

responses to arbitrary spatial images, it is not feasible to have a full morphological 

reconstruction of the RGC in most cases (Gregory W Schwartz et al., 2012). Another recent 

approach used stimulation of individual cones to map the locations of bipolar cells 

synapsing onto primate midget RGCs. The method required only the RGC spikes as input 

data, but was a somewhat special case since midget RGCs receive less than 10 bipolar cell 

inputs (Freeman et al., 2015). Using only standard spatiotemporal white noise and an 

analysis method called non-negative matrix factorization, Liu et al., were able to map the 

bipolar subunit locations in salamander RGC RFs, also a case in which the number of 

subunits is ~10 (Liu et al., 2017).

4. Feature selectivity: fluidity versus invariance

Kuffler realized years ahead of his time that RGC RFs are “flexible” and “fluid”. Is the 

effort to build a generalizable RGC model then a Sisyphean task? Surely there are limits on 

the fluidity of RGC RFs, because the retina, despite its complexity, is still a primary sensory 

system with little feedback from the rest of the brain. This small amount of feedback comes 

from neuromodulatory retinopetal projections (Gastinger et al., 2006). The information 

conveyed by each RGC type must be stereotyped across individuals, because RGCs project 

selectively to many distinct targets in the brain, and these projection patterns appear to be 
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genetically predetermined (Dhande and Huberman, 2014). Which aspects of a RGC’s 

response are stable, and which are fluid?

We will argue that the answer to this question is connected to the concept of feature 

selectivity. The idea that RGCs act as detectors for specific, behaviorally relevant, features of 

the visual world was developed in parallel with the early history of RF modeling (Barlow, 

1961; Lettvin et al., 1959; Levick, 1967). Invariance is central to the view of RGCs as 

feature detectors. If particular RGCs encode behaviorally relevant features, those 

representations should be robust to other changes in the visual scene, like luminance, 

contrast, and noise. Another conclusion that follows from this line of reasoning is that some 

of the RF properties that researchers typically measure and model, like response polarity, 

size, and kinetics, may be fluid if they are not part of the key feature selectivity of the RGC. 

In this section, we will review a collection of recent reports on the fluidity of RGC RFs 

under different stimulus conditions, pointing out both the aspects of the RF that change and 

those that remain invariant.

Response polarity

Countless studies have used response polarity as a defining feature to classify RGCs, but 

recent evidence has shown that this aspect of RFs is not stable across illumination levels 

(Rivlin-Etzion et al., 2018). Tikidji-Hamburyan et al. showed that cells classified as ON at 

one luminance can become ON-OFF at another luminance (Tikidji-Hamburyan et al., 2015). 

Similarly, cells classified as OFF could develop an additional ON response in certain 

luminance regimes. These results were confirmed in both mouse and pig retina and in retino-

recipient dorsal lateral geniculate nucleus in vivo. Concurrent with this study, another group 

reported a similar luminance-dependent switch in ON:OFF ratio in three mouse RGC types 

(Pearson and Kerschensteiner, 2015).

Interestingly, one of the RGC types that showed this ON:OFF switching behavior was a 

direction-selective (DS) type presumed to be equivalent to previously described ON-OFF DS 

RGCs. While its ON:OFF contrast ratio switched with luminance, its direction preference 

did not. Orientation-selectivity (OS) also remained stable across luminance (Pearson and 

Kerschensteiner, 2015). Perhaps the luminance invariance of DS and OS is an indication that 

these properties are the core feature selectivity of these particular RGC types. One of the 

RGC types shown in the Tikidji-Hamburyan et al. study to change from OFF to ON-OFF 

with luminance, called the OFF-transient alpha, has been implicated in selectivity for 

looming dark objects (Münch et al., 2009) and for image recurrence following saccades 

(Krishnamoorthy et al., 2017). It remains unknown whether these types of feature selectivity 

are invariant in OFF-transient alpha RGCs across luminance.

Properties other than luminance have also been shown to elicit ON:OFF switching behavior 

in RGCs. Several types of RGCs in mouse have been shown to switch polarity depending on 

stimulus size, including the JAM-B RGC (Kim et al., 2008) and the “high definition” (HD1 

and HD2) RGCs (Jacoby and Schwartz, 2017) (Fig. 6). Transient stimulation of the surround 

with a phase shift of a grating can also change the RF center filter of some RGCs from OFF 

to ON (Geffen et al., 2007).
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Spatial RF

Spatial properties of RGC RFs, like the size of the RF center and strength of the RF 

surround, have long been known to vary with luminance (Barlow, 1957; Barlow and Levick, 

1969; Creutzfeldt et al., 1970; Enroth-Cugell and Lennie, 1975; Enroth-Cugell and Robson, 

1966; Enroth-Cugell and Shapley, 1973; Farrow et al., 2013; William N Grimes et al., 2014; 

Ogawa et al., 1966; Reitner et al., 1991; Troy et al., 1999). Circuit mechanisms for these 

effects include luminance-dependent changes in gap-junction coupling in both the outer 

retina (DeVries and Schwartz, 1989; Lasater, 1987; Xin and Bloomfield, 1999) and the inner 

retina (Bloomfield et al., 1997; Hu et al., 2010), and luminance-dependent recruitment of 

spiking amacrine cells (Farrow et al., 2013). Since electrical coupling in the retina can be 

modulated by time of day independent of luminance, spatial components of RGC RFs are 

even subject to circadian regulation (Jin and Ribelayga, 2016; Ribelayga et al., 2008; Zhang 

et al., 2015).

Kinetics

In addition to its effects on polarity and space, luminance has long been known to alter the 

kinetics of RGC responses. Responses tend to become more transient and have shorter 

latency as luminance increases (Ogawa et al., 1966; Tikidji-Hamburyan et al., 2015). These 

accelerations of the light responses with increasing luminance are largely attributed to a 

switch from rod-dominated to cone-dominated transduction and subsequent kinetic changes 

within the cone phototransduction cascade (Attwell et al., 1984; Elias et al., 2004; Euler and 

Masland, 2000; Murphy and Rieke, 2011; Sharpe et al., 1993). Accelerations of circuit 

components downstream of photoreceptors also contribute to kinetic changes in RGC light 

responses with luminance (Dunn et al., 2007; Dunn and Rieke, 2006).

Luminance-dependent changes in kinetics are often ignored in RGC RF models designed to 

describe the steady state in a fixed luminance range, but what if another property of the light 

stimulus alters response kinetics? For some RGCs, response kinetics depends on the size of 

a visual stimulus (Fig. 7). These kinetic changes with increased spot size can manifest as the 

loss of a transient component, as in ON OS RGCs (Nath and Schwartz, 2016) or the 

response becoming more transient, as in F-miniON RGCs. Response latency can also depend 

on stimulus size. ON DS RGCs increase in latency for larger spots while ON delayed RGCs 

show decreased response latency (Mani and Schwartz, 2017).

Spatial linearity

After response polarity, size, and kinetics, perhaps the most commonly used characteristic to 

distinguish RGC types is whether they integrate space linearly (called “X” cells) or 

nonlinearly (“Y” cells) (Enroth-Cugell and Robson, 1966). One cell type in mouse, called 

the ON-alpha RGC, has been show to integrate over space nearly linearly in low luminance 

and highly nonlinearly in high luminance (Fig. 8)(William N. Grimes et al., 2014). The site 

of this switch was localized to the output synapses from ON cone bipolar cells, which 

become more rectified (hence nonlinear) in bright conditions. Another result of this 

mechanistic change at the bipolar cell synapse is a change in the shape of the contrast 

sensitivity function of the RGC.
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5. The next generation of measuring, modeling, and understanding RGC 

RFs

A decade ago, one of us had aspirations of writing a review about all that was wrong with 

the current state of RGC RF models until his graduate mentor asked a simple question, 

“What is the new framework you will propose?” This question promptly ended the review 

before it began; it’s always easier to tear down old theories than to build new ones. 

Admittedly, our answer to his compelling question remains incomplete, but it is now at least 

informed by our answers to several related questions.

Can a unified computational framework capture the diversity of RGC RF properties?

Perhaps not. Researchers in the early days of work on RGCs described them in two very 

different ways. Lettvin and colleagues famously described a set of detectors for specific 

behaviorally relevant features of the visual world in “What the Frog’s Eye Tells the Frog’s 

Brain” (Lettvin et al., 1959). Much of the rest of the field moved instead in the direction of 

describing RGCs in the language of signal processing from engineering, as input-output 

layers of linear filters, nonlinear transformations, and feedback loops (see Fig. 4). The signal 

processing perspective and its possible implications for a framework of the population code 

of the retina were first considered in the visionary work of Horace Barlow (Barlow, 1961), 

inspired by Simon Laughlin’s work on predictive coding (Laughlin, 1981, 1989; Srinivasan 

et al., 1982) and codified in the theoretical work of Atick and Redlich (Atick and Redlich, 

1990). This framework was based on the concept of efficient coding: imagining the 

population of RGCs as an efficient coder of certain properties of a visual scene, effectively 

reducing the redundancy that exists because of the high degree of spatiotemporal correlation 

in natural scenes. While the efficient coding hypothesis persists (Nirenberg et al., 2001), 

especially over the last decade there has been an accumulation of evidence that redundancy 

reduction might be the wrong framework for thinking about retinal computation. Consider 

that each location in visual space is sampled by 2–3 RGCs of ~40 different types (Bae et al., 

2018). A system that evolved to represent each pixel 80–120 times in its output does not 

seem to be optimized for redundancy reduction. Instead, the literature is full of examples of 

specialized computations in RGCs that were shaped by selective pressure to extract 

behaviorally relevant signals robustly. We have slowly returned to attempts to catalogue 

what an animal’s eye tells an animal’s brain. In a vague sense, this still represents an 

efficient code, but only through the lens of the full set of behavioral demands of an animal’s 

visual system – a lens whose overwhelming majority remains obscured in our current 

understanding. In the absence of a framework for the visual repertoire of the brain, perhaps 

it is counterproductive to try to impose a unifying framework on the diversity of 

computations that exist among RGCs.

Do RGCs encode multiple features of the visual world depending on context?

Of course they must. Even with the ~40 different RGC channels, there must be substantial 

multiplexing to convey the entirety of the information necessary for higher order visual 

processing in the spikes of the optic nerve. The requirements of vision also vary dramatically 

with the context of both the stimulus and behavior. What is less clear is how we come to 
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terms with multiplexed RGC codes in our descriptions and models of RFs. Some progress 

has been made in describing the response patterns of RGCs to moving stimuli. The same 

RGCs can report either the smooth motion of an object through their RF centers or the 

sudden reversal of the object distant to the RF center (Schwartz et al., 2007). The 

multiplexed code for object motion was analyzed recently in more detail in a single type of 

RGCs in rat retina (Deny et al., 2017). In the broader sense, the field still grapples with the 

difference between selectivity and exclusivity. For example, ON-OFF DS RGCs are highly 

selective for a particular direction of motion, but they also respond robustly at the onset and 

offset of a flashed spot of light. Surely the brain does not misinterpret every spike from an 

ON-OFF DS RGC responding to a static object as evidence of motion in its preferred 

direction.

Can invariance inform our intuitions about the features that RGCs extract from the visual 
world?

It can and it should. The dynamic ranges of parameters in the visual world are enormous – 

10 orders of magnitude of luminance (Rodieck, 1998), ~4 orders of magnitude of contrast 

(Frazor and Geisler, 2006; Mante et al., 2005), and multiple sizes and speeds of objects. It is 

extremely difficult to make a circuit out of biological elements that is robust over a large 

dynamic range. Finding such invariance in a RGC provides strong evidence that selective 

pressure played a role in establishing its feature selectivity. There are several examples of 

such invariance in RGCs. ON-OFF DS RGCs employ a variety of mechanisms to maintain 

their selectivity across a large range of luminance, speed, contrast, and in the presence of 

background noise (Chen et al., 2016; Nowak et al., 2011; Poleg-Polsky and Diamond, 2016; 

Sethuramanujam et al., 2016). OFF OS RGCs maintain orientation selectivity across seven 

orders of magnitude of luminance and a wide range of spatiotemporal frequencies (Nath and 

Schwartz, 2017). Small bistratified RGCs in primates are blue-yellow color opponent in a 

variety of different stimulus contexts (Dacey and Lee, 1994; Field et al., 2007). Evolutionary 

conservation can also be a sign of behaviorally relevant feature selectivity in a RGC type. 

Object motion sensitive RGCs have similar dendritic morphology and circuit mechanisms in 

a variety of species (Jacoby and Schwartz, 2017; Kim and Kerschensteiner, 2017; Puller et 

al., 2015; Venkataramani et al., 2014; Zhang et al., 2012).

On the other hand, RGC computations that are not robust offer a hint that there may remain 

an undiscovered aspect of feature selectivity. JAM-B RGCs were characterized as DS (Kim 

et al., 2008) in a narrow luminance regime (Joesch and Meister, 2016) before it was 

discovered that they encode OS invariant to luminance (Nath and Schwartz, 2017). F-miniON 

RGCs were reported to be weakly DS over a limited range of speeds (Rousso et al., 2016). 

Perhaps they are more robustly selective for a different visual feature. For the vast majority 

of RGCs, robust and invariant feature selectivity remains to be discovered.

Can we work backward from the brain and behavior to discover the salient features 
encoded by RGCs?

Yes, and we should use a comparative approach. The latest estimate is that RGCs project 

directly to 59 different brain regions in mouse (Martersteck et al., 2017)! Similarly extensive 

retinal projection patterns have been reported in other species, with many conserved targets 
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(Campbell et al., 1967; Hannibal et al., 2014; Major et al., 2003; Matteau et al., 2003; Reiner 

et al., 1996; Robles et al., 2014; Shimizu et al., 1994). This extreme diversity in the targets 

of RGCs must mean that visual signals are used in a host of innate behaviors distinct from 

conscious perception, and the conservation of these pathways suggests that they drove RGC 

feature selectivity throughout evolution (Fig. 9). Two of the most compelling success stories 

linking RGCs to behavior come from studies that worked backward from specific retino-

recipient brain areas to discover the specific RGC types influencing the known functional 

roles of these brain regions.

By the 1990s it had become clear that a signal from the retina was required to entrain the 

circadian system to the light-dark cycle, and that this signal remained in people with 

extensive rod and cone loss (Zaidi et al., 2007). David Berson and colleagues injected a 

retrograde tracer in the super chiasmatic nucleus (SCN), the master regulator of the circadian 

clock, and looked for labeled RGCs. They discovered a new type of RGCs that, surprisingly, 

contained their own phototransduction cascade, independent from rods and cones, using the 

photopigment melanopsin (Berson et al., 2002). These ganglion cell photoreceptors are now 

called intrinsically photosensitive (ip)RGCs, and they are specialized to integrate light 

signals over time to measure total luminance (Milner and Do, 2017; Wong, 2012). 

Subsequent work has revealed that ipRGCs comprise multiple subtypes with specific roles in 

both image-forming vision and several non-image forming visual behaviors (Chen et al., 

2011; Ecker et al., 2010; Güler et al., 2008; Schmidt et al., 2014).

Another example of intuition from neuroethology driving a discovery about RGCs is the 

tracing of cells projecting to the accessory optic system (AOS). Image stabilization during 

eye, head, and body movements requires a set of nuclei, collectively called the AOS, which 

receive both vestibular and visual input (Dhande et al., 2013; Gauvain and Murphy, 2015; 

Oyster et al., 1980; Simpson, 1984; Yonehara et al., 2009, 2008). Retrograde tracing studies 

from the AOS to the retina revealed a set of RGCs, called ON DS RGCs, which are selective 

to the direction of motion across the retina (Oyster et al., 1980). Unlike the previously 

identified ON-OFF DS RGCs, ON DS RGCs have large RFS and are specialized to report 

the slow speeds that drive the visual input for image stabilization before the vestibular 

system takes over at higher speeds (Ackert et al., 2006; Yonehara et al., 2009).

Future directions and conclusions

The study of RGC RFs over the last six decades has been a fascinating journey. From the 

beginning, Kuffler realized that a static representation would not be sufficient, but it has 

proved difficult to capture the dynamics of RGCs in a succinct way. Along the way, we have 

come to appreciate the enormous diversity of RGC types and the equally impressive 

diversity of their targets in the brain. The next generation of our understanding of RGCs 

should embrace both the dynamic nature of RGC RFs and both aspects of their diversity. 

Drawing inspiration from how specific RGCs evolved to serve particular behavioral needs 

may reveal the core computations of the visual system.
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Glossary

AOS Accessory Optic System

DoG Difference of Gaussians

DS Direction Selective

FBP Filtered Back Projection

GLM Generalized Linear Model

HD1/HD2 High Definition 1/High Definition 2

JAM-B Junctional Adhesion Molecule B

LN Linear Nonlinear

LNP Linear Nonlinear Poisson

LNLN Linear Nonlinear, Linear Nonlinear

MID Maximally Informative Dimensions

OS Orientation Selective

RF Receptive Field

RGC Retinal Ganglion Cell

ipRGC intrinsically photosensitive RGC

SbC Suppressed by Contrast

SCN Suprachiasmatic Nucleus

STA Spike Triggered Average

STC Spike Triggered Covariance
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Figure 1. Stimuli used for measuring RGC RFs
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Figure 2. Estimated RF center size can depend on surround strength
(A) Schematic of the sum of a fixed RF center with either a weak or a strong surround. (B) 

A model of normalized response (integral of RF) as a function of spot size for 3 different 

strengths of the surround. The RF center size is fixed. This is the response one would 

measure with the spots-of-varying-size technique. Arrowheads indicate the spot size giving 

the peak response, often used as a measure of the RF center size. (C) Relationship between 

the standard deviation of the RF center Gaussian and the estimated RF size from the peak 

response for 3 different surround strengths as in (B).
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Figure 3. Measurement of RF center and surround strength vary with the spatial resolution of a 
spatiotemporal white noise stimulus
(A) Example white noise stimuli at 3 spatial resolutions along with the RF center and RF 

surround sampled at each resolution. The final 2 columns show the RF center and surround 

measurements again, but scaled by their relative strength based on the contrast of the 

stimulus within the center and surround, respectively. Contrast scale corresponds to these 

last 2 columns. (B) The relationship between the pixel size of the white noise stimulus and 

the contrast elicited in the RF center and RF surround.
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Figure 4. Schematics of the classes of RGC RF models
(A–C) Spatially linear models. (D–F) Spatially nonlinear models.
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Figure 5. Methods for estimating subunit locations
(A) In the anatomical method, a RGC cell fill (blue) is combined with a marker of synapses 

(green) and a stain for a particular bipolar cell type (magenta). A model estimates the 

number of synapses from each bipolar cell based on the dendritic morphology of the RGC. 

Adapted from (Gregory W. Schwartz et al., 2012). (B) The single cone stimulation method 

presents small spots of light aligned to the locations of cones. By presenting pairs of spots 

and measuring whether the responses combine linearly or nonlinearly in the RGCs, the 

experimenters were able to infer the locations of RF subunits. Adapted from (Freeman et al., 

2015). (C) The non-negative matrix factorization technique is an analytical method that can 

be applied to data from spatiotemporal white noise experiments (left). The panel at the rights 

shows the linear RF (gray) and the corresponding subunit RFs (red) estimated from a multi-

electrode-array recording in salamander retina. Adapted from (Liu et al., 2017).
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Figure 6. Polarity switches in RGCs with stimulus conditions
(A) Spike rasters from 2 RGCs responding to ON and OFF contrast steps across 5 log units 

of luminance. Polarity switches are indicated by shading for ON (yellow), ON-OFF (green) 

and OFF (blue) polarity. Adapted from (Pearson and Kerschensteiner, 2015). (B) The firing 

rate of a RGC that becomes ON-OFF in a limited luminance range. Adapted from (Tikidji-

Hamburyan et al., 2015). (C) The response polarity of JAM-B RGCs depends on stimulus 

size. Adapted from (Kim et al., 2008).

Wienbar and Schwartz Page 35

Prog Retin Eye Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. RGCs respond with different kinetics to small and large spots of light
Four examples of RGC light responses to a spot of light (darkness to 200 isomerizations per 

rod per second) presented for 1 sec. Top traces show responses to spots covering only the RF 

center (120 μm for the F-miniON and 200 μm for the oher cells. Bottom traces show 

responses from the same four cells to a full-field spot (1200 μm) covering the RF center and 

surround.
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Figure 8. Linear verses nonlinear spatial integration in RGCs can depend on luminance
(A) Example of the same ON-alpha responding to a contrast-reversing grating in scotopic 

and mesopic luminance. This is the same stimulus originally used to classify linear (X) vs. 

nonlinear (Y) RGCs (Enroth-Cugell and Robson, 1966). (B) A schematic of how a change in 

rectification at bipolar cell output synapses can account for a change in spatial integration in 

a RGC. Figure adapted from (William N. Grimes et al., 2014).
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Figure 9. A subset of retinorecipient areas of the brain
Well studied brain regions are in color and listed with their known RGC inputs and their 

behavioral function. Less well understood regions are shown shaded in gray.

Abbreviations: AHN: Anterior Hypothalamic Nucleus, APN: Anterior Pretectal Nucleus, 

IGL: Intergeniculate Leaflet, LGN: Lateral Geniculate Nucleus, LHA: Lateral Hypothalamic 

Area, MTN: Medial Terminal Nucleus, NOT/DTN: Nucleus of the Optic Tract/Dorsal 

Tegmental Nucleus, OPN: Olivary Pretectal Nucleus, PPN: Pedunculopontine Nucleus, 

RCH: Retrochiasmatic Area, SC: Superior Colliculus, SCN: Suprachiasmatic Nucleus.
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